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Abstract

A line system is a linear sequence of network elements
(OADMs) and fibers, all optically transparent. We
describe algorithms for partitioning a DWDM mesh
network into line systems, given a demand matrix.

Perferred topic area: 1A.

1 Introduction

State-of-the-art dense wavelength division multiplex-
ing (DWDM) allows data transport with very high
capacity, measured in terabits per second, and very
long reach, thousands of kilometers. One current
DWDM technology arranges network elements into
line systems, where a line system is a path consist-
ing of alternating network elements and optical fibers.
Data can enter and leave a line system at a network
element, requiring electrical to optical conversion, but
within the line system data remains purely as an op-
tical signal.

The design of such DWDM networks involves al-
gorithmic problems such as grooming [1] and span
engineering [2]. The topic of interest here is line sys-
tem design, that is, the choice of line systems that
partition a given mesh network. Figure 1 shows an
example of a synthetic backbone network over the
continental US and a possible partition into line sys-
tems.

We have developed a design tool, Ocube, that
designs line systems for Lucent’s LambdaXtreme
DWDM product family. Ocube has been used to give
candidate designs for a number of carrier backbone
networks; these designs are used for comparative eval-
uation of DWDM products. The carrier networks
vary in size from a dozen nodes to a few hundred
nodes. Fiber usage varies from a fraction of a fiber
to three fibers per link.
This paper describes the algorithms used in the

Ocube design tool. As might be expected, the under-
lying algorithmic problem is NP-complete. We de-
scribe various exact and efficient algorithms for spe-
cial cases then describe heuristics used in general.

2 Line system design

We are given a network of available dark fibers, al-
ready buried, a list of traffic demands, and a set of
optical equipment with price tags. The network is
modeled by an undirected graph G = (V,E). Each
fiber can carry data on a fixed number of wavelengths,
depending upon its type (typically 64 to 128). For
simplicity, we treat a single fiber as capable of carry-
ing traffic in both directions (a fiber pair is actually
needed).

A demand is a triple (a, z, p), where a ∈ V and
z ∈ V are the source and destination nodes and
p is either “1+0” or “1+1”; the latter requires a
pair of edge- and node-disjoint paths between a and
z. Each demand represents bandwidth equal to the
bandwidth carried by a single wavelength. Demands
are symmetric, that is, the demand (a, z, p) specifies
one unit from a to z and one from z to a.

A line system consists of an end terminal (ET),
followed by an alternating sequence of fibers and op-
tical add/drop multiplexers (OADMs), and ends with
a fiber connected to an ET. Notice that an ET has
exactly one fiber incident, and an OADM has exactly
two fibers incident. A data stream can enter a line
system at either an ET or an OADM. To do this it
requires an optical translator (OT), which converts
the data stream to a particular optical wavelength.
The data stream can traverse the line system, at this
wavelength, to another ET or OADM. It can then
leave the line system, where another OT is required.
The data stream can traverse many line systems, re-
quiring an OT upon entering and another upon exit-
ing each line system.
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Figure 1: (Left) A synthetic US backbone network. (Right) A partition into line systems.
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Figure 2: (Left) A dark fiber network. (Middle, Right) Two possible line system designs. Arrows denote ETs
and solid circles denote OADMs.

A line system design is a partition of the edges of
the graph into a set of paths, each path determining
a line system. A routing determines a path for each
demand (or pair of disjoint paths if the demand is
1+1). The line system design problem with routing is
to choose (1) a line system design and (2) a routing
for each demand to minimize total equipment cost.

Figure 2 gives a dark fiber network and two possible
line system designs. Both designs require the same
number of end terminals and OADMs. For the middle
design, a unit demand from A to E requires two OTs
(one each at A and E) while a unit demand from A

to F requires four OTs (one each at A and F and two
at D). If the demand is 2 from A to E and 1 from
A to F ; the middle design requires the fewest OTs; if
the demand is 1 from A to E and 2 from A to F ; the
right design requires the fewest OTs.

Equipment costs OADM:ET:OT are roughly in the
ratio 20:10:1. However, actual costs are quite com-
plex. For example the cost of an ET is a step function
of the number of wavelengths that are terminated at
the ET. Each jump in cost reflects extra circuit packs
added for additional wavelengths carried.

Other constraints complicate the line system de-
sign problem. The line system may have a bound
both on fiber length and on the number of permissi-
ble OADMs. Each optical signal has a reach limit,
which bounds the fiber distance that can be traveled

on a single line system before the optical signal be-
comes degraded. If the reach limit is exceeded, the
optical signal must be regenerated by a pair of OTs.

3 Design heuristics

The line system design problem with routing is easily
shown to be NP-hard, even with a very simple model
of equipment costs.
We experimented with an integer programming for-

mulation of the problem. Such a formulation is com-
plicated. For example, for each pair of edges inci-
dent to a vertex, there is a 0-1 variable that expresses
whether that pair of edges is optically connected with
an OADM. Linear constraints guarantee that at each
vertex, each edge incident to the vertex is connected
to at most one OADM. The 0-1 variables are used
to model the OT cost of a path satisfying a demand.
The global objective function attempts to minimize
total equipment cost.
Unfortunately, integer programming is unattrac-

tive in this case. First, observed solution times were
seriously exponential in the size of the network (e.g.
tripling with the addition of a node and link), mak-
ing the approach infeasible except for tiny networks.
Second, it is difficult to model the constraints accu-
rately. For example, equipment costs are step func-
tions, not linear, and bounds on line system length,
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Figure 3: (Left) A deg-4 node O where the through traffic T (AOB) = 6, T (AOC) = 1, T (AOD) = 5,
T (BOC) = 5, T (BOD) = 7 and T (COD) = 0. (Middle) Max Thru places OADMs along A-O-D and B-O-C
and maximizes the total through traffic at O to 10. (Right) Max Reduction may place an OADM along A-O-B
if this choice reduces the total cost the most.

reach, and OADM count require transitive-closure-
like constraints, not easily expressed with linear pro-
gramming. We discovered that the heuristics de-
scribed below gave better results. For this design
problem, heuristics with an accurate model of the
objective function determined cheaper designs than
did integer programming with a simplified objective
function, while simultaneously reducing computation
time.

We first describe some special cases where efficient
(i.e. polynomial time) exact algorithms are available.

3.1 Routing with fixed line systems.

For this problem, we assume that the line system de-
sign has been fixed. For simplicity, we also ignore
fiber capacity. The goal isMin OT routing, i.e. rout-
ing each demand to minimize the number of OTs.
We define a new distance function on any pair of ad-
jacent links. If the two links are in the same line
system, then the distance is zero. Otherwise, the dis-
tance is one. Under this distance function shortest
paths are least OT paths. For any demand with 1+0
protection, we can use Dijkstra’s algorithm to find a
shortest path; for any demand with 1+1 protection,
we can use Suurballe’s algorithm [4] to find a shortest
cycle that contains the source and destination nodes.

Theorem 1 If OTs have no reach limit, Min OT

routing produces optimal routing for any fixed line
system design.

3.2 Designing line systems with fixed

routing.

For this problem, we assume that routing has been
fixed, and we wish to choose the line system de-
sign to minimize the number of OTs. For every pair

(u, v) and (v, w) of adjacent links, the through traf-
fic T (u, v, w) is the number of unit demands routed
u, v, w. If 2 ETs are placed at v, one incident to (v, u)
and the other to (v, w) then every unit of through
traffic requires 2 OTs at v. On the contrary, if an
OADM is placed at v along the direction of u-v-w
then no OTs are required for through traffic.
The Max Thru algorithm chooses, for each node

v, a matching of the links incident to v so as to max-
imize the sum of the through traffic on the matched
pairs of links. It then assigns an OADM to each
matched pair of links. An ET is placed at any re-
maining link endpoint. See Figure 3.

Theorem 2 If line system cycles are allowed, line
systems have no length limit, and OTs have no reach
limit then Max Thru produces an optimal line sys-
tem design for the fixed routing.

Proof: Let T (v) be the total traffic that passes
through but does not start or end at v. For a spe-
cific line system design, let M(v) be the total traffic
through v that passes through an OADM. The num-
ber of demands that have to switch from one line
system to another at node v is T (v) −M(v). Since
T (v) is determined by routing, andMax Thru max-
imizes M(v) at each node, no algorithm can outper-
form Max Thru. 2

TheMax Thru algorithm may well introduce line
system cycles, which are not allowed, and may not
respect the constraints on line system length and
OADM count. It is easy to modify the algorithm
to examine each node in turn, choosing an OADM
on the basis of through traffic but inserting it only if
no constraint is violated (of course, the guarantee of
Theorem 2 no longer applies).
An alternate algorithm is Max Reduction. The

Max Thru algorithm does not directly model the
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Demands Optimal ($M) Our solutions ($M) %difference
89 101 103 1.98
176 127 131 3.15
264 159 165 3.77

Figure 4: The first column gives the total number of single-wavelength demands; on average each demand
traverses about 4.5 links.

Nodes Links Demands Max Thru ($M) Max Reduction ($M) %difference
45 61 877 345 315 8.70
52 75 2319 609 578 5.09
52 75 4173 1063 927 12.80

Figure 5: Comparing Max Thru and Max Reduction.

global system cost. Global cost is complicated be-
cause of all the side constraints (OT reach, line sys-
tem length, channel capacity, complex equipment
costs). Global cost is however determined once rout-
ing and line system design are fixed. Like Max

Thru, Max Reduction algorithm assumes a fixed
demand routing. OADMs are chosen by examining
each node in turn. After examining some nodes, the
OADM assignment at those nodes are known. At
the next node n, all possible OADM assignments at
n are enumerated. For each such assignment, the
global network cost is evaluated using the OADM
assignments for previously examined nodes and no
OADMs at unexamined nodes. The assignment at n

that leads to minimum cost is then chosen for n, and
the next node examined.

3.3 Combined routing and line system

design.

A complete heuristic algorithm, when routing is not
known, can be obtained by combiningMax Thru (or
Max Reduction) and Min OT. An initial routing
is found, say using shortest fiber distance. A line sys-
tem design is found, with Max Thru (or Max Re-

duction), and thenMin OT can be used to reroute,
given the line systems. In principle further iteration
is possible.

3.4 Lighting fibers on a subset of

links.

When a network is lightly loaded, the lit fibers carry
traffic much below what the fiber capacity would al-

low. The cost structure of ETs and OADMs presents
a “buy-at-bulk” nature, i.e. as an ET carries more
wavelengths the ET cost per wavelength is reduced.
Hence, one effective way to reduce the total equip-
ment cost in a lightly loaded network is to light fibers
only on a subset of the network links.

To choose unlit links, we order the links by the
traffic that they carry, the least loaded first. This
ordering frees ETs and OADMs that have the highest
per wavelength cost. We try each link in turn; if
deleting the link reduces total equipment cost, we
declare the link dark.

3.5 Wavelength assignment.

Wavelength assignment for one line system is inde-
pendent of wavelength assignment for any other line
system, since a data stream switching from one line
system to another must first be converted to an elec-
trical signal. Assigning wavelength to each demand
within each line system is equivalent to the classic
interval graph coloring problem, which can be solved
optimally and efficiently (see e.g. [3, 5]). We omit
details here.

4 Implementation

We have implemented the heuristics described above
using Python. Our implementation also addresses
many issues that are not discussed above, e.g. multi-
ple fiber types, multiple fibers per link, incremental
designs and hybrid designs with multiple subchannels
per wavelength.
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It is hard to determine how close to optimality
our algorithms are. As mentioned earlier, the de-
sign problem is NP-hard even in very special cases.
Figure 4 compares our solutions to solutions found by
exhaustive enumeration. The network has 24 nodes
and 27 links (thus six nodes of degree 3) and some
degree of complexity, since it has multiple fiber types
with differing capacity.

Figure 5 compares Max Thru and Max Reduc-

tion; the latter is consistently better by 5-15%. How-
ever, Max Thru has the advantage in running time.

If networks are lightly loaded, the heuristic of
choosing lit fibers is particularly effective. It is of-
ten the case that chordal links from cycles are good
candidates to be unlit. For example, for the synthetic
network shown in Figure 1, not lighting links SFO-
SAL, DEN-ELP, KAN-HOU and ATL-RAL reduces
the total cost by roughly 9%. (Of course, when some
links are unlit Ocube finds a different set of line sys-
tems from those shown on the right of Figure 1.) For
lightly-loaded carrier networks, we have observed sav-
ings in the range 7% to 12% by keeping some fibers
unlit. As demand increases, this savings usually de-
creases and eventually disappears.

In addition to providing designs, Ocube has been
very useful in quantifying the effects of changes in
design rules. For example, OT reach and line system
length could perhaps be increased by more expen-
sive OT designs. The plot in Figure 6 demonstrates
the dependence of OT count on line system length
and OT reach for a sample network and demand set.
Clearly such information can help evaluate alternate
equipment designs.
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