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User-Level Performance of Channel-Aware
Scheduling Algorithms in Wireless Data Networks

Sem Borst

Abstract—Channel-aware scheduling strategies, such as the Pro-
portional Fair algorithm for the CDMA 1xEV-DO system, provide
an effective mechanism for improving throughput performance
in wireless data networks by exploiting channel fluctuations. The
performance of channel-aware scheduling algorithms has mostly
been explored at the packet level for a static user population,
often assuming infinite backlogs. In the present paper, we focus
on the performance at the flow level in a dynamic setting with
random finite-size service demands. We show that in certain
cases the user-level performance may be evaluated by means of a
multiclass Processor-Sharing model where the total service rate
varies with the total number of users. The latter model provides
explicit formulas for the distribution of the number of active
users of the various classes, the mean response times, the blocking
probabilities, and the throughput. In addition we show that, in the
presence of channel variations, greedy, myopic strategies which
maximize throughput in a static scenario, may result in sub-op-
timal throughput performance for a dynamic user configuration
and cause potential instability effects.

Index Terms—Blocking probabilities, channel-aware sched-
uling, elastic traffic, insensitivity, processor sharing, proportional
fair scheduling, response times, stability, throughput, wireless
data networks.

I. INTRODUCTION

NEXT-GENERATION wireless networks are expected to
support a wide variety of data services. Data applications

have fundamentally different traffic characteristics and different
quality-of-service requirements than traditional voice services,
calling for a significant departure from a conventional circuit-
switched operation. In particular, the relative delay tolerance of
data applications, combined with the bursty activity patterns,
opens up the possibility of scheduling transmissions so as to
obtain efficiency gains. An especially attractive approach, in
fading environments, is to use channel-aware scheduling strate-
gies, such as the Proportional Fair algorithm for the CDMA
1xEV-DO system [5], [10], [14], which harness channel vari-
ations so as to improve the throughput performance.

The performance of channel-aware scheduling algorithms has
mostly been investigated at the packet level for a static user pop-
ulation, sometimes including packet-scale dynamics [4], [23],
but often assuming infinite backlogs [1], [9], [19]; see also [20],
[25], [27] for related results. The assumption of a static user
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population is a reasonable modeling convention because of the
separation of time scales: the scheduling algorithms operate at
the packet level on which the user population evolves only rel-
atively slowly. However, when examining throughput perfor-
mance, and in particular comparing the throughput allocation
among elastic traffic users under various strategies, it does not
seem entirely satisfactory to assume that the user population is
independent of the throughput characteristics and the param-
eter settings of the scheduling algorithm. For example, a sched-
uling algorithm that provides high throughput to users with fa-
vorable channel conditions, will tend to satisfy the service de-
mands of these users sooner. As a result, the algorithm would
tend to be left facing a user population with a higher fraction
of users with poor channel conditions. Conversely, a scheduling
algorithm that grants reasonable throughput to users with poor
channel conditions, should to a certain degree benefit from that
by seeing fewer of these users.

In order to capture the above interdependence between the
scheduling algorithm and the user population, we move away
from a static scenario with a fixed ensemble of users to a dy-
namic setting where elastic traffic users come and go as gov-
erned by the arrival and completion of service demands over
time. The notion of finite-size service demands additionally al-
lows us to consider user-perceived performance in terms of re-
sponse times for file transfers for example, as opposed to delays
experienced by individual packets. We will show that in certain
cases the user-level performance may be evaluated by means of
a multiclass Processor-Sharing (PS) model where the total ser-
vice rate varies with the total number of users. The latter model
provides explicit formulas for the distribution of the number of
active users of the various classes, the mean response times,
the blocking probabilities, and the throughput. Recently, similar
PS type models have been proposed for various types of wire-
less systems [6], [18], [21]. An early paper that introduces a PS
model for a multiaccess system is [26].

To put the above observations further into perspective, it is
helpful to make a comparison with a situation where the trans-
mission rates are possibly different across users but constant
over time. In that case, a work conservation argument implies
that the “amount of work” in the system (measured in trans-
mission time rather than bits) is the same under any nonidling
scheduling rule. In that sense, the throughput allocation among
users corresponding to various scheduling strategies will im-
pact the delay characteristics, but have no effect on the system
throughput in case of finite-size service demands.

The above-mentioned work conservation property does not
extend to a situation where the transmission rates vary over time,
and it will no longer be the case that any nonidling scheduling
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strategy yields the same system throughput. As it turns out, it is
not so much maximizing the instantaneous throughput in an ab-
solute sense that determines stability then, but serving users at
the right time so as to extract the maximum possible gains from
the varying channel conditions. In particular, we will show that
greedy, myopic strategies which maximize throughput in a static
scenario, may result in sub-optimal throughput performance for
a dynamic user configuration and cause potential instability phe-
nomena. Of course, (in)stability is to a certain extent a theoret-
ical concept that cannot occur in an actual system due to admis-
sion and flow control mechanisms and the inherent finiteness of
buffers. However, it is plausible that instability effects will be
reflected in poor performance in terms of long delays in prac-
tical circumstances as well.

The remainder of the paper is organized as follows. In Sec-
tion II we recapitulate some relevant results from the literature
for a static user population and state some preliminary facts. We
extend the model to accommodate a dynamic user configuration
in Section III. We describe how in certain symmetric cases the
system behavior may be described by means of a multiclass PS
model where the total service rate varies with the total number of
users. We present exact results for the distribution of the number
of active users of the various classes, the mean response times,
the blocking probabilities, and the throughput. In Section IV we
turn the attention to asymmetric scenarios and derive some sto-
chastic majorization properties. We examine stability issues in
Section V. In Section VI we discuss the numerical experiments
that we conducted to illustrate the results.

II. STATIC USER POPULATION

We first review some relevant results from the literature for
a static scenario with a population of data users served by a
single base station. The base station transmits in slots of some
fixed duration. In each slot, the base station transmits to exactly
one of the users.

We assume that the feasible rates for the various users vary
over time according to some stationary and ergodic discrete-
time stochastic process , with rep-
resenting the feasible rate for user in time slot . In order to
estimate the feasible rates, the base station relies on feedback
information from the users on the instantaneous rates that can
reliably be supported, as is for instance the case in the CDMA
1xEV-DO system (also known as HDR) [5]. The prediction of
the feasible rates should be reasonably accurate when the feed-
back delay is relatively short compared to the fading frequency.
For convenience, we assume that the base station has perfect
knowledge of the feasible rate for every user at the start
of slot .

Let be a random vector with as distribution
the joint stationary distribution of the feasible rates. We focus
on the case where the feasible rates have a dis-
crete distribution on some finite set . Let be the
stationary probability that the instantaneous feasible rate vector
is . With minor modifications, most of the results extend
to scenarios with a continuous rate distribution.

Let be the (long-term) throughput received by user , and
let be the set of achievable throughput vectors.

The next proposition provides a characterization of the set
[4], [9].

Proposition 2.1: The set of achievable throughput vectors
may be characterized as

where is the optimal value of the linear program

The variable in the above linear program may be inter-
preted as the fraction of time slots allocated to user in which the
instantaneous rate vector is . Thus, the term
represents the throughput received by user , and the variable
measures the throughput as a fraction of the target throughput

.
The next proposition provides a characterization of the op-

timal solution of the above linear program based on the com-
plementary slackness conditions [4], [9].

Proposition 2.2: There exists a vector such that
any optimal solution to the above linear program satisfies

for all , .
The above proposition shows that any feasible (nondomi-

nated) throughput vector can be achieved by some weight-based
strategy which allocates time slot to a user identified as

augmented with a suitable tie-breaking rule. In particular, any
component-wise increasing function of the throughput vector is
maximized by some weight-based strategy.

We now state some simple auxiliary results that will play a
crucial role in the further analysis.

Lemma 2.1: Any feasible throughput vector sat-
isfies for any vector

.
Proof: Note that the throughput function is

maximized by a weight-based strategy which assigns a weight
to user (in fact, sample-path wise), and that the op-

timal value equals .
We now consider a scenario where the distribution of the rate

vector is symmetric in the sense that the relative fluctuations
in the feasible rates for the various users around the respective
time-average values are statistically identical. Specifically, we
assume that , where is the time-av-
erage rate of user , are independent and identically
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distributed copies and represents a possible correlation com-
ponent with unit mean. Define .

Lemma 2.2: In the case of a symmetric rate distribution
as described above, the weight-based strategy which assigns
a weight to user , and breaks ties between users
at random, provides each user a fraction of its
time-average rate.

Proof: Note that user is selected when
, i.e., , and possible

ties are broken to its advantage. By symmetry considerations,
user thus receives a fraction of the time slots, and the
expected rate when selected is

Remark 2.1: The assumption that the relative rate fluc-
tuations are statistically identical is roughly valid when the
users for example have Rayleigh fading channels and the fea-
sible rate is approximately linear in the SNR (signal-to-noise
ratio). The latter approximation is reasonably accurate when
the SNR is not too high. It is not necessary that the Doppler
frequencies are identical, since only the instantaneous rate
distribution affects the long-term average throughput achieved
under a weight-based strategy. Of course, the Doppler fre-
quencies do matter for the transient throughput behavior
and also affect the ability to predict the feasible rate. Also,
the assumption could be further relaxed.
For instance, a somewhat milder condition would be that

is invariant
under permutations .

Remark 2.2: In certain cases, the Proportional Fair sched-
uling algorithm for the CDMA 1xEV-DO system [5], [10], [14]
mentioned earlier behaves approximately like a weight-based
strategy. In Proportional Fair scheduling, the weights are dy-
namically adapted and are inversely proportional to the expo-
nentially smoothed throughputs of the users. Thus, the ex-
pected rate of user when selected is

Now observe that both the instantaneous rate and the
exponentially smoothed throughput scale linearly with
the time-average rate . As a result, the allocation of time
slots only depends on the relative rate fluctuations and not
on the time-average rates. In particular, each user receives a
fraction of the time slots in case the relative rate fluctu-
ations are statistically identical, see also [13]. Thus, we may
write , where the random variables

are identically distributed (but not independent). In addition,
the exponentially smoothed throughputs will not show any
significant variation when the time constant in the exponential
smoothing is large, i.e., for some constant

. (In general, the smoothed throughputs converge to the
equilibrium point of a differential equation, see [2], [16],
[17], [24] for rigorous results.) Substituting
and in the above formula, we find that the ex-
pected rate of user when selected approximately equals

. In conclusion,
in case the relative rate fluctuations are statistically identical
and the time constant in the exponential smoothing is not
too small, the Proportional Fair scheduling algorithm roughly
behaves as the weight-based strategy which assigns a constant
weight to user .

We would like to add that the above statements assume the
users to have infinite backlogs. In situations with packet-scale
dynamics, the Proportional Fair algorithm may be ill-behaved,
and the throughput performance be degraded by convergence
and fragmentation issues, giving rise to potential instability phe-
nomena [3].

III. DYNAMIC USER CONFIGURATION

We now extend the model to accommodate a dynamic config-
uration of users. The user dynamics result from finite-size ser-
vice demands that arrive randomly over time. We assume that
the duration of the time slots is short relative to the size and
arrival frequency of the service demands. Thus, the scheduling
strategy operates on an extremely fast time scale compared to
the user dynamics, making it natural to analyze the user-level
performance in continuous rather than discrete time, and as-
sume that the users are served simultaneously rather than in a
time-slotted fashion. The continuous-time model naturally in-
herits its service characteristics from the discrete-time model.
Specifically, we assume that the set of feasible service rate vec-
tors in the continuous-time context for a given user population
coincides with the set of achievable throughput vectors for that
user population in a discrete-time setting.

For the latter model, we consider a scenario where the relative
fluctuations in the feasible rates for the various users around the
respective time-average values are statistically identical as de-
scribed in the previous section. Thus, we assume that the instan-
taneous rate of user with time-average rate is distributed as

, where are independent and iden-
tically distributed copies and represents a possible correla-
tion component with unit mean. According to Lemma 2.2, we
then have that under the strategy which assigns a weight

to a user with a time-average rate , each user
is continuously served at a fraction of its time-average
rate whenever there are users in the system.

The above assumptions ignore the discrete nature of the time
slots and neglect the transient fluctuations in the throughput.
However, the law of large numbers suggests that these effects
should be negligible in some suitable asymptotic sense in a lim-
iting regime where the duration of the time slots shrinks relative
to the time scale of the user dynamics.



BORST: USER-LEVEL PERFORMANCE OF CHANNEL-AWARE SCHEDULING ALGORITHMS IN WIRELESS DATA NETWORKS 639

To describe the service demands, we assume that users ini-
tiate file transfer requests randomly over time. We consider a
scenario with user classes. Class- users submit file transfer
requests as a Poisson process of rate . We assume that at
most users in total are admitted into the system simultane-
ously (possibly ). Users which submit requests when
there are already transfers in progress are denied access and
abandon. Let be a pair of random variables with as
distribution the joint distribution of the time-average transmis-
sion rate and the file size of an arbitrary class- user. We assume
that the file size and time-average transmission rate are indepen-
dent across users, but we allow for possible dependence between
the file size and time-average transmission rate of a given user.
Let be the normalized service requirement of a
class- user, with expected value .
The normalized service requirement is the amount of time it
would take to complete the file transfer if a user were the only
user in the system. Note that the normalized service requirement
encapsulates both the file size and the time-average transmission
rate of a user, and is measured in transmission time rather than
data volume. Define as the offered traffic associated
with class- users. Denote by the total amount
of offered traffic. Let be a random variable representing the
residual lifetime of and the associated distribution
function, i.e.,

.
Let be a random vector representing the

number of users of the various classes in the system under
strategy at an arbitrary epoch in statistical equilibrium
(assuming it exists). Denote by
the total number of users in the system. Given that
there are class- users in the system, let be
the remaining normalized service requirement of the th
class- user, , . Define

. Note that
is simply the supremum of the possible values that can

achieve, and in particular when the distribution of
has infinite support.

Proposition 3.1: Strategy achieves stability for
or , in which case

with , , and
normalization constant

In particular,

and . The blocking probability is given
by .

Proof: According to Lemma 2.2, each user is served at a
fraction of its time-average rate whenever there are
users in the system. Thus, the normalized remaining service re-
quirement of each user is reduced at rate , which means
that the normalized remaining service requirements evolve in a
similar probabilistic fashion as the remaining service require-
ments in a multiclass PS system with arrival rates , generic
service requirements , and service rate when there are

users in total present. The statements then follow from results
for the latter system [11], [15].

Remark 3.1: Proposition 3.1 extends to the case where users
generate sessions consisting of multiple file requests separated
by arbitrarily distributed ’think times’ [7], [8]. In that case, the
offered traffic should be calculated so as to include the mean
number of file requests per session.

Using Little’s law, we find that the mean transfer delay expe-
rienced by a class- user is given by

The above formula reflects the celebrated insensitivity prop-
erty of the PS discipline, which shows that the mean delay of
a class- user only depends on the service requirement distri-
bution of class through its mean . In fact, it may be shown
that the conditional expected delay of any user with actual ser-
vice requirement is given by

Thus, the expected transfer delay incurred by a user is propor-
tional to its normalized service requirement, with factor of pro-
portionality . The latter property embodies
a certain fairness principle, which means that users with larger
service requirements tend to experience longer delays. Recall
that the normalized service requirement encapsulates both the
file size and the time-average transmission of a user, and is ex-
pressed in time units rather than data bits.

Proposition 3.2: No strategy achieves stability for .
Proof: Define the normalized amount of work as the sum

of the normalized remaining service requirements of all the
users in the system. Let and be the arrival epoch and
the normalized service requirement of the th arriving user, let

be the normalized amount of work in the system at time
, and let be the reduction in the normalized amount

of work between time epochs and . According to
Lemma 2.1, taking , no strategy is able to reduce the
normalized amount of work at a rate higher than
when there are users present. Hence,

so that when

with . Thus, the normalized workload process
has positive drift when for any strategy.
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Propositions 3.1 and 3.2 combined imply that strategy
achieves stability whenever feasible. The heuristic explanation
is that the rate at which strategy reduces the normalized
amount of work will approach the maximum possible value

as the number of users tends to infinity. In fact, the proof
of Proposition 3.2 shows that strategy reduces the normal-
ized amount of work at a higher rate than any other strategy,
given the same number of users. (It is thus tempting to conjec-
ture that strategy actually minimizes the normalized amount
of work among all strategies, but that does not appear to be
true without further assumptions.) In particular, a weight-based
strategy which assigns a weight to a user with a time-
average rate reduces the normalized amount of work at a rate

when there are
users with time-average rates . In general, the latter
quantity is not guaranteed to approach when tends to
infinity. Intuitively, unless the weights are set inversely propor-
tional to the time-average transmission rates, the relative rate
fluctuations are not maximally exploited. We will examine these
issues further in Section V.

Remark 3.2: As mentioned in Section II, strategy may be
viewed as a proxy for the Proportional Fair scheduling algorithm
in case the relative rate fluctuations are statistically identical and
the time constant in the exponential smoothing is not too small.
The latter statement assumed a static user population with in-
finite backlogs. With a dynamic user configuration, we need to
assume that the duration of the time slots is relatively short com-
pared to the backlog periods of the users, so that the throughput
performance of the Proportional Fair algorithm is not substan-
tially hampered by convergence or granularity issues.

IV. ASYMMETRIC SCENARIOS

In the previous section we considered a scenario with
user classes where the relative rate fluctuations in the feasible
rates are statistically identical for all users. We assumed that
the system is operated according to the weight-based strategy

which assigns a weight to a user with a
time-average transmission rate .

We now consider a scenario where the relative fluctuations
in the feasible rates around the respective time-average values
for all users of a given class are statistically identical as be-
fore. However, we allow for the distributions of the fluctua-
tions to vary across user classes. Thus, we assume that the in-
stantaneous rate of a class- user is distributed as

, where are independent and identi-
cally distributed copies and represents a possible correlation
component with unit mean. Note that the above class structure
allows for completely arbitrary and heterogeneous rate charac-
teristics, as long as the feasible rates for each of the individual
users follow some stationary ergodic process.

The system is operated using a weight-based strategy
which assigns a weight to a class- user
with a time-average rate . The parameters allow for dif-
ferentiation among the various user classes. The differentiation
could be based on channel statistics, traffic characteristics, or
Quality-of-Service requirements.

With the heterogeneous user classes, the system loses the
symmetry properties of the ordinary PS discipline which en-
abled the analysis in the previous section. In fact, asymmetric
(discriminatory) versions of the PS discipline have remained
largely intractable so far, even under exponentiality assumptions
and when the service rates are constant [12], [22]. Therefore, we
will not aim for full distributional results but focus on stochastic
majorization properties and stability issues.

Note that strategy allocates a time slot to a class- user
when , i.e.,

. In order to avoid
technicalities, we assume that for ,
so that there are no tie-breaking issues between user classes.
Ties between users from the same class are broken at random.
Let be the maximum value that

can achieve. We assume that the user classes are indexed
such that . Note that we do
not allow for any ties, which implies that when the number of
class- users tends to infinity, classes will be
completely starved, and hence be driven unstable as well.

Denote by the total normalized service rate
for class when there are class- users, . We
may write

with

For any , define

The quantity may be interpreted as the min-
imum guaranteed total normalized service rate for class
when there are class- users, , competing
against any number of class- users, . Also,
denote .
The latter quantity may be interpreted as the maximum of the
minimum guaranteed total normalized service rate for class
when there are class- users, .

Lemma 1.1 in the Appendix lists some useful properties of
the function and various derived quantities.

In preparation for the stability analysis in Section V, we
now introduce two corresponding ’restricted’ versions of the
system. For any , the -restricted version is
a system with user classes only. In the -restricted
integrated system, each class- user, , is served at
a fraction of its time-average rate when-
ever there are class- users in the system, . In
the -restricted segregated system, each class- user is also
served at a fraction of its time-average
service rate, while each class- user, , is
served at a fraction of its time-av-
erage rate whenever there are class- users in the system,

. Let , , and be the number
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of class- users at time in the original system, the -re-
stricted integrated system, and the -restricted segregated
system, , respectively. Note that each class-
user, , in the -restricted segregated system
receives the same service rate as in the -restricted
integrated system. Hence, under equal initial conditions,

for all . Since all users in the -restricted integrated
system are worse off than in the original system, and are
yet worse off in the -restricted segregated system, it
is further plausible that, again under equal initial condi-
tions,

for all . The latter stochastic
ordering property is stated in the next two propositions which
may be proven by applying Lemma 1.2 in the Appendix.

Proposition 4.1: Under equal initial conditions,
for all

.
Proposition 4.2: Under equal initial conditions,

for
all .

V. STABILITY PROPERTIES

We now use the notion of the restricted system and the sto-
chastic majorization properties derived in the previous section
to establish necessary and sufficient conditions for stability of
the various user classes. We assume that because other-
wise stability is obviously not an issue. Let
be a random vector with as distribution the joint stationary distri-
bution of , assuming the -restricted

integrated system is stable. Denote

, with the convention

that for all when the
-restricted integrated system is unstable. Define

with the convention that . The quantity may be
interpreted as the long-term average service rate for class in
the -restricted segregated system when unstable. Also, define

for all . We will show
that strategy achieves stability for user classes ,
and does not achieve stability for user classes
(assuming to hold with strict inequality). The
result may be heuristically explained as follows. Suppose that
some class were unstable. Let be such class with
the lowest index. According to Corollaries 4.1 and 4.2, class
must then be unstable in the -restricted segregated system as
well. In that system however, the long-term average service rate
for class when unstable will be equal to , which
is not possible.

Conversely, suppose that some class were stable.
First observe that classes would then all have to be
stable as well, because otherwise class would be starved due to

the fact that . In particular, class
would have to be stable. It is intuitively plausible, and

can be rigorously shown, that the long-term average service rate
for class cannot be larger than the maximum possible
long-term average service rate for class in the

-restricted segregated system, which is equal to
, precluding stability of class .

Proposition 5.1: Strategy achieves stability for classes
.

Proposition 5.2: Strategy does not achieve stability for
classes .

The proofs of the above two propositions may be found in the
Appendix.

Recall that Proposition 3.1 showed that strategy achieves
stability for . The above two propositions suggest that
strategy may in general not achieve stability for .
To show that strategy is not guaranteed to achieve stability
whenever possible, it is useful to consider a two-class scenario
where and are identically distributed as with

for some fixed , so that
. Recall that the weights are set according to ,

so the above situation could correspond to two different sce-
narios: (i) both classes have the same time-average transmission
rates , but class 1 is assigned a larger weight and thus effec-
tively receives priority over class 2; (ii) both classes are assigned
the same weights , but class 1 effectively receives priority
over class 2 due to a larger time-average transmission rate (or
a combination of these two scenarios). In either case, service
of class 1 takes precedence over that of class 2, and we have

and , with
. Thus, there are scheduling

gains within both user classes, but not between classes.
Using Proposition 3.1, we deduce that class 1 is stable under

strategy as long as , in which case the proba-
bility that there are no class-1 users in the system is

, with . Class 2 is stable
if in addition . Now observe that for all

implies that for some .
Hence, class 2 is stable under strategy only if ,
which is a strictly stronger condition than for strategy .

VI. NUMERICAL EXPERIMENTS

We now present the numerical experiments that we performed
to illustrate the results. We consider a system where users ini-
tiate file transfer requests as a Poisson process. At most
users are admitted into the system simultaneously. Users which
generate download requests when there are already trans-
fers in progress are blocked and lost. The system operates in a
time-slotted fashion, with a slot duration of 1.67 ms (600 slots
per second) as in the CDMA 1xEV-DO system. Throughout, we
assume that the users have independent Rayleigh fading chan-
nels.

We consider three different scenarios for the distribution of
the mean SNR: (I) identical to 0 dB for all users; (II) a bi-modal
distribution, either dB or 4.0 dB with equal probability;
(III) a linearized version of the distribution plotted in Fig. 1
taken from [5] with mean 1.0 dB.
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Fig. 1. CDF of SNR distribution from [5].

TABLE I
RATE (KBS) AS FUNCTION OF SNR IN 1XEV-DO SYSTEM

The above assumptions determine how the instantaneous
SNR values of the various users behave over time. It remains
to specify how the instantaneous transmission rate of a user
varies with the instantaneous SNR value. We distinguish
between three different scenarios: (A) the instantaneous rate
is linear in the instantaneous SNR (on an absolute scale):

, with ; (B) the instantaneous
rate is logarithmic in the instantaneous SNR (on an absolute
scale): , with ; (C) the
instantaneous rate is determined from the instantaneous SNR
value (in dB) according to Table I as is used in the CDMA
1xEV-DO system [5].

In the first set of experiments, we examined the strategy
which assigns a weight to a user with a time-av-
erage transmission rate . We determined the mean number
of users, the mean response times, the blocking probabilities,
and the mean throughput for varying arrival rates, comparing
the analytical formulas given in Proposition 3.1 with simulation
results. The simulations were run for 100 000 000 time slots, or
equivalently, about 167 000 seconds of real time. Throughout,
the mean file size is assumed to be 60 Kbytes (480 Kbits). We
focus the discussion on results that we obtained for determin-
istic file sizes. Observe that Proposition 3.1 indicates that the
above-mentioned performance metrics should be mostly insen-
sitive to the file size distribution in case of a symmetric rate dis-
tribution. However, we will also present some results for ex-

Fig. 2. Mean transfer delay as function of file arrival rate for Cases IA–C.

ponentially distributed file sizes, which suggest that the perfor-
mance metrics continue to be fairly insensitive even when the
rate variations fail to be entirely symmetric.

We considered a total of nine cases obtained via pair-
wise combination of the above scenarios for the mean SNR
distribution and the rate variations. Note that the relative
rate fluctuations are only statistically identical in case all
users have identical mean SNR values or the instantaneous
rate is linear in the instantaneous SNR value, i.e., in cases
IA, IB, IC, IIA, and IIIA. In cases I–IIIA, the relative rate
fluctuations in fact have an exponential distribu-
tion, and the gain factor can be derived in closed form as

. In cases IB–C,
the rates themselves and hence the relative rate fluctuations
have some complicated distribution, and the gain factor can be
expressed as , where

are distributed as the rate of a user with a mean SNR
of 0 dB and the expectations are evaluated through random
sampling.

In the remaining four cases, the relative rate fluctuations differ
across users, and the notion of a gain factor as defined in
Section II is not strictly valid. In order to evaluate the analyt-
ical formulas, we used an approximate gain factor, which was
computed as the gain factor that would have been obtained in a
scenario with identical mean SNR values for all users, where the
mean was calculated as the average SNR across users (on a loga-
rithmic scale). More specifically, the gain factor is approximated
by , where
now have the rate distribution of a user with a mean SNR of

dB. The latter approximation is expected
to be somewhat conservative, since the actual user populations
will tend to be biased to low-SNR users, for whom the relative
gain factor tends to be larger due to the concavity and the trun-
cation of the transmission rate which limit the potential relative
gain for the high-SNR users.

Fig. 2 depicts the mean transfer delay as a function of the file
arrival rate for cases IA–C, and indicates that the analytical for-
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Fig. 3. Mean total number of active users as function of file arrival rate for
cases IIA–C.

Fig. 4. Mean transfer delay for class-1 users as function of file arrival rate for
cases IIA–C.

mulas provide a highly accurate estimate in cases where the rate
fluctuations are statistically identical: the analysis and simula-
tion curves are nearly indistinguishable. This confirms that the
separation of time scales underlying the analytical formulas is a
reasonable assumption.

Figs. 3–5 display the mean total number of users and the mean
transfer delay for class-1 and class-2 users for cases IIA–C. In
Case IIA, the rate fluctuations are still statistically identical,
and Proposition 3.1 implies that the mean delays of class-1 and
class-2 users should be inversely proportional to the time-av-
erage transmission rates, i.e., have a ratio of to ,
which is roughly 1 to 4, as is confirmed by Figs. 4 and 5. Re-
markably enough, Fig. 3 shows that the analytical formulas con-
tinue to yield a fairly accurate prediction for the mean total
number of transfers in progress in cases IIB and IIC, despite

Fig. 5. Mean transfer delay for class-2 users as function of file arrival rate for
cases IIA–C.

Fig. 6. Mean transfer delay as function of file arrival rate for cases IIIA–C
with deterministic file size.

the fact that the rate fluctuations vary across users. However,
Figs. 4 and 5 reflect that the accuracy of the formulas for the
mean per-class transfer delays is rather poor in these cases. The
formulas consistently underestimate the delay for the high-SNR
users and overestimate the delay for the low-SNR users. This is
attributed to the fact that the relative gain from the rate varia-
tions is smaller for the high-SNR users due to the concavity and
the truncation of the transmission rate as mentioned above.

Fig. 6 plots the mean transfer delay as a function of the file
arrival rate for cases IIIA–C, and indicates that the analytical
formulas remain surprisingly accurate for a continuous distribu-
tion of the mean SNR as well. We repeated the latter experiment
for exponentially distributed file sizes. The results as graphed in
Fig. 7 show that the mean transfer delay is fairly insensitive to
the file size distribution, even when the symmetry conditions of
Proposition 3.1 are not strictly satisfied.
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Fig. 7. Mean transfer delay as function of file arrival rate for cases IIIA–C
with exponentially distributed file sizes.

Fig. 8. Mean system throughput as function of log (w =w ) for cases IA–C.

In the second set of experiments, we evaluated similar perfor-
mance metrics for varying weight factors used in the allocation
of time slots. We considered a total of six cases obtained via
pairwise combination of channel scenarios as before. In order
to investigate the impact of the weight factors, we focused on
a system with two user classes. The mean SNR values and
the weights of the users are class-dependent. Within classes,
the users have identical mean SNR values and equal weights.
Throughout, the file size is deterministic and assumed to be 60
Kbytes (480 Kbits) as before.

Figs. 8 and 9 depict the mean system throughput and the mean
number of users as a function of for cases IA–C.
Since all users have identical time-average transmission rates,
Propositions 3.1 and 3.2 imply that strategy which sets the
weights equal for both classes is optimal from a stability per-
spective. Observe from the two figures that the minimum ag-
gregate occupancy and maximum total throughput performance

Fig. 9. Mean total number of users (solid line), class-1 users (dashed line), and
class-2 users (dotted line) as function of log (w =w ) for cases IA–C.

Fig. 10. Mean system throughput as function of log (w =w ) for cases
IIA–C.

is achieved for equal weights as well. This demonstrates that
the maximal stability guarantee of strategy translates into
superior performance in terms of overall throughput in systems
with admission control where strictly speaking stability is not
an issue. Further observe that Figs. 8 and 9 indicate that differ-
entiation between user classes can only be accomplished at the
expense of the overall throughput performance.

Figs. 10 and 11 plot similar performance characteristics for
cases IIA–C. The time-average transmission rates of class-1 (4.0
dB) and class-2 dB users in these three cases may be
computed to be 1005 and 252, 840 and 344, and 915 and 348
Kbs, respectively. The strategy in these three cases thus cor-
responds to a ratio between the weights of approximately 3.99,
2.44 and 2.63, respectively. As before, the two figures demon-
strate that the minimum aggregate occupancy and the optimum
total throughput performance is obtained for weight settings in
that range. In addition, the priorization of the high-SNR users
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Fig. 11. Mean total number of users (solid line), class-1 users (dashed line),
and class-2 users (dotted line) as function of log (w =w ) for cases IIA–C.

incurs a relatively modest penalty in terms of the overall system
performance, but preferential treatment for the low-SNR users
can have major repercussions. Further observe that the strategy
which sets the weights equal for both classes, and thus max-
imizes the throughput in a static scenario, fails to do so in a
dynamic setting, although not by a wide margin. The intuitive
explanation is that considering the absolute rates does not ex-
tract the maximum gains from the relative rate variations.

APPENDIX

Lemma 1.1: The function satisfies the fol-
lowing properties:

(i) For any ,
;

(ii) For any ,
;

(iii) For any , is
increasing in and decreasing in , ,

;
(iv) For any , is

decreasing in , ;
(v) For any ,

for all ; in par-
ticular,

for all ;
(vi) The function

is increasing in , .

Proof: To prove Properties (i)–(iii), it suffices to show that
is increasing in and decreasing in , ,

, which follows immediately from the definition.

To check Property (iv), it is enough to verify that
is decreasing in , .

We may write as

which yields the desired statement.
Property (v) follows immediately from the definition com-

bined with Property (ii) and the fact that
.

To prove Property (vi), it suffices to show that
is increasing in , .

To do so, we may write as

which yields the desired statement.
Lemma 1.2: Consider two systems restricted to user classes

, labeled I and II, where each class- user is served at
a fraction and
of its time-average rate, , respectively.
Assume that for
all , that is decreasing
in for all , and that . If

and
for all , , then

for all .
Proof: The proof uses stochastic coupling arguments.

Specifically, we assume that the same users arrive to both
systems at the same time epochs, with the same transmission
rates and the same service requirements. Denote by the
number of class- users arriving up to time in both systems
(including the users which are present at time 0). Let
and be the remaining service requirements at time of
the th arriving class- user from time 0 onward in systems I
and II, respectively. Users which have left by time will simply
be considered to have a zero remaining service requirement.
To avoid excessive notation, we will view the users which are
present at time 0 as having arrived at time 0. We will show that

for all users , , and
in particular for all .

The proof proceeds by forward induction on the time param-
eter . Let be the event times, i.e., the time
epochs at which users arrive or depart from either system. By as-
sumption, the statement is true for all . Now suppose that
the statement is true for all . Thus,
for all users , , and in particular

. We will prove that the statement is then
also true for all . Note that it suffices to show
that the service rate of each user in system II is at most equal to
that in system I. Using the dominance and monotonicity proper-
ties of the service rates, it thus suffices to show that
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for all . In order to do so, we distinguish
between three different cases, depending on the type of event
that occurs at time .

(i) Arrival of a class- customer. Using the induc-
tion hypothesis,

. Also, by con-
struction .

(ii) Service completion of a class- user in system
I. Using the induction hypothesis,

.
(iii) Service completion of a class- user in system II.

Using the induction hypothesis, we conclude that
the class- user which completes service in system II
must already have done so earlier in system I, i.e.,

. Thus
.

Removing the conditioning on the event times completes the
proof.

Proposition 5.1: Strategy achieves stability for classes
.

Proof: In view of Corollary 4.1, it suffices to show that
the -restricted integrated system is stable. Assume that

, so that , since otherwise there is nothing to prove.
The proof is by induction. We first establish that the 1-re-

stricted system is stable. Suppose that were not the case. Then
the long-term average service rate for class 1 would be .
However, by definition , contradicting the presumed
instability.

The above informal argument may be strengthened as fol-
lows. Note that there is no difference between the integrated and
the segregated version of the 1-restricted system, hence we de-
note . Using Lemma 1.1 (ii), if ,
then [11], [15]

with and normalization constant

We now prove that if the -restricted integrated system
is stable and , then the -restricted integrated system
is stable. In view of Corollary 4.2, it suffices to show that the
number of class- users in the -restricted segregated system
has a proper equilibrium distribution. Suppose that were not the
case. Then the long-term average service rate for class would
be . However, by definition , contradicting the pre-
sumed instability.

The above argument may be strengthened as follows. Rather
than giving a rigorous construction, we will show that if the
long-term fraction of time that there are less than class-
users is zero for any fixed number , then the long-term av-
erage service rate for class would be larger than the amount of
offered traffic , which is not possible. According to Lemma
1.1 (iii), for all

. If the long-term fraction of time that there are less
than class- users in the -restricted segregated system is

zero, then the long-term average service rate for class is thus
bounded from below by

Using dominated-convergence type of arguments, it may be
shown that the above lower bound approaches as .
Specifically, denote

. Then we may rewrite the above lower
bound as subtracted by

(1)
The term in (1) is bounded from above by

for some fixed . According to Lemma
1.1 (ii),

, so there exists an
such that for all

. Thus, for any fixed ,
as .

Further observe that

as since the -restricted integrated system is
stable. Hence, the term in (1) approaches zero as and

.
Proposition 5.2: Strategy does not achieve stability for

classes .
Proof: Suppose not, i.e., some class is stable.

First observe that all classes would then have to be
stable as well, because otherwise class would be starved due to
the fact that . In particular, class

would have to be stable, which we will now prove is
not possible. Denote by the long-term
fraction of time that the number of class- users in the system is

, .
According to Corollary 4.1,

Using Lemma 1.1 (vi), we obtain

(2)

Using Lemma 1.1 (iii) and the fact that classes
are stable,
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Similarly, since classes are stable in the -re-
stricted integrated system,

Substituting the above two expressions into (2), we find
, which contradicts the definition of (or

, which would however also imply instability).
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