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Abstract—The relative delay tolerance of data applications, to-
gether with bursty traffic characteristics, opens up the possibility
for scheduling transmissions so as to optimize throughput. A par-
ticularly attractive approach in fading environments is to exploit
the variations in the channel conditions and transmit to the user
with the currently “best” channel. We show that the “best” user
may be identified as the maximum-rate user when feasible rates
are weighed with some appropriately determined coefficients. In-
terpreting the coefficients as shadow prices, or reward values, the
optimal strategy may thus be viewed as a revenue-based policy,
which always assigns the transmission slot to the user yielding the
maximum revenue.

Calculating the optimal-revenue vector directly is a formidable
task, requiring detailed information on the channel statistics. In-
stead, we present adaptive algorithms for determining the optimal-
revenue vector online in an iterative fashion, without the need
for explicit knowledge of the channel behavior. Starting from an
arbitrary initial vector, the algorithms iteratively adjust the reward
values to compensate for observed deviations from the target
throughput ratios. The algorithms are validated through extensive
numerical experiments. Besides verifying long-run convergence,
we also examine the transient performance, in particular the rate
of convergence to the optimal-revenue vector. The results show
that the target throughput ratios are tightly maintained and that
the algorithms are able to track sudden changes in the channel
conditions or throughput targets well.

Index Terms—High data rate, scheduling, stochastic control,
throughput optimization.

I. INTRODUCTION

NEXT-GENERATION wireless networks are expected
to support a wide range of services, including high-rate

data applications. In contrast to voice users, data applications
can usually sustain some amount of packet delay, as long as
the throughput over somewhat longer intervals is sufficient.
The relative delay tolerance of data applications, together
with bursty traffic characteristics, opens up the potential for
scheduling transmissions so as to optimize throughput. A
coordinated approach along these lines is proposed in [5].

A related approach may be advocated for low-mobility sce-
narios, such as indoor networks. In such environments, Rayleigh
fading frequencies can be quite low and the fading levels can
even be anticipated to some extent. For example, fading can
be measured by having the base station provide a pilot signal,
which can be measured by all the users. These measurements
can be fed back to the base station and used to estimate fading
levels and, hence, user rates in subsequent slots. With a little
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simplification, let us suppose that at the start of each slot the base
station has perfect knowledge of the maximum feasible rate at
which each user can receive and decode a signal with some ac-
ceptably low error probability. This is the approach used in the
IS-856 [also known as high data rate (HDR)] standard [6].

The above framework allows the base station to schedule
transmissions to users when their channel conditions are favor-
able. The so-called proportional fair algorithm [10] is specifi-
cally designed to achieve the latter objective. The key feature
is to select users when their rates are near-optimal in a relative
sense, so as to optimize throughput performance while ensuring
some degree of fairness among users. The proportional fair al-
gorithm is the default scheduling mechanism implemented in
current product releases that are based on the IS-856 standard.

The selection of the "best" user depends, of course, on
the performance objective that is considered. Depending on
the specific situation, there are various performance criteria
that might be adopted. In the present paper, we specifically
consider throughput optimization relative to prespecified target
values. These target values may be set arbitrarily, taking into
account the quality-of-service requirements of the users or
possibly their current activity levels or locations. For given
target ratios, we show that the "best" user may be identified as
the maximum-rate user when feasible rates are weighed with
some appropriately determined coefficients. Interpreting the
coefficients as shadow prices, or reward values, the optimal
strategy may thus be viewed as a revenue-based policy. Under
such a policy, the transmission slot is always assigned to the
user yielding the maximum revenue.

Unfortunately, calculating the optimal-revenue vector (i.e.,
the revenue vector associated with the optimal strategy) directly
is a complicated problem, requiring detailed information on the
channel statistics. Although the feasible rates of the users are
assumed known slot by slot, the underlying probability distri-
bution that is producing these rates is unknown. Even if it were
known, it would not be easy to use since the feasible rates might
be dependent, so that the computations would be significantly
hampered by the curse of dimensionality.

To avoid these obstacles, we develop adaptive algorithms for
determining the optimal-revenue vector online, in an iterative
fashion, without the need for explicit knowledge of the channel
behavior. Starting from an arbitrary initial vector, the algorithms
iteratively adjust the reward values to compensate for observed
deviations from the target throughput ratios. The corrections en-
sure that discrepancies in throughput cannot persist. To ensure
convergence to the optimal-revenue vector, the size of the ad-
justments is gradually reduced.

The algorithms are validated through extensive numerical ex-
periments. Besides verifying long-run convergence, we also ex-
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amine the transient performance, in particular the rate of con-
vergence to the optimal-revenue vector. The results show that
the target throughput ratios are tightly maintained and that the
algorithms are able to track sudden changes in the channel con-
ditions or throughput targets well.

Some interesting related algorithms are proposed in [2], [3],
[11], [18], and [19], where queue lengths, rather than rewards,
are used as weight factors. These algorithms provide throughput
guarantees in terms of bounded expected queue lengths (if
achievable) rather than target ratios. The abovementioned
proportional fair algorithm [10] has a similar structure as well,
where the weights are taken reciprocal to the historical average
throughputs (with exponential smoothing). The latter algorithm
inherits its name from the fact that the achieved-throughput
vector is such that, for no single user, the throughput can be
improved without reducing the throughputs of the other users
by a greater total percentage, which property is referred to as
“proportional fairness.” A further class of algorithms that are
based on a utility maximization formulation are proposed in
[1]. Algorithms aimed at optimizing throughput performance
subject to additional fairness constraints are described in [12].
The application of the above algorithms opens up two impor-
tant possibilities for improving network performance, which
deserve further investigation. The first is that admission control
can be applied by using aprobing technique, an approach
proposed in [4]. In parallel to the actual control algorithm, a
“dummy” version of the control would be run with the new
user added. The impact of the new user would then be assessed
on the basis of the new revenue values as determined by the
dummy control. It should be noted that the decisions from
the dummy control wouldnot be acted on, which means that
existing users are unaffected. As an additional benefit, the new
revenue values would be immediately available, in case the user
is admitted. The second possibility is coordinated operation of
base stations in the network, which allows for load sharing and
higher throughput for edge users.

The remainder of the paper is organized as follows. In Sec-
tion II, we present a detailed model description and introduce a
class of revenue-based scheduling strategies. We subsequently
prove that revenue-based policies optimize throughput relative
to prespecified target values, for discrete rate distributions as
well as for continuous rates in Sections III and IV, respectively.
In Sections V–VII, we develop adaptive online algorithms for
determining the optimal-revenue vector in an iterative fashion.
In Section VIII, we describe some numerical experiments that
we performed to examine the convergence properties of the pro-
posed control algorithms. The results in Sections VII and VIII
extend the preliminary results presented in [7]. We make some
concluding remarks in Section IX.

II. M ODEL DESCRIPTION

We consider a base station serving data users. The base
station transmits in slots of some fixed duration. In each slot,
the base station transmits to exactly one of the users.

We assume that the feasible rates for various users vary over
time, according to some stationary discrete-time stochastic
process , with
representing the feasible rate for userin the th slot. We

assume that the base station has perfect knowledge of the
maximum feasible rate for user at the start of the

th slot (see also Remark 2.2 below). Let be a
random vector with distribution the joint stationary distribution
of the feasible rates. Denote , with

a 0–1 variable indicating whether or not theth slot is
assigned to user . Define as
the expected average throughput received by userafter
slots.

Remark 2.1: Notice that we allow for dependence between
the feasible rates for the various users. Independence may be
a reasonable assumption in the case of an isolated base sta-
tion serving a group of independent users. In the case of several
base stations, however, the feasible rates may vary not only due
to independent fading, but also because of the common impact
of control actions at adjacent base stations. For example, base
stations may transmit at reduced power if there are no back-
loggedusers, inducing strong correlations in interference levels
between users.

We assume that the slot duration (1.67 ms in the IS-856
system) is relatively short compared to the relevant time scales
in the traffic patterns and delay requirements of data users. This
opens up the possibility for scheduling the data transmissions so
as to enhance performance. In particular, scheduling provides
a potential mechanism for exploiting variations in the feasible
rates so as to optimize throughput.

The data users may actually be thought of as the subset
of active (backlogged) users among a greater population, which
may change over time. For scheduling purposes, however, the
separation of time scales allows us to think of the subset of ac-
tive users as nearly static and continuously backlogged. (In prac-
tice, flow-control algorithms such as transmission control pro-
tocol (TCP) will typically be used to feed data into the base-sta-
tion buffer at a relatively slow rate, comparable to the actual
throughput provided to the user over the wireless link. Thus,
the bulk of the backlogs will usually reside at the sender rather
than the base-station buffer.)

Depending on the specific situation, there are various perfor-
mance criteria that might be adopted. One of the most common
performance objectives is throughput maximization. This can be
achieved by simply assigning each slot to the user with the cur-
rently highest feasible rate. The disadvantage is that typically
only a few strong users will ever be selected for transmission,
causing starvation of all others.

To alleviate that problem, an alternative option is to equalize
the (expected) throughput of the various users. This can be
achieved easily by assigning each slot to the user with the
currently smallest cumulative throughput. The downside is
that this strategy does not exploit variations in the feasible
rates. Moreover, by insisting on equal throughput, a few weak
users may cause the throughput of all others to be dramatically
reduced.

A further option is to equalize the proportion of slots allotted
to the various users. This can be realized simply by using a
round-robin scheme. Again, however, this strategy fails to take
advantage of the fluctuations in feasible rates. In addition, some
users may end up with extremely low throughput, despite re-
ceiving their fair share of the number of slots.
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In general, the performance objective will be to maximize
some increasing function of the form , with

representing the long-run expected
average throughput of user . Now observe that the set of
all feasible throughput vectors must be a convex region by
time-sharing arguments. Thus, the throughput vector that max-
imizes the function must also maximize some weighted
throughput combination.

To formalize the above insight, we now introduce a class
of revenue-based scheduling strategies. Suppose there were re-
wards per bit transmitted to the various users. A
revenue-based strategy assigns theth transmission slot to the
user with the current maximum rate-reward product, i.e.,

Clearly, the above principle maximizes the revenue earned in
each individual slot and, thus, the total cumulative revenue as
well as the average revenue; hence, the term revenue-based
strategy. (Usually, exactly how ties are being broken also
matters. Regardless of the tie-breaking rule, however, a rev-
enue-based strategy will definitelynot assign the th slot to
any user with .)

Now observe that revenue is simply a weighted combina-
tion of throughputs. Ignoring some technicalities, we thus con-
clude that there must exist a revenue-based strategy that max-
imizes the function . Formally speaking, the optimal-rev-
enue vector is nothing but the gradient to the feasible throughput
region around the throughput vector that maximizes the function

. Although the optimal-revenue vector remains difficult to
determine in general, the above observation does help to limit
the search for optimal strategies to the class of revenue-based
scheduling strategies.

In the present paper, we specifically consider the problem of
maximizing the minimum relative long-run average throughput

, where are relative target values

for the various users. The optimality criterion above is equiva-
lent to the notion ofweighted max-min fairness, which is com-
monly adopted in various sorts of resource-allocation problems.
A related resource-sharing concept is embodied in the gener-
alized processor sharing (GPS) paradigm [14], which is at the
heart of discriminatory packet-scheduling algorithms such as
weighted fair queueing (WFQ). The target values
may be set arbitrarily, taking into account the quality-of-service
requirements of the users or possibly their current activity levels
or locations. For example, the targets may be set lower for users
with higher path losses, in order to prevent weak users from
dragging down the throughput of all other users. The targets may
also be applied to the proportion of slots allotted to the various
users (see Remark 2.2 below).

From our earlier observation, we know that, to maximize
, we may restrict attention to the class of rev-

enue-based scheduling strategies. Further observe that we may
assume that the optimal-throughput vector realizes the target
throughput ratios with equality, since one could al-
ways reduce the throughputs of users with a surplus. Thus, we
conclude that any revenue-based policy that additionally bal-

ances the throughputs according to the ratios is, in
fact, optimal, which provides the key principle underlying our
further approach.

Finally, observe that setting throughput targets is equivalent
to normalizing the feasible rates by the corresponding values.
In the subsequent analysis, we therefore assume that the
throughput targets are discounted for in the rates and take

.
Remark 2.2: In practice, there is always a small probability

that a transmission fails because the signal cannot be success-
fully decoded. The results of the present paper then remain valid
if is redefined to represent the expected feasible rate and
the 0–1 variable is amended to indicate both which user
is selected and whether or not the transmission is successful.

Instead of the (expected) feasible rate, one can also take
, with the ’s positive coefficients,

to obtain a weighted combination of received rates and slot
allocations. By choosing suitable values for the ’s, one can
give weight to balancing the proportion of slots allotted to the
various users, besides achieving relative throughput targets.

Remark 2.3: The results in [12] show that optimizing a
throughput function subject to additional fairness constraints
in terms of the time fractions received by the various users may
induce optimal policies with a different structure. Apparently,
imposing additional constraints on the time fractions may give
rise to optimal-throughput vectors that are not Pareto-optimal
in the absence of these constraints.

III. D ISCRETERATE DISTRIBUTION

In this section, we consider the case where feasible rates
have a discrete distribution on some bounded

set . Since feasible rates are assumed stationary, we
restrict attention to the class of stationary policies in order
to not blur the presentation with technicalities. The analysis
may be readily extended, however, to deal with nonstationary
policies.

We first introduce some notation. Let be the stationary
probability that the feasible rate vector is . (Note
that is an -dimensional vector.) We write for

. Let be the long-run fraction of
time that policy selects user for transmission when the
feasible rate vector is . Then the minimum average
throughput achieved under policyis with

. Let be the revenue-based strategy
corresponding to the vector . Without loss
of generality, we assume that , since only the
relative values of the revenues matter.

Lemma 3.1: Policy is optimal if , is an optimal so-
lution to the following linear program:

max

sub

(1)
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Proof: Let , be an optimal solution to the linear pro-
gram above. Now consider the policy that assigns the slot to user

with probability when the feasible rate vector is .
The minimum average throughput achieved under this policy
is . Thus, the optimal achievable

throughput is at least .
Conversely, for any policy , , are a feasible solu-

tion to the above linear program. Thus, the optimal achievable
throughput is at most and, hence, exactly . The statement
then easily follows.

It follows from the above lemma, in conjunction with basic
linear programming theory [16], that there exists an optimal
policy with at most of the variables nonzero,
which forces most of the variables to be one. Thus, only for a
limited number of rate combinations, the slots are shared among
several users.

In Section II, we observed that a revenue-based policy that
balances the throughputs is optimal. The next theorem shows
that the revenue criterion is in fact a necessary optimality
condition, in the sense that there exists a revenue vector
such that when userdoesnot have the maximum rate-reward
product, i.e., , then ,

i.e., user shouldnot be selected for transmission. Thus, any
optimal strategymust be a revenue-based policy associated
with (see [2] for a related stability result).

Theorem 3.1: If policy is optimal, then there exists a vector
such that

(2)

for all , .
Proof: By Lemma 3.1 , the are an optimal solution to

the linear program (1). Now let , be an optimal solution
to the dual problem of (1)

min

sub

(3)

Then the complementary slackness conditions [16]
imply , while optimality forces

, yielding (2).

The dual problem (3) may be interpreted as follows. The vari-
able represents the revenue generated in
state , so that the objective function measures the total expected
earned revenue. Also, optimality implies . Thus,
the dual problem amounts to finding a revenue vectorthat
minimizes the total expected earned revenue, subject to the con-
straint .

In conclusion, for policy to balance the throughputs, the
revenue vector must minimize the total expected earned rev-

enue, which may also be derived as follows. For any vector
with , the total expected earned revenue is

IV. CONTINUOUS RATE DISTRIBUTION

In this section, we consider the case where the feasible rates
have a continuous distribution on some bounded

set .
We first introduce some notation. Let be the stationary

density of the feasible rate vector, i.e., the probability that the
feasible rates are in some set is . We write

for . Let be the
long-run fraction of time that policy selects user for trans-
mission when the feasible rate vector is .

Lemma 4.1: Policy is optimal if , are an optimal
solution to the following mathematical program:

max

sub

(4)

The proof of the above lemma is similar to that of Lemma
3.1.

In Section II, we reasoned that a revenue-based policy that bal-
ances the throughputs is optimal. The next theorem shows that
the revenue principle is in fact a necessary optimality criterion,
in the sense that there exists a revenue vectorsuch that if
user doesnothave the maximum rate-reward product on some
set of nonzero measure, then usershould not be selected for
transmission on that set. Thus, in the above sense, any optimal
strategymustbe a revenue-based policy associated with.

Theorem 4.1: If policy is optimal, then there exists a vector
such that

(5)

for all .
Proof: By Lemma 4.1 , the are an optimal solution

to the mathematical program (4). Now let , be an op-
timal solution to the following “dual” problem of (4):

min

sub

(6)



BORST AND WHITING: DYNAMIC CHANNEL-SENSITIVE SCHEDULING ALGORITHMS FOR WIRELESS DATA THROUGHPUT OPTIMIZATION 573

Then the complementary slackness conditions [16] yield
, while optimality requires

, giving (5). (Although

strong duality does not directly apply, the complementary
slackness properties may be derived via discretization.)

V. ADAPTIVE ALGORITHMS

In the previous two sections, we concluded that revenue-
based policies optimize throughput relative to pre-specified
target values. However, calculating the optimal-revenue vector
directly is a complicated problem, requiring detailed informa-
tion on the channel statistics in the form of the joint stationary
distribution of the feasible rates . Instead, we
develop adaptive scheduling algorithms for determining the
optimal-revenue vector online in an iterative fashion, without
the need for explicit knowledge of the channel behavior.
Specifically, in the th slot, a revenue vector is used
for selecting a user for transmission, i.e., theth transmission
slot is assigned to the user identified as

. Starting from an arbitrary initial

vector , the algorithms iterativelyadjust the rewardvalues to
compensate for observed deviations from the target throughput
ratios. The corrections ensure that discrepancies in throughput
cannot persist. To ensure convergence to the optimal-revenue
vector , the size of the adjustments is gradually reduced.

In the next two sections, we assume that the distribution
of the feasible rates is modulated by some underlying sto-
chastic process , which may be interpreted as the channel
state. The evolution of the process is governed by a
discrete-time irreducible Markov chain with a finite discrete
state space . When the channel state is , the feasible
rates have some continuous-dimensional distribution
on , , with zero
probability measure in any set of Lebesgue measure zero. In
practice, the feasible rates will typically have to be selected
from a limited set of discrete values. However, we may adhere
to the above assumptions by simply adding a small random
perturbation. By choosing the sufficiently small random per-
turbation, the true achieved throughputs should be arbitrarily
close to the perturbed ones.

Denote by the set
of all price vectors. For any , denote by
the expected average throughput per slot received by user

under price vector in stationarity. Define
, , and

as the average, the minimum,

and the maximum expected throughput per slot under price
vector over all users, respectively.

The above assumptions ensure that the expected throughput
vector is completely determined by the
price vector (without the need to specify a tie breaking rule).
The assumptions further imply that the expected throughput
vector is a continuous function of the
price vector .

To facilitate the presentation, we assume that the optimal price
vector is unique. The analysis may be readily modified for
the case where there is a whole range of optimal price vectors.

VI. TWO USERS

We first focus on the case of two users. In the next section,
we consider the situation with an arbitrary number of users.

A. Algorithm Description

Before describing the algorithm in detail, we first introduce
some useful notation. With minor abuse of notation, we write

, so that . Denote
and define as the difference

in cumulative throughput between users 1 and 2 afterslots.
The absolute difference is referred to as the throughput
gap. We say that the throughput gapwidensin the th slot if

. User 1 is said to beleading if

and is referred to aslagging otherwise (vice versa
for user 2). We say that acrossoveroccurs in the th slot if the
leading and lagging users exchange positions, which means that
the throughput gap changes sign, i.e., .

The algorithm may now be described as follows. In every slot,
the user with the maximum price-rate product, at the current
price value, is selected for transmission. Thus, theth slot is as-
signed to user 1 if and to user
2 otherwise (ties being broken arbitrarily).To drive the price se-
quence toward the optimal value , the price is adjusted
over time on the basis of the observed throughput realizations.
As long as the throughput gap doesnot widen, the price is left
unaltered. However, if the throughput gapdoeswiden, then the
price is changed in favor of the deficit user; thus, at the expense
of the surplus user. The price of the leading user is decreased
by , while the price of the lagging user is simultaneously
increased by the same amount.

To ensure convergence, aresetis triggered at every crossover.
The step size is then reduced by incrementing , with

a predetermined convergent sequence (e.g.,
with or with ).

B. Convergence Proof

We now proceed to demonstrate convergence of the above-
described algorithm. We first state an important assumption.

Assumption 6.1 (Large-Deviations Assumption): Let
be a random variable representing the average

throughput per slot obtained by userover a period of slots
under price-vector , given that the initial state of the Markov
chain is . Given a price vector and , there exist
numbers such that for any initial state

.
It may be verified that the above assumption is satisfied for

the feasible-rate process described earlier.
Let be random variables representing the

throughput that user would receive in the th slot
if the price were fixed at , . Define

as the differ-
ence in throughput between users 1 and 2 in theth slot.
Define as the difference
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in expected throughput between users 1 and 2 in stationarity.
For all , the events

and

imply the event

Assumption 6.1 then implies that there exist numbers,
such that

which means that

(7)

with probability (wp) 1 as .
The next theorem establishes almost-sure convergence to the

optimal-revenue vector.
Theorem 6.1: For the scheduling algorithm described above,

the price sequence converges to the optimal price wp 1
and, consequently, the sequence converges to the optimal
value wp 1.

In preparation for the proof of the above theorem, we first
present two lemmas.

Lemma 6.1: The price sequence cannot get perma-
nently trapped in either of the intervals[0, ] or , 1].

Proof: We only prove the statement for the interval [
, 1]. The statement for the interval [0, ] follows from

symmetry considerations.
The idea of the proof is as follows. As long as the price re-

mains in favor of user 1, the throughput difference continues to
have a positive drift and will wander off to infinity. As a result,
the price will keep decreasing in fixed steps and will eventually
turn negative, which is not possible.

To formalize the above idea, suppose that, at some point in
time, let us say the -th slot, the price value enters the in-
terval [ , 1] to get permanently trapped there, i.e.,

for all . Then and
for all , so that for

all . Hence, (7) implies that
wp 1 as . Consequently, the throughput gap

wp 1 as as well,
which means that: (i) only a finite number of crossovers occur
and (ii) the throughput gap will widen infinitely many times in
favor of user 1. Thus, (i) the step size will only be reduced
a finite number of times and (ii) the price will be decreased infin-
itely many times and increased only finitely many times. Hence,
the price will eventually turn negative, which is not possible.

Lemma 6.2: The price sequence cannot move from the
interval [0, ] to the interval [ , 1] infinitely often.

Similarly, cannot move from the interval [ , 1] to the
interval [0, ] infinitely often.

Proof: We only prove the first statement. The second one
follows from symmetry considerations.

The idea of the proof is as follows. In order for the price se-
quence to move from the interval [0, ] to the interval
[ , 1], it must cross the interval from left
to right. For that to happen, the algorithm must make a number
of -wrong moves. By an-wrong move, we mean that the price
is increased while the current price is at leastabove the op-
timal value . As will be shown below, the expected number
of -wrong moves before a crossover occurs is finite. However,
as crossovers occur, the step size will get smaller and smaller
and the required number of-wrong moves for the interval to
be crossed will get larger and larger. As a result, it will eventu-
ally become increasingly unlikely for the interval to be crossed.

To make the above idea precise, we first introduce some
helpful terminology. A crossover is referred to as an upward
turn in case user 2 takes over the lead from user 1. Otherwise, a
crossover is called a downward turn. Let and be the
total number and the total size of-wrong moves, respectively,
between the th upward turn and the subsequent downward
turn.

Note that the value of the step size between theth upward
turn and the subsequent downward turn is at most. Once the
value of has dropped below , we must have
in order for the interval to be crossed between
the th upward turn and the subsequent downward turn.

Also, note that the interval can be crossed at most once be-
tween the th upward turn and the subsequent downward turn
and cannot be crossed from left to right otherwise. Thus, in
order for the interval to be crossed infinitely often, we must have

.
Now suppose that, at some point in time, let us say the-th

slot, the price value increases to enter the interval
for the first time, between theth upward turn and the sub-

sequent downward turn in the -th slot. Then
for all . As a result, and

for all , so that
for all and thus

for all . Hence, (7) implies that
reaches only finitely many decreasing ladder

heights for . Consequently, the throughput
gap widens only finitely
many times in favor of user 2 for . Thus,
the price is increased only finitely many times before the next
downward turn occurs, i.e., , and

which implies that wp 1.
We conclude the section with the proof of Theorem 6.1.

Proof of Theorem 6.1:Lemma 6.1 implies that the se-
quence spends infinitely many times in the interval

wp 1. Lemma 6.2 shows that the sequence returns
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only finitely many times from the interval to the in-
terval wp 1. Combining these two statements, we
find that the sequence spends only finitely many times
in the interval wp 1. Similarly, we have that the
sequence spends only finitely many times in the interval

wp 1. Hence, for any , the sequence
will eventually enter the interval wp 1, to
never leave it again. Thus, the sequence converges to the
optimal price wp 1.

By continuity, the sequence converges to ,
, 2. The convergence of then follows immediately.

VII. A RBITRARY NUMBER OF USERS

We now turn to the situation with an arbitrary number of
users. In principle, the algorithm for the case of two users, de-
scribed in the previous section, may be extended to several users.
The main subtlety lies in identifying a proper rule for when
to trigger a reset. If a reset is triggered at every crossover of
any pair of users, then resets may occur too rapidly. In that
case, two leapfrogging users may cause the step size to be re-
duced quickly, while still far removed from the other users. The
price sequence may then get trapped in a bias region and never
reach the optimal point. A better rule is to trigger a reset only
when every user has become leading or lagging. Some care
is then required, though, to show that resets occur frequently
enough compared to wrong moves, because otherwise the price
sequence may continue to visit a bias region indefinitely.

A. Algorithm Description

In the remainder of the section, we consider a related but
somewhat different algorithm, which may be described as fol-
lows. The algorithm makes price updates based on sample pe-
riods of predetermined ever-increasing size. Thus, the price up-
dates occur at predetermined slots , instead of randomly
determined slots as before, with the
length of the th sample period. In every slot of theth sample
period, the price vector is used for selecting a user for
transmission. (From now on we useto index sample periods,
rather than transmission slots as before.)

To drive the price sequence toward the optimal point
, the price is adjusted over time on the basis of the observed

throughput realizations. Thedirection in which the price vector
is modified at the th update is determined by a random vector

, based on the throughput obtained during theth
sample period when the price vector is used. Thesize
of the th update is , with a
predetermined convergent sequence. Thus, at the -th
update, the price vector is recursively determined as

To ensure convergence, the step size is reduced by in-
crementing every time a reset is triggered. Intuitively, re-
sets should occur far away from the optimal pointrarely, but
occur readily once the price vector is close to. It remains to
specify the exact rules for (i), how to determine the update di-
rection , and (ii), when to trigger a reset.

(i) For every user, the empirical average throughput over the
sample period is computed. The users are then partitioned into
two groups: (1) those with above-average throughput and (2)
those with below-average throughput. The prices of the above-
average users are decreased, while the prices of the below-
average users are increased. As the sample size grows, so that
with high probability the empirical average throughputs line up
with the true expected throughputs, this ensures that the price
vector gets closer to the optimal point in some appropriate
sense, as will be shown later.

Formally, the procedure may be described as follows. De-
note by the throughput received by user during a par-
ticular sample period in which price vector is used. Define

as the average throughput over all
users. Denote by and

the groups of below-average and strictly
above-average users, respectively. Then the price update direc-
tion is determined as

(8)

(9)

Note that is always nonempty, since it is impossible for
all users to have strictly above-average throughput. However,

may be empty in the case that all users have exactly equal
throughput. In that case, the price vector is simply left unaltered.

Also note that the price ratios within both and are
maintained. This ensures that the expected throughput of the
below-average users increases, while the expected throughput
of the above-average users decreases, as may be deduced from
Lemma 7.1 below.

Note that the above price update cannot be applied in the case
that price values of some of the users in are zero. To pre-
vent that situation from happening, the price process will be re-
stricted to the set for all

, with . It is easily
verified that if , then , which implies that

. In order to restrict the price process to the set,
the update is truncated at the boundary if necessary.

(ii) To ensure convergence, a reset is triggered under the con-
dition that every user has been a member of at least once
during a consecutive sequence of updates. Once the reset has
occurred, the next one is not triggered until every user has been
a member of at least once again.

The next lemma shows that the above price update increases
the throughputs of the users in and decreases the through-
puts of the users in .

Lemma 7.1: Let be two price vectors and
two groups of users such that for all

, for all and for all ,
for all . Then

Proof: First consider a user . For any given rate,
vector , implies
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. In other words, if user is selected

under the old price vector , then so is user under the new
price vector . Thus, the throughput of usermust increase
(in fact sample path wise). Similarly, the throughput of a user

must decrease.

B. Convergence Proof

We now proceed to prove convergence of the above-described
algorithm. We first discuss a few important assumptions.

Large-Deviations Assumption:As described above, the al-
gorithm works by making price updates based on samples of
ever increasing size. To ensure convergence, we need that, as the
sample size grows, a “correct” price update direction is selected
with sufficiently high probability. Given a price vector

, user is called -below-average (respectively,-above-
average) if (respectively,

). We say that the price update direction is “-right”
if all the -below-average users belong to and have their
price increased and all the-above-average users belong to
and have their price decreased. (Otherwise, the price direction is
“ -wrong.”) This ensures that the price vector gets closer to the
optimal point in some appropriate sense, as will be shown
later. Now remember that, at each update, the prices of the em-
pirical below-average users are increased, while the prices of the
empirical above-average users are decreased. Thus, for the price
update direction to be “correct,” it is critical that the empirical
average throughputs line up with the true expected throughputs.
This then motivates the following assumption.

Assumption 7.1 (Large-Deviations Assumption): Let
be a random variable representing the average

throughput per slot obtained by user over a period of
slots under price vector in stationarity. Given a price vector

and , there exist a -neighborhood of
and numbers such that

for all , .
In Appendix I, we prove that the above assumption is satisfied

for the feasible-rate process described earlier.
Boundary Conditions:We further require that, when a cor-

rect price direction is selected, the update cannot be truncated to
an arbitrarily small size. The following assumption implies that
if a correct price direction is chosen then, for small enough step
size , the price sequence will stay away from the boundary.

Assumption 7.2: There exist positive constants ,
such that for all price vectors , for any -right direc-

tion , and for any

To check that the above assumption is satisfied, it suffices to
verify that extremely low prices cannot be decreased and that
extremely high prices cannot be increased. First, consider a user

with a price . Then the
throughput of useris zero and, thus, certainly-below-average
for some , which means that the price of useris increased
if the price direction is right. Similarly, the throughput of a user

with a price is -above-average

for some , so that the price of user is decreased if the
price direction is right.

Function : As indicated above, we also need that when
a correct price update direction is selected, the price vector gets
closer to the optimal point by some definite amount. To mea-
sure distance from , we introduce a function , which
attains a unique minimum at . Define

as an “ -neighborhood” of . The
following assumption implies that, if a correct price update di-
rection is chosen, then outside the reduction in the value of

for small enough step sizeis at least times some con-
stant of proportionality .

Assumption 7.3: There exist positive constants ,
, such that for all price vectors , for any -right

direction , and for any

We will consider two alternative choices for the function .
The first one is

i.e., the maximum difference in expected throughput between
any pair of users. By definition, and for
all , with strict inequality in the case that the optimal
price vector is unique.

The second function that we will consider is

i.e., the total expected revenue earned. As found in Section III,
the optimal price vector minimizes that quantity over all vec-
tors in the set , i.e., for all , ,
with strict inequality in the case that is unique.

In Appendix II, we prove that Assumption 7.3 is indeed satis-
fied for the above two functions. In contrast to the first
function, the second is also suitable to show that Assumption 7.3
is satisfied for various alternative options to select a price update
direction. For example

(10)

(11)

and for all , for a given positive
sequence with . In the sequel, this will be referred
to as the “update-extreme” algorithm, as opposed to the pro-
cedure described earlier, which will be called the “move-to-av-
erage” algorithm.

The next theorem establishes almost-sure convergence to the
optimal-revenue vector for the move-to-average algorithm.
The proof for the update-extreme algorithm is mostly similar,
except for a somewhat different notion of a correct price-update
direction.

Theorem 7.1: The price sequence converges to the op-
timal price vector wp 1 and, consequently, the sequence
converges to the optimal value wp 1.

In preparation for the proof of the above theorem, we first in-
troduce some terminology and present some auxiliary lemmas.
We say that the th sample is “-right” if, for every user, the
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empirical average throughput is withinfrom the true expected
throughput, i.e., for all

. Otherwise the sample is “-wrong.”
Lemma 7.2: For any fixed , the total number of-wrong

samples is finite wp 1.
Proof: Consider some price vector . By continuity

of as a function of , there exists for any a
-neighborhood of such that

(12)

for all , .
Now suppose that and that

(13)

for all . Then, using (12)–(13), taking
,

for all .
In conclusion, if , then the event (13) im-

plies that the th sample is -right. Thus, the probability that the
th sample is -wrong is then

for all (14)

The Large-Deviations Assumption 7.1 implies that there exist
a -neighborhood of and numbers ,

such that if , then

(15)

for all .
Define . Combining (14) and

(15), if , then

Since is a compact set, there exists a finite covering of such
sets , . Thus, deconditioning

As , with , we have . The
statement then follows from the Borel-Cantelli lemma.

By definition, if the th sample is -right, then

for all , which also implies

Hence, if user is -below average, i.e.,
, then , i.e., .

Similarly, if user is -above average, i.e.,
, then , i.e., . Con-

sequently, if a sample is -right, then the move-to-average

algorithm will select a -right price update direction. The above
lemma thus implies that from a certain timeon no -wrong
price updates will occur. It suffices to prove convergence
starting from the state of the process at that time. Now observe
that we may simply view the state of the process at that time as
the initial state, which we allowed to be completely arbitrary.
To prove convergence, we may thus assume that no-wrong
price updates occur at all.

Lemma 7.3: The total number of resets is infinite wp 1.
Proof: Assume that the total number of resets were finite,

let us say , and that the th reset occurs at the th price
update. Assumption 7.2 ensures that the price update is never
truncated to less than size, unless the price direction were

-wrong, which we may assume does not occur. Thus

(16)

for all . In view of the reset condition, there must also
be some user that belongs to either or for all

. Let us say , thus, starting from the th update,
the price of user is constantly increased, i.e.,

(17)

for all .
Combining (16) and (17), we conclude that as

, which is not possible.
Lemma 7.4: The price sequence cannot converge to a

point outside .
Proof: Assume that the price sequence does converge to

a point outside ; let us say . Define
. By continuity of as a func-

tion of , there exist a -neighborhood of and a user
such that is -below average for all . Thus, if

, then , unless the th price update
were -wrong, which we may assume does not occur.

Now, since converges to , there exists an such that
for all . Thus, user belongs to

for all . In other words, userdoes not belong to
for any . That implies that no resets occur after theth
price update, which contradicts Lemma 7.3.

Lemma 7.5: The price sequence visits infinitely
often.

Proof: Assume that the price sequence visits only
finitely often. Lemma 7.4 then implies that the total size of the
price updates must be infinite, i.e.,

(18)

For compactness, denote . Lemma 7.3 implies
that, at a certain time , the step size falls below .
Assumption 7.3 then gives that

(19)

for all , unless the th price update was -wrong, which
we may assume does not occur.

Combining (18) and (19), we conclude that as
, which is not possible.

Lemma 7.6: The price sequence cannot move from
to outside infinitely often.
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Proof: Let be the minimum distance between and
any point outside .

Lemma 7.3 implies that at a certain timethe step size
falls below . From time on, for the price sequence to move
from to outside , at least price update is required from a
point to a point with . Assumption
7.3 then implies that that price update must be-wrong, which
we may assume does not occur.

The proof of Theorem 7.1 may now be completed as follows.
Proof of Theorem 7.1:Combining Lemmas 7.5 and 7.6,

we conclude that the sequence spends only finitely many
times outside the region wp 1. Hence, for any , the
sequence will eventually enter the region wp 1, to
never leave it again. Thus, the sequence converges to the
optimal price vector wp 1.

By continuity, the sequence converges to
for all . The convergence of then immedi-
ately follows.

Remark 7.1: In the present paper, we focus on establishing
almost-sure convergence to the optimal-revenue vector. This
critically relies on the step sizes being a con-
vergent sequence. As an alternative, the step sizes may be kept
fixed at some given value. We expect that the price sequence
will then continue to oscillate around , but with smaller am-
plitudes for smaller values of. Observe, however, that there is
an inherent trade-off between the accuracy achieved on the one
hand and the speed the convergence, and thus the responsive-
ness to changing conditions, on the other hand. The value of
may then be used to find the right balance between these two
conflicting objectives.

VIII. N UMERICAL RESULTS

In this section, we describe some numerical experiments that
we conducted to investigate the convergence properties of the
proposed control algorithms. Besides verifying long-run con-
vergence, we also examine the transient performance, in partic-
ular the rate at which the prices converge to the optimal values.

In the first three experiments, we consider continuous rate
distributions. In the fourth experiment, we assume a discrete dis-
tribution in which the feasible rates are determined by a fading
process via the signal-to-noise ratio (SNR). The fading process
is modeled using a discrete number of sinusoidal oscillators as
described by Jakes’ model [9].

In the final three experiments, we examine how well the
throughput ratios are maintained and how well the algo-
rithms are able to track changes in the channel conditions or
throughput targets.

A. Two Users With Exponential Rates

In the first experiment, we consider a model of two users with
independent rates.

The feasible rate for useris governed by a conditional ex-
ponential distribution on some interval , i.e.,

with a normalization coefficient,
. We take Kbits/s and assume

Fig. 1. Normalized expected throughput� (w) as function ofw.

Fig. 2. Price trajectory for two users over 1000 slots.

. Thus, the feasible rate for user 2 is
about twice as large in distribution as for user 1. The throughput
target for user 2 is also set twice as large as for user 1, i.e.,

.
The values of for these parameters as a function of

are plotted in Fig. 1. From this figure, we see that the optimal
price is , which may be more precisely determined as

using bisection.
We ran the control algorithm described in Section VI for 1000

slots. We used step sizes , with initial value
and reduction factor . The resulting price trajectories

are graphed in Fig. 2 for a period of 1000 slots. Observe that the
prices converge to the optimal values in roughly 300 slots, which
corresponds to about 0.3 s of operation.

We repeated the above experiment for nongeometric step
sizes , with successively chosen as 1.5, 2.0,
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Fig. 3. Price trajectories for two users versusw (nongeometric step sizes).

3.0, and 4.0. Note that the sum of the price changes is still
convergent, although the step sizes decay more slowly than
before. The corresponding price trajectories are shown in
Fig. 3 for a period of 1000 slots. We see that convergence is
considerably slower for smaller values of, i.e., slower decay
of the step sizes.

B. Three Users

In the second experiment, we consider a scenario with three
users. As before, the feasible rate for userfollows a conditional
exponential distribution on the interval [10, 400] with parame-
ters . Thus, the feasible rate for
user 2 is about twice as large in distribution as for users 1 and 3.

The target throughput ratios for the three users are set equal,
i.e., . The optimal-revenue vector is

, as may be determined using nu-
merical integration and two-dimensional bisection. Observe that
the optimal price for users 1 and 3 is higher than for user 1, as
is required in order to obtain equal throughput since the feasible
rate for user 2 is stochastically larger.

We ran the two control algorithms described in Sec-
tion VII for 5000 slots, or approximately 5 s of operation,
with slots for the th update. This amounts to
roughly 30 price updates. The initial revenue vector is set
to . We used step sizes ,

. The resulting price trajectories are depicted
as the solid curves in Figs. 4 and 5. The revenue vector
for the update-extreme algorithm after 30 price updates is

, quite close to the optimal one.
We repeated the above experiment for the update-extreme al-

gorithm using 40 and 60 slots for the th update, with the
same power series for . The corresponding price trajectories
are reproduced as the the dashed lines in Fig. 5 for user 1 in the
first case and user 2 in the second (with similar results for the
remaining prices.) As expected, we see that using fewer samples
per price update leads to a slower and “noisier” convergence to
the optimal-revenue vector .

Fig. 4. Price trajectories for three users over 5000 slots versusw (move-to-
average algorithm).

Fig. 5. Price trajectories for three users over 5000 slots versusw (update-
extreme algorithm).

C. Eight Users

In the third experiment, we consider a situation with eight
users. As before, the feasible rate for userfollows a conditional
exponential distribution on the interval [10, 400]. The exponents
were chosen uniformly at random in [0.01, 0.05] and turned out
to be approximately (0.0489, 0.0263, 0.0139, 0.0480, 0.0220,
0.0107, 0.0461, 0.0128).

The target throughput ratios are again set equal for all users.
As before, we expect that a larger value of the exponent, in-
ducing smaller feasible rates, requires a higher price in order to
obtain equal throughput.

We ran the two control algorithms described in Section VII
for 15 000 slots, or approximately 15 s of operation, with

slots for the th update. This amounts to roughly
55 price updates. The initial revenue vector is set at random.
We used step sizes , . The resulting price
trajectories are graphed in Figs. 6 and 7.
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Fig. 6. Price trajectories for eight users with 15 000 slots versusw (move-to-
average algorithm).

Fig. 7. Price trajectories for eight users with 15 000 slots versusw (update-
extreme algorithm).

D. Discrete Rates Driven by a Fading Process

We now consider a case with discrete rates governed by in-
dependent fading processes, as described by Jakes’ model [9].
The mean received powers of user 1, 2, and 3 are15.0 dB,
0.0 dB, and 10.0 dB, respectively. The feasible rates per slot
then follow from Table I, using fading realizations as shown in
Fig. 8.

The throughput target for user 2 is set twice as large as for
users 1 and 3, i.e., . We ran the two
control algorithms described in Section VII for 10 000 slots,
with slots for the th update. We used step sizes

and , .
As explained earlier, the discrete rate values are perturbed by

adding a small uniformly distributed random variable to obtain

TABLE I
FEASIBLE RATE PER SLOT AS FUNCTION OF SNR

Fig. 8. Fading process with unit power.

a continuous version of the problem. Thus, we ensure that the
optimal control algorithm is determined by the revenue vector
only.

The empirical average throughputs are depicted in Figs. 9 and
10. The achieved throughputs under the update-extreme algo-
rithm are approximately 130 bits per slot for both users 1 and 3
and 270 bits per slot for user 2, quite close to the target ratios.
Under the move-to-average algorithm, the realized throughputs
are reasonably close to the target ratios too, provided the step
size is reduced sufficiently slowly, as in Fig. 9.

The corresponding price trajectories are displayed in Figs. 11
and 12. We see that under the update-extreme algorithm, the
prices converge to the optimal values in about 5 s. Under the
move-to-average algorithm, the prices converge fairly quickly
too, unless the step size is reduced so quickly that the process
gets essentially overdamped.

E. Comparison With a Forcing Scheme

We now compare the revenue-based algorithms with a
forcing scheme. The forcing scheme assigns theth trans-
mission slot to the user with the current minimum
normalized throughput, i.e.,
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Fig. 9. Empirical average throughput for three users over 10 000 slots
(move-to-average algorithm with� = k ).

Fig. 10. Empirical average throughput for three users over 10 000 slots
(update-extreme algorithm with� = k ).

By construction, the forcing scheme realizes the target
throughput ratios perfectly, in the sense that wp 1

as (20)

for all pairs of users .
The downside of the forcing scheme, of course, is that it gen-

erally achieves lower throughput in absolute terms, as it does
not take advantage of the variations in feasible rates.

Under independent identically distributed (i.i.d.) assump-
tions, the throughput obtained under the forcing scheme may in
fact be computed in closed form as follows. The decision as to
whether or not the th slot is assigned to useris determined

Fig. 11. Price trajectories for three users over 10 000 slots (move-to-average
algorithm with� = k ).

Fig. 12. Price trajectories for three users over 10 000 slots (update-extreme
algorithm with� = k ).

entirely by the normalized cumulative throughputs, which
only depend on the feasible rates in previous slots. Under
i.i.d. assumptions, the feasible rate for userin the th slot
is independent of the feasible rates in previous slots. Hence,
the decision variable is independent of the feasible rate

, so that

and, thus

(21)
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Fig. 13. Empirical average throughput for three users over 5000 slots (forcing
algorithm).

with denoting the expected frac-
tion of slots assigned to userout of the first slots. Combining
(20) and (21), we conclude

as

for all pairs of users . Using the identity
, we obtain and

as with .
We repeated the experiment of the previous subsection for the

forcing scheme. The empirical average throughputs are repro-
duced in Fig. 13 for a period of 5000 slots. The achieved through-
puts are approximately 90 bits per slot for both users 1 and 3 and
180 bits per slot for user 2. The results show how tightly the target
throughput ratios are maintained under the forcing scheme. In
absolute terms, however, the throughput for all users is about
30% smaller than for the revenue-based algorithms.

F. Tracking Capability

We now examine how well the algorithms are able to track
sudden changes in the target throughput ratios or channel con-
ditions.

In the first experiment, the throughput target for user 3 is ini-
tially set to some low value. After 80 s, the throughput target
is suddenly incremented to allow for the transmission of a data
burst for user 3.

The resulting price trajectories are plotted in Figs. 14 and 15.
The optimal price values for the new throughput ratios are also
indicated as dashed straight lines. The results show that, after
a few oscillations, the prices quickly settle down to the new
optimal values.

In the final set of experiments, the control is “cycled” approx-
imately every 5 s. To test the tracking capability, the mean re-
ceived SNR of user 3 is lowered at a rate of 5 dB/s for 5 s. This
is expected to lead to a rapid change in. The change in SNR
is initiated after 15 s of simulation time and stopped 5 s later.

Fig. 14. Price adjustment to allow for data burst for user 3 (move-to-average
algorithm).

Fig. 15. Price adjustment to allow for data burst for user 3 (update-extreme
algorithm).

The results for the move-to-average algorithm are depicted
in Figs. 16 and 17. Similar results for the update-extreme algo-
rithm are displayed in Figs. 18 and 19.

In the first from each of these two pairs of graphs, the size
of the price adjustment varies according to ; in the
second, it varies according to . Thus, it is expected
that the control will converge more slowly in the former case
and that the results confirm this. Indeed, with , con-
vergence to the new price occurs only after about 25 s. In the
latter case, the correct price is approached shortly after 20 s, but
there are stronger fluctuations around the optimal price.

A more subtle observation is that in the interval where
the power is being changed, the price adjustment remains
fairly large, which is an advantage conferred by the reset
conditions that we used. Standard control algorithms such as
Robbins-Monro, in contrast, prescribe such adjustments in
advance, see [13] and [15]. It should be stressed that no attempt
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Fig. 16. Cycled control: lowered SNR, user 3 (move-to-average algorithm
with � = k ).

Fig. 17. Cycled control: lowered SNR, user 3 (move-to-average algorithm
with � = k ).

Fig. 18. Cycled control: lowered SNR, user 3 (update-extreme algorithm with
� = k ).

Fig. 19. Cycled control: lowered SNR, user 3 (move-to-average, with� =

k ).

has been made here to design the sequences, , or the
cycle interval in an optimal way. Also note that the control
signal could be filtered to remove high-frequency components
if necessary.

IX. CONCLUSION

We considered the problem of scheduling data users with
varying channel conditions so as to obtain the optimal long-run
throughputs for given target ratios. We have shown that the
problem may be solved by selecting users for transmission
according to an optimal-revenue vector, which balances the
expected throughputs. We presented a wide class of stochastic
control algorithms that ensure almost-sure convergence to

and, thus, achieve the optimal long-run throughputs. The
algorithms require only a convergent sequence of step sizes to
be specified, in combination with an increasing sequence of
sample sizes per price update.

Numerical experiments showed that the convergence to the
optimal-revenue vector is, in practice, quite rapid (of the order
of a few seconds), making the algorithms suitable for the IS-856
system. In addition, the results demonstrated that the algorithms
have the ability to track changes in the channel conditions and
throughput targets. Further experiments are required to deter-
mine which form of the algorithm is most adequate for imple-
mentation in the IS-856 system. The algorithms may also be
enhanced by allowing the step sizes or the sample sizes to be
adapted in response to nonstationary changes in the feasible rate
declarations.

Since the control algorithms require only observations of the
feasible rate, they may be used for admission-control purposes.
This is reminiscent ofchannel probing, with the additional ben-
efit that the prospective user need not be allocated any resources
until the admission-control decision has been made.

In the present paper, we considered a scenario with only one
user scheduled at a time and a single-rate sample per user per
slot. These conditions, however, are actually not essential for the
underlying optimality principle to apply. Revenue-based poli-
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cies, which balance the throughputs, continue to be optimal in
situations where several users may be scheduled at a time and
various auxiliary decisions may be taken.

As an illustrative example, consider a throughput optimiza-
tion problem for two adjacent base stations. Let be the rate
in a given slot for user in cell 1 if both base stations transmit
and let be the rate for user if only base station 1 trans-
mits. Let and be defined similarly as the rate in a given
slot for user in cell 2. A revenue-based policy then selects the
decision, which maximizes revenue over all feasible options as
follows:

Revenue
.

Observe that the decisions as to which users are scheduled and
which base station transmits (1, 2, or both) are taken jointly.
The revenue vector , which balances the throughputs will be
optimal and may be found by using the stochastic control algo-
rithms as before. This approach may also be used in conjunction
with antenna systems, for example.

APPENDIX I
LARGE-DEVIATIONS ASSUMPTION

In this appendix, we show that Large-Deviations Assumption
7.1 is satisfied for the feasible-rate process that we consider.

Given a price vector , consider a closed neighborhood
of . Let be a random variable representing the

throughput per slot that user receives under the price vector
in stationarity. Then may be formally represented

as

with a random vector with distribution the joint
stationary distribution of the feasible rates.

Now define random variables

Thus, represents the rate that user would re-
ceive in the case it were selected only if it has the maximum
rate-reward product underall prices . Evidently,

for all .
Similarly, define random variables

Thus, represents the rate that userwould re-
ceive in the case it were assigned the slot if it has the maximum
rate-reward product undersome price . Obviously,

for all .
Denote by and the respec-

tive expectations under the stationary distribution , ,
of the Markov chain governing the feasible-rate process. By
dominated convergence

for all , with and
as .

Let , , and be the
throughput per slot obtained by user in a sample period of
length under the above three rules. For any ,
sample path wise, , so
in particular

(22)

Denote by

the log-moment generating function of . Define

We have that

with

We now compute . For any , denote

as the log-moment generating function of , con-
ditional on the state of the Markov chain governing the fea-
sible-rate process, and define the -matrix

with the transition matrix of the Markov chain.
It may be then shown that

(see Dembo and Zeitouni [8]).
Hence

with the Perron–Frobenius eigenvalue of the matrix
so that

It remains to be shown that for
.

Since is a compact family of nonnegative matrices, we
have

component wise and uniformly for all , with and
the left and right Perron eigenvectors, normalized such that

and (see Seneta [17, The-
orem 3.6]).

Thus, may be uniformly approximated by
: for any given , , there exists

an such that

for all .
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Hence

However, since all moments exist, may be expanded to
third order around 0, using Taylor’s theorem as follows:

with , , and .

For , we may take
. If is sufficiently large and sufficiently small, then

and, hence, for
due to monotonicity in . It follows that there exist numbers

, such that

(23)

Similarly,

(24)

Now take and small enough
so that ,

,

and

, .
Combining (22), (23), and (24), we then obtain

as required.

APPENDIX II
FUNCTION

In this appendix, we prove that Assumption 7.3 is satisfied
for suitable functions under certain assumptions on the fea-
sible-rate process

For any subset , denote by the Lebesgue mea-
sure of and denote by the stationary probability that the
feasible rate vector is in. We assume that there are fixed con-
stants , such that for all

.
We will prove that Assumption 7.3 is satisfied provided

, . It may then be shown that there exist ,
such that if , with as in (8) and(9), then
for all

and for all

(see also Lemma 7.1).

Now consider a price vector . By definition, if a price
direction is -right, then all the below-average users will be-
long to and all the -above-average users will belong to .
Thus, if , then and if ,
then .

As mentioned earlier, we consider two alternative choices for
the function . The first one is

Define ,
. Then

for .
Similarly

for .
Thus

for all with .
The second choice that we consider is the function

Define . For convenience, relabel the users
such that , with , and

, with . Re-
call that if a price direction is-right, then all -below-average
users belong to and all -above-average users belong to,
so that if , , then

Denote . It may be easily
verified that there exist numbers ,
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with , and integers ,
, such that

for all

for all .
Without loss of generality, we may assume that ,

, and that
for all .

Thus

for all with .

REFERENCES

[1] R. Agrawal, A. Bedekar, R. J. La, and V. Subramanian, “Class and
channel condition based weighted proportional fair scheduler,” inProc.
ITC-17 Teletraffic Engineering in the Internet Era, S. da Bahia, J.
M. de Souza, N. L. S. da Fonseca, and E. A. de Souza e Silva, Eds.,
Amsterdam, The Netherlands, 2001, pp. 553–565.

[2] D. M. Andrews, K. Kumaran, K. Ramanan, A. L. Stolyar, R.
Vijayakumar, and P. A. Whiting, “CDMA data QoS scheduling
on the forward link with variable channel conditions,” Report
10009626–000404–05TM, Bell Laboratories, Lucent Technologies,
Murray Hill, NJ, 2000.

[3] D. M. Andrews, K. Kumaran, K. Ramanan, A. L. Stolyar, R. Vi-
jayakumar, and P. A. Whiting, “Providing quality of service over a
shared wireless link,”IEEE Commun. Mag., vol. 39, pp. 150–154, Feb.
2001.

[4] N. Bambos, S. C. Chen, and D. Mitra, “Channel probing for distributed
access control in wireless communication networks,” inProc. IEEE
Globecom ’95, Singapore, Nov. 1995.

[5] A. Bedekar, S. C. Borst, K. Ramanan, P. A. Whiting, and M. Yeh,
“Downlink scheduling in cdma data networks,” inProc. IEEE
Globecom ’99, Rio de Janeiro, Brazil, Dec. 1999, pp. 2653–2657.

[6] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A.
Viterbi, “CDMA/HDR: A bandwidth-efficient high-speed wireless data
service for nomadic users,”IEEE Commun. Mag., vol. 38, pp. 70–77,
July 2000.

[7] S. C. Borst and P. A. Whiting, “Dynamic rate control algorithms
for HDR throughput optimization,” inProc. IEEE Infocom 2001,
Anchorage, AK, May 2001, pp. 976–985.

[8] A. Dembo and O. Zeitouni,Large Deviations Techniques and Applica-
tions. Amsterdam, The Netherlands: Jones Barlett, 1992.

[9] W. C. Jakes, “Multipath interference,” inMicrowave Mobile Communi-
cations, W. C. Jakes, Ed. Piscataway, NJ: IEEE Press, 1974.

[10] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR
a high efficiency-high data rate personal communication wireless
system,” inProc. 51th IEEE Vehicular Technology Conf., Tokyo, Japan,
Spring 2000, pp. 1854–1858.

[11] N. Kahale and P. E. Wright, “Dynamic global packet routing in wire-
less networks,” inProc. IEEE Infocom ’97, Kobe, Japan, Apr. 1997, pp.
1441–1421.

[12] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic transmission
scheduling with resource-sharing constraints in wireless networks,”
IEEE J. Select. Areas Commun., vol. 19, pp. 2053–2064, Oct. 2001.

[13] M. Metivier, Semimartingales, De Gruyter, Ed. Berlin, Germany:
Walter de Gruyter, 1982.

[14] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: The single-node
case,”IEEE/ACM Trans. Networking, pp. 344–357, June 1993.

[15] L. Robbins and S. Monro, “A stochastic approximation method,”Ann.
Math. Statist., vol. 22, pp. 400–407, 1951.

[16] A. Schrijver,Theory of Linear and Integer Programming. Chichester,
U.K.: Wiley, 1986.

[17] E. Seneta,Non-Negative Matrices. New York: Wiley, 1973.
[18] S. Shakkottai and A. L. Stolyar, “Scheduling for multiple flows sharing

a time-varying channel: The exponential rule,” Bell Labs, Lucent Tech.,
Murray Hill, NJ, Rep. 10009626–010102–01TM, 2000.

[19] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,” inProc. IEEE Infocom ’98,
San Francisco, CA, Mar. 1998, pp. 553–559.

Sem Borstreceived the M.Sc. degree in applied mathematics from the Univer-
sity of Twente, Enschede, The Netherlands, in 1990 and the Ph.D. degree from
the University of Tilburg, Tilburg, The Netherlands, in 1994.

During the fall of 1994, he was a Visiting Scholar at the Statistical Labora-
tory of the University of Cambridge, Cambridge, U.K. In 1995, he joined the
Mathematics of Networks and Systems Department, Bell Laboratories, Lucent
Technologies, Murray Hill, NJ, as a Member of the technical staff. Since the
fall of 1998, he has been a Senior Member of the Probability, Networks, and
Algorithms Department of the Center for Mathematics and Computer Science
(CWI), Amsterdam, The Netherlands. He also has a part-time appointment as a
Professor of Stochastic Operations Research at Eindehoven University of Tech-
nology, Eindehoven, The Netherlands. His main research interests are in the
performance evaluation of communication networks and computer systems.

Phil Whiting (M’94) received the M.Sc. degree
in probability and statistics from the University
of London, U.K., in 1983 and the Ph.D. degree in
electronic engineering from the University of Strath-
clyde, Glasgow, U.K., in 1987. His postdoctoral
reasearch was at the Statistical Laboratory of the
University of Cambridge, Cambridge, U.K.

In 1993, he participated in the trial of Qualcomm
CDMA by Australia Telecom. In 1997, he joined the
Mathematics of Networks and Systems Department
of Bell Laboratories, Lucent Technologies, Murray

Hill, NJ, as a Member of the technical staff. His main research interests are in
information theory and the performance evaluation of wireless networks.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


