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Achievable Performance of Dynamic Channel
Assignment Schemes under Varying Reuse

Constraints
Sem Borst and Phil Whiting

Abstract—We introduce a reward paradigm to derive novel
bounds for the performance of dynamic channel assignment
(DCA) schemes. In the case of uniform reuse, our bounds closely
approach the performance of maximum packing (MP), which is
an idealized DCA scheme. This suggests not only that the bounds
are extremely tight, but also that no DCA scheme, however
sophisticated, will be able to achieve significant capacity gains
beyond those obtained from MP.

Our bounds extend to varying reuse scenarios which may arise
in the case of reuse partitioning techniques, measurement-based
DCA schemes, or micro-cellular environments. In these cases, the
bounds slightly diverge from the performance of MP, which in-
flicts higher blocking on outer calls than inner calls, but not to
the extent required to maximize carried traffic. This reflects the
inherent tradeoff that arises in the case of varying reuse between
efficiency and fairness. Asymptotic analysis confirms that schemes
which minimize blocking intrinsically favor inner calls over outer
calls, whereas schemes which do not discriminate among calls in-
evitably produce higher network-average blocking. Comparisons
also indicate that DCA schemes are crucial in fully extracting the
potential capacity gains from tighter reuse.

Index Terms—Achievable performance, call blocking, dynamic
channel assignment, Erlang bound, Maximum Packing, perfor-
mance bounds, reuse partitioning, revenue bound, varying reuse
constraints, trunk reservation.

I. INTRODUCTION

T HE use of wireless services has been expanding at a
tremendous rate. The dramatic growth is fueled not only

by the proliferation of traditional voice users but also the
introduction of new high-speed data services. The capacity
expansion has not been keeping equal pace with the demand,
creating a strong incentive to squeeze the most out of the
existing network resources. With further growth anticipated,
the drive for efficient resource utilization will certainly persist,
since the available spectrum for wireless communications is
quite limited, while the cost of new infrastructure is significant.

Numerous approaches to increase efficiency have been pro-
posed, such as Dynamic Channel Assignment (DCA) schemes,
reuse partitioning techniques, measurement-based algorithms,
and micro-cellular networks. Simulation results indicate that
these approaches may achieve substantial capacity gains. To re-
solve basic design issues, however, it is crucial to gain under-
standing at a more fundamental level of the most efficient ways
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of resource utilization. In the present paper, we derive novel per-
formance bounds which provide insight into the potential ca-
pacity gains from a more fundamental perspective.

The model that we adopt is that of the circuit-switched net-
works currently deployed for carrying voice traffic. Suitably
modified, most of the insights carry over to the packet-oriented
systems that have been proposed for supporting high-speed data
users. In these systems, backlogged packets are queued, in con-
trast to calls that are lost, while resource management operates
on a faster time scale to be able to adequately respond to the
bursty nature of data traffic. We refer to a companion paper [1]
which explores these issues in greater detail.

A. DCA Schemes

One approach to enhance capacity in wireless networks, is to
allow channels to be assigned in a more flexible manner. Most
existing networks operate according to Fixed Channel Assign-
ment (FCA) schemes [10]. In FCA, channels are statically allo-
cated to cells, subject to certain reuse constraints. The reuse con-
straints determine which pairs of cells may use the same channel
simultaneously, based on interference considerations.

In DCA, in contrast, channels are not permanently allocated
to cells, but may be dynamically diverted to respond to fluctu-
ations in the offered traffic [10]. Besides the potential capacity
improvements, the flexibility of DCA schemes greatly reduces
the need for frequency planning. Detailed frequency planning
is seriously hampered by the fact that in practice it may be ex-
tremely difficult to estimate the offered traffic and to predict the
interference conditions. This is in particular true in micro-cel-
lular environments. Unreliable information may necessitate a
conservative approach, causing a reduction in capacity. In the
present paper, however, we restrict the attention to the potential
capacity improvements when the offered traffic is known in ad-
vance and does not have any spatial or temporal variations.

Maximum packing (MP) is an idealized DCA scheme which
was introduced by Everitt and MacFadyen [2]. MP accepts calls
whenever possible, even if this involves rearranging the chan-
nels assigned to calls in progress. Kelly [7] presents an exact
analysis of MP on a doubly infinite strip, in which two adja-
cent cells cannot simultaneously use the same channel. The re-
sults show that even for uniform offered traffic, MP outperforms
FCA, unless the load exceeds a certain critical value. Jordan and
Khan [5] and Kindet al. [9] report a similar observation, which
has led to the belief that there might actually be hybrid schemes
that outperform MP. Our results however indicate thatno DCA
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scheme will be able to achieve significant capacity gains beyond
those obtained from MP.

B. Tighter Reuse

Another approach to improve efficiency, is to allow tighter
reuse of channels. The conventional cell-by-cell reuse con-
straints are based on the interference levels which mobiles
would experience under worst-case conditions. Tighter reuse
may be achieved by taking the actual mobile locations into
account. In reuse partitioning for example, cells are split into
inner and outer regions. The smaller radius of the inner regions
allows for lower powers and thus tighter reuse of channels.
Measurement-based algorithms may be viewed as a limiting
form of reuse partitioning. Tighter reuse of channels is also a
primary source contributing to the capacity gains in micro-cel-
lular networks. The model that we adopt in the present paper
is that of cells split into inner and outer regions. Most of the
observations however pertain to any of the variants mentioned
above.

Our results show that MP-type strategies fail to fully extract
the potential capacity gains in these scenarios. MP inflicts
higher blocking on outer calls than inner calls, but not to the
extent required to maximize carried traffic, see also Shimada
et al. [14] and Valenzuela [15]. The first of these two papers
proposes various mechanisms to alleviate the spatial imbalance
in blocking, at the expense of higher network-average blocking.
This reflects the inherent tradeoff that arises in the case of
varying reuse between efficiency and fairness. Asymptotic
analysis confirms that schemes which minimize blocking
intrinsically favor inner calls over outer calls, whereas schemes
which do not discriminate among calls inevitably produce
higher network-average blocking.

Nothing prevents the tighter reuse of channels to be inte-
grated with the use of DCA schemes. In fact, a key observa-
tion from our paper is that the use of DCA schemes is crucial in
fully extracting the potential capacity gains from tighter reuse.
We refer to Katzela and Naghshineh [6] for a comprehensive
survey of DCA schemes and reuse partitioning techniques. It
is finally worth mentioning that besides the potential capacity
gains there are other important issues in evaluating the merits of
DCA schemes and reuse partitioning techniques, such as addi-
tional complexity and hand-offs.

C. Bounds

As a rule, exact analysis of DCA schemes is prohibitively
demanding. In fact, to the best of our knowledge, MP on a
doubly-infinite strip is one of the very few exceptions. The pro-
hibitive complexity of exact analysis motivates the construction
of performance bounds as an alternative way of gaining insight
into the potential capacity gains from DCA schemes.

An example is the Erlang bound, which was first derived in
Whiting [16], and later studied in Raymond [13]. The Erlang
bound provides a lower limit on the network-average blocking
under any DCA scheme, which may be obtained as the solu-
tion to a certain linear program. Frodigh [3] derives bounds
for measurement-based DCA schemes in linear networks. The
bounds are based on a ‘snapshot’ analysis, determining the max-
imum number of calls a particular scheme could accommodate

of those offered to the system, including calls that may have
been blocked or dropped at some earlier stage. Xu and Akansu
[18] and Zander and Eriksson [19] obtain asymptotic lower and
upper bounds for measurement-based DCA schemes in planar
networks. The bounds are derived from geometrical arguments,
treating traffic as a deterministic, infinitely-divisible fluid. In the
present paper, we obtain a novel family of bounds which fully
capture the dynamics and the stochastic nature of the system.

In summary, the paper is organized as follows. In Section II,
we present a more detailed model description, and briefly re-
view the derivation of the Erlang bound. We also provide some
basic examples illustrating how the Erlang bound may be calcu-
lated. Subsequently, we examine the achievable carried traffic
region to understand why the Erlang bound may not always
be tight. In Section III, we introduce a reward paradigm which
paves the way for the construction of sharper bounds. We re-
visit the examples studied in Section II to illustrate how the rev-
enue-based bounds may be used to improve upon the Erlang
bound. Section IV specializes the results to symmetric, pos-
sibly infinite networks. We present numerical results for sce-
narios with uniform and varying reuse in Sections V and VI, re-
spectively. In Section VII, we investigate the tradeoff between
efficiency and fairness that arises in the case of varying reuse.
Finally, in Section VIII, we summarize the main conclusions.

II. THE ERLANG BOUND

We first present a more detailed model description. We con-
sider a cellular network of arbitrary topology. The cells, which
are indexed by the set, share a pool of channels. Users in
cell generate calls as a Poisson process of rate. All calls have
exponentially distributed holding times with unit mean.

When a user generates a call, the admission policy determines
whether to accept or reject it. If accepted, the call is carried
for the complete duration of the holding time. In case a call is
rejected, the user does not make any retrials.

We assume that the admissible states of the network satisfy
the constraints for all , with denoting the
number of calls in cell. The set is the collection ofcliques,
which are defined as the subsetsof such that no two users
within can share a channel.

Denote by

(1)

the Erlang blocking formula for offered traffic and chan-
nels. Notice that is the blocking in FCA for offered
traffic and channels per cell.

As shown in Whiting [16], the Erlang bound provides a lower
limit on the network-average blocking under any admission
scheme. It may be obtained as the solution to the following
linear program:

(2)
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Fig. 1. Three-cell linear network.

for all (3)

for all (4)

with the variables representing the probability of call
blocking in cell under some arbitrary admission policy.

The key constraints are provided by the inequalities (3),
which are obtained by considering each clique in isola-
tion. Since no two users within a clique can share a channel,
we cannot accommodate more thancalls in any one clique
simultaneously. Thus, we can never reject fewer calls in a
clique than the number of blocked calls for a single
group of channels offered traffic . This number is
determined by the Erlang-B formula (1).

In fact, the Erlang bound would still apply if we wished to
consider the sum of blocked anddropped calls. Even if call
dropping were permitted, we can never lose fewer calls in total
in a clique than the number of blocked calls for a single group
of channels.

We now provide some basic examples illustrating how the
Erlang bound may be calculated.

Example 2.1: Three-Cell Linear Network:Consider the
three-cell network depicted in Fig. 1. A channel cannot be
used simultaneously in two adjacent cells, i.e., the cliques
are and . Thus, the clique con-
straints are
and . An op-
timal solution to the linear program is

, with
. This yields the bound

For uniform offered traffic , the bound reduces to
. For for example,

we obtain .
The bound may be sharpened by adding the single-cell

clique constraints . An optimal
solution to the linear program is then

. (The latter fact follows from the convexity
of the blocked traffic as a function of the
offered traffic , see Harel [4], which implies that

.) This tightens the bound to

Fig. 2. Four-cell planar network.

with . For uniform offered traffic, the
bound reduces to . For

, we obtain . Using Markov decision
theory, we find that the minimum achievable blocking in fact is

.
Example 2.2: Four-Cell Planar Network:Consider the

four-cell network depicted in Fig. 2. A channel cannot be
used simultaneously in two adjacent cells, i.e., the cliques
are and . Now observe that the
two center cells may be lumped together so that the network
reduces to that of Example 2.1. Thus,

with . For uniform offered traffic , the
bound reduces to . For
for example, we obtain .

By adding the single-cell clique constraints
, the bound may be slightly tight-

ened to

with . For uniform offered traffic, the
bound reduces to . For

, we obtain . Using Markov deci-
sion theory, we find that the minimum achievable blocking is in
fact .

A. Discussion

The Erlang bound as exemplified above may not always be
tight. To understand why, we now examine the region of achiev-
able carried traffic combinations. The clique constraints (3) un-
derlying the Erlang bound may be rewritten

for all (5)

with denoting the offered traffic in cell and the variables
representing the carried traffic in cellunder
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Fig. 3. Achievable carried traffic region for a single group ofC = 2 channels offered two streams of traffic of rate� = 1 each.

some arbitrary admission policy. Now let us return to Example
2.1. Theouter region in Fig. 3 delineates the set of all carried
traffic pairs that satisfy the constraints (5) for clique

for offered traffic . The diagonal
boundary segment represents the constraint (5) corresponding
to the clique , i.e., , noting that

. The vertical boundary segment is determined
by the constraint (5) for the single-cell clique , i.e.,

, noting that . Similarly, the hori-
zontal boundary segment corresponds to the constraint (5) for
the single-cell clique . However, thetrue achievable
carried traffic pairs for clique , are demarcated by theinner
region in the figure. This is the case if calls may beblocked but
not dropped.

The piece-wise linear boundary of thetrue achievable re-
gion may be interpreted as follows. Consider a reward vector

, with representing the reward generated by each
stream- call that is carried. The reward-maximizing policy is
then atrunk reservationstrategy, see Lippman [11] and Miller
[12]. Under trunk reservation, the calls of the lower-earning
stream are rejected when there are no more thanfree channels.
This is the case for all nonnegative values of the reward vector.

The carried traffic pairs for the class of trunk reservation
strategies (there are five of them in this case) are represented
by the vertices of theinner region in Fig. 3. They are labeled
with the value of the corresponding trunk reservation param-
eter, taken negative when used against stream-1 calls. No car-
ried traffic pair outside the inner region is achievable, since oth-
erwise the optimality of the class of trunk reservation strategies
would be contradicted. (Any pair within the inner region is in
fact achievable through some probabilistic strategy, but this fact
is not directly relevant for our purposes.)

The Erlang bound in Example 2.1 followed from the solution
to the linear program. Fig. 3, however,

shows that the corresponding carried traffic pair
is infeasible. Thus, the Erlang bound may be strength-

ened if we replace the clique constraints (3) by the linear in-
equalities describing the boundary segments of the achievable
region. This insight will be formalized in the next section.

Note that a different picture would emerge if call dropping
were permitted. If pre-emption were allowed, then the achiev-
able carried traffic pairs are exactly the vertices of the outer re-
gion in Fig. 3. Thus, the Erlang bound may not be tight because
it fails to exclude carried traffic combinations which are only
feasible if call dropping were permitted. Allowing for pre-emp-
tion, however, appears inappropriate as call dropping should be
negligibly small for any sensible admission control scheme.

III. T HE REWARD BOUND

We now proceed with a formal statement of the proposed
bounds. As we have seen in the previous discussion, we may
use a reward paradigm as an insightful way of characterizing the
achievable carried traffic region, and thus sharpening the Erlang
bound. Specifically, suppose that each call carried in cellgen-
erates a reward . For any vector , denote by the
maximum achievable mean reward rate. Clearly, no admission
policy can produce a higher mean reward rate than . This
observation constitutes the basis for the next theorem.

Theorem 3.1:For any set , the carried traffic under
any admission policy is bounded above by the optimum value

of the following linear program

(6)

for all (7)

for all (8)
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Proof: The proof follows by interpreting the variables
as the carried traffic in cell under some arbitrary admission
policy. The objective function (6) then exactly represents the
carried traffic. Constraint (7) is satisfied since the policy cannot
produce a greater revenue than the maximum achievable re-
ward rate. Hence, the optimum value of the linear program pro-
vides an upper bound for the carried traffic under any admission
policy.

Corollary 3.2: For any set , the carried traffic under
any admission policy is bounded above by the optimum value

of the following linear program

(9)

for all (10)

for all (11)

Proof: The proof follows by observing that (9)–(11) is the
dual problem to (6)–(8). Strong duality then implies that

.
The main difficulty in evaluating the above bounds does

usually not arise from solving the linear programs, but from
computing the ’s for a suitable set . Typically, deter-
mining requires numerically solving a Markov decision
problem with a state space in as many dimensions as the
reward vector has nonzero components. In certain cases,
however, may be obtained in closed form. For any clique

for example, ,
with denoting the characteristic vector of. From

, we then also immediately see that the
inequalities are equivalent to the clique
constraints in (3).
Thus, for the set , the above bounds coincide
with the Erlang bound.

At the opposite side of the spectrum, equalsthe
maximum achievable carried traffic, but it is exactly the for-
midable complexity of calculating this quantity directly which
motivated us to consider bounds. This contrast is characteristic
of the tradeoff between the computational complexity of de-
termining the ’s and the tightness of the corresponding
bounds.

For any subset , denote
for all . Now suppose that is the collection of sub-
sets such that can be obtained if . De-
fine as the set of all reward vectors for
which can be obtained. In case , the collection
of cliques in the network, we know that for any the
maximum reward rate is achieved by some trunk reserva-
tion strategy. Occasionally, we will therefore refer to the corre-
sponding bounds as ‘trunk reservation’ bounds.

Note that we cannot determine by solving either of the
above two linear programs directly, since there are an infinite
number of inequalities (variables in the dual version) involved.
From linear programming theory, however, we know that at

most a finite number of these are relevant. We now describe two
approaches to obtain exploiting that fact.

In the first approach, we generate a finite yet exhaustive
subset including all the relevant inequalities. For any subset

, denote for all
. By definition, may be obtained by maximizing
subject to the constraints for all

. Also, define as the convex hull of the carried traffic
combinations in the subnetwork of the cells achievable
by the class of stationary deterministic admission policies.
Observe that the convex hull is a polytope, since there are only
finitely many stationary deterministic admission policies.

Lemma 3.3:For any subset

Proof: The inclusion to the right is implied by the def-
inition of . The inclusion to the left holds by virtue of
the optimality of the class of stationary deterministic admission
policies.

The above lemma implies that may be obtained by max-
imizing subject to the constraints for
all . Thus, it suffices to generate the set of facet-defining
inequalities of the polytopes for all .

In the second approach, we identify the subset of relevant
inequalities more indirectly. In the dual formulation, it is quite
natural to interchange the roles of the coefficientsand the
variables . For example, fixing for all ,
we find that for any subset

with the property that for all .
The next theorem establishes that this in fact holds with equality
for subsets of remarkably small size.

Theorem 3.4:For any set , the optimum value
equals the optimum value of the following convex pro-

gramming problem

(12)

for all (13)

for all (14)

Proof: We first prove that . Let
be the optimal solution to the problem (12)–(14), so

. The statement preceding the theorem then in-
dicates that .

We now prove that . Let
be the optimal solution to the dual problem (9)–(11), so

. From optimality, we may con-
clude that the ’s satisfy the constraints (10) with strict
equality, since is an increasing function.

Let be variables such that
for all and if . Now define

for all . It is easily verified that
satisfies the constraints (13)–(14). Plugging the’s
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into the objective function (12) then gives
.

It remains to be shown that
. Note that

Now define for all . Using the
fact that is a convex function, and that
for any scalar , we obtain

We now revisit the examples studied in Section II to illustrate
how the revenue-based bounds may be used to improve upon
the Erlang bound.

Example 2.1 (Cont’d):We first return to the three-cell
linear network of Example 2.1. From Theorems 3.1 and
3.4, we conclude that the carried traffic is bounded above
by , with

.
Since the function is convex in the reward vector, the

function is convex as well. Hence, if , symmetry
arguments imply that is minimal for . For

, we obtain an upper bound of 12.00 on
carried traffic, which corresponds to a lower bound
on blocking, tightening the Erlang bound.

Now suppose the offered traffic is .
The Erlang bound then yields . Using numerical
optimization, we find that achieves its minimum value
11.77 for , which produces the bound .
The minimum achievable blocking is in fact .

Example 2.2 (Cont’d):We now return to the four-cell planar
network of Example 2.2. Remember that the two center cells
may be lumped together so that the network reduces to that of
Example 2.1. Hence, the carried traffic is bounded above by

, with
. If , then symmetry ar-

guments imply again that is minimal for . For
, we obtain an upper bound

of 16.58 on carried traffic, which corresponds to a lower bound
on blocking, tightening the Erlang bound.

Now suppose the offered traffic is
. The Erlang bound then yields . We find

that achieves its minimum value 17.03 for ,
which produces the bound . The minimum achiev-
able blocking is in fact .

IV. SYMMETRIC NETWORKS

We now focus on symmetric, possibly infinite, networks. We
may then impose the constraint that the carried traffic be equal in
each cell, without affecting the maximum achievable amount of
carried traffic. Thus, adding the constraint for all
to the linear program of Theorem 3.1, we find that for any set

, the maximum average amount of carried traffic per cell
is bounded above by

(15)

This may in fact also be concluded from Theorem 3.4, using
symmetry arguments.

Since for any scalar , we may also
impose the constraint in the minimization in (15).
Thus,

(16)

with .
Obviously, for any set , the maximum average amount

of carried traffic per cell is also bounded above by

(17)

with the achievable carried traffic region for the subnetwork
of cells indexed by . Thus, determining amounts to maxi-
mizing the carried traffic subject to the constraint that it be equal
in each cell. This is a Markov decision problem with side-con-
straints, which may be solved using linear programming tech-
niques.

The question naturally arises how the bounds (15) and (17)
are related. Notice that (15) may be rewritten as

(18)

with as defined in the previous section. Lemma 3.3 saying
that then implies that the bounds are identical. As
a side-result, we find that the reward-minimizing vector

may be interpreted as the reward vector for
which carrying equal amounts of traffic in each cell maximizes
the reward rate.

Denote . Notice that is the inter-
section point of the line with a facet of the achiev-
able carried traffic polytope . As a rule, lies in thein-
terior of a facet. In that case, the facet is induced by the in-
equality , so is the unique reward-
minimizing vector with , and any policy corre-
sponding to a vertex of the facet achieves the reward .
Occasionally, may be a vertex of the polytope. In that case,
any vector with for which the inequality

is valid for the polytope is a reward-
minimizing vector, and the policy corresponding to the vertex is
the unique optimal one for all these ’s.

The above results may be generalized to the case where the
network is not strictly symmetric, but where the cells may still
be partitioned into a number of symmetry classes, say. In
these cases, for any set , let index the cells in
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Fig. 4. Linear array of cells.

Fig. 5. Linear array of cells with varying reuse.

belonging to the -th symmetry class. The maximum av-
erage amount of carried traffic per cell is then bounded above
by .

We now consider two examples.
Example 4.1: Doubly-Infinite Strip:Consider a similar

linear array as in Example 2.1, but now a doubly-infinite strip
of cells, instead of just three, as shown in Fig. 4. Each cell is
offered traffic at rate .

The maximum average carried traffic per cell is
bounded above, for any subnetwork of consecutive
cells, by , with

. Because of symmetry and convexity,

. Thus, the minimization
may be restricted to the set

.
Example 4.2: Doubly-Infinite Strip with Varying

Reuse: Consider a similar doubly-infinite strip as in Ex-
ample 4.1, but now a scenario with varying reuse, as illustrated
in Fig. 5. Each cell is partitioned into an inner region
and an outer region . Each of the inner regions and each
of the outer regions is offered traffic at rate and

, respectively. Calls in two different inner regions
may always share a channel, while calls in outer regions cannot
share a channel with any call in the two adjacent cells.

The maximum average carried traffic per cell is bounded
above, for any subnetwork of inner regions and outer
regions, by .

V. NUMERICAL RESULTS

A. Doubly-Infinite Strip

We return to the doubly-infinite strip of Example 4.1. Using
the two-cell clique constraints, the Erlang bound yields

. Adding the single-cell clique constraints does not
strengthen the bound.

Let us now turn to the reward bounds. If we consider just a
two-cell subnetwork (i.e. a clique), then the reward bound coin-
cides with the Erlang bound. Taking a three-cell subnetwork,
we obtain . Notice that
the calls in the inner cell put higher demands on the network
resources. This suggests that we should put higher reward on
carrying them if we wish to minimize the maximum achievable

reward rate. Indeed, it may be shown that the minimizing reward
satisfies . Thus, the minimization may actually be re-
stricted to the interval .

If we consider a four-cell subnetwork, then
. In this case, the

minimization may be confined to the interval .
The convexity properties allow for a simple numerical opti-
mization using Golden-section search. Taking a five-cell or
larger subnetwork would generally involve solving a convex
programming problem in more than one dimension.

We have performed numerical experiments to compare the
bounds with the performance of MP and that of Fixed Channel
Assignment (FCA). MP always accepts calls as long as the
clique constraints remain satisfied. The blocking for MP is
computed using the exact analytical results obtained in [7]. The
results for channels are shown in Fig. 6.

Fig. 6 confirms that MP may substantially reduce blocking
over FCA, which may correspond to considerable capacity gains
at a given target blocking level. In contrast to the Erlang bound,
the reward bounds closely approach the performance of MP.
This suggests that the reward bounds are extremely tight. Also,
no DCA scheme, however sophisticated, will be able to achieve
capacity gains that are significantly larger than those obtained
by MP.

It is interesting to investigate how the reward-minimizing
varies with the offered traffic . Fig. 7 shows the value of
as a function of for a subnetwork of three cells with
channels. The qualitative behavior may be understood from the
interpretation given in the previous section. The vector

is determined by the slope of the facet of the polytope
that contains the intersection point . As

varies, the facets of the polytope gradually shift. The smooth
segments in the curve reflect the continuous change in the slope
of the facet that contains the point . The breaking
points in the graph occur when the intersection point occasion-
ally shifts from one facet to another, in which caseis not
uniquely determined.

In particular, in heavy traffic as , the achievable traffic
polytope approaches the set

. Hence, as . Similarly, it may be
verified that in light traffic as .

B. Interpretation of the Optimal Rewards

It may be helpful to again think of the interpretation of the
optimal rewards in the context of the above example. Letbe
the traffic carried in each of the two border cells, and let
be the maximum traffic that can be carried in the center cell.

Now consider the optimization problem

i.e., maximize the traffic carried in each of the two border cells
subject to the constraint that it not exceed the traffic carried in
the center cell. Note that the solution occurs at .
Since the function is concave, the Strong Lagrangean
Principle applies, see Whittle [17]. Now form the Lagrangean

, associating a multiplier
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Fig. 6. Erlang bound, reward bounds, and performance of FCA and MP on the doubly-infinite strip as a function of offered traffic forC = 10 channels.

Fig. 7. Value ofy as a function of offered traffic� for a subnetwork of 3 consecutive cells withC = 10 channels.

with the constraint . The dual problem is
then, see theorem 3.11 on page 61 of Whittle [17]

and the minimum is achieved at the solution to the primal
problem. We thus see that the use of the reward vector in iden-

tifying the tightest constraint on the achievable carried traffic
region is an application of the duality principle of mathematical
programming.

C. Infinite Hexagonal Grid

Consider a similar hexagonal network as in Example 2.2, but
now an infinite grid, instead of just four cells. Each cell is of-
fered traffic at rate .
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Fig. 8. Erlang bound, four-cell reward bound, and performance of FCA and CMP as a function of offered traffic on an infinite hexagonal grid withC = 15

channels.

Using the three-cell clique constraints, the Erlang bound
yields . Adding the single-cell clique con-
straints does not strengthen the bound.

Let us now move to the reward bounds. If we consider just
a three-cell subnetwork (i.e. a clique), then the reward bound
coincides with the Erlang bound. Taking a four-cell subnetwork
as in Fig. 2, we obtain ,
with the center cell offered traffic at double the rate. As before,
the minimization may actually be restricted to the interval

. Taking a five-cell or larger subnetwork would generally
involve solving a convex programming problem in more than
one dimension.

We have conducted numerical experiments to compare the
bounds with the performance of Clique Maximum Packing
(CMP) and that of FCA. Like in the one-dimensional case,
CMP always accepts calls as long as the clique constraints
remain satisfied. Other than in the linear case, this may not
be sufficient for a feasible assignment of channels to users to
exist. Our primary purpose is however to evaluate the reward
bounds, which are still valid for CMP. Because there are no
exact analytical results available in the planar case, the blocking
for CMP is obtained using simulation for a wrap-around
grid. The results for channels are shown in Fig. 8.

Fig. 8 demonstrates that also in the planar case, CMP may
substantially reduce blocking over FCA. The reward bound still
sharpens the Erlang bound, but does not approach the perfor-
mance of CMP as closely as in the linear case. This discrepancy
could in principle be caused by two factors: 1) the reward bound
may fail to be tight in the planar case; and 2) CMP may fail
to be nearly optimal in the planar case. To resolve this issue,
we considered a seven-cell subnetwork which gives

as an upper bound on

carried traffic. To limit the state space of the Markov decision
problem, we reduced the number of channels to . The
results are displayed in Fig. 9.

Fig. 9 shows that the seven-cell reward bounddoesclosely ap-
proach the performance of CMP. Thus, CMP in fact continues
to be nearly optimal in the planar case, and the discrepancy with
the four-cell reward bound mentioned above may be largely at-
tributed to the size of the subnetwork being insufficient.

In the numerical experiments, we have focused on scenarios
with relatively small reuse groups and a limited number of chan-
nels. In principle, the bounds may also be computed for larger
reuse groups or a larger number of channels. However, the cal-
culations may be significantly hampered by the curse of dimen-
sionality in dynamic programming.

VI. SCENARIOSWITH VARYING RE-USE

A. Doubly-Infinite Strip With Varying Reuse

We return to the doubly-infinite strip with varying reuse of
Example 4.2. The Erlang bound no longer applies at the level of
cells now, but does still apply at the level of the regions. Con-
sidering cliques consisting of two outer regions and one inner
region yields the bound . Not
surprisingly, the bound is decreasing in, the fraction of traffic
offered to the inner regions. Adding the constraints

, the bound may be tightened to
.

We now turn to the reward bounds. Taking a clique con-
sisting of one inner region and two outer regions, we obtain

as an upper bound on carried traffic.
If we consider a subnetwork consisting of two cliques with a
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Fig. 9. Erlang bound, seven-cell reward bound, and performance of FCA and CMP as a function of offered traffic on an infinite hexagonal grid withC = 6

channels.

common inner region, then .

As before, the convexity properties allow for a simple numer-
ical optimization using Golden-section search. The calculation
of in each iteration, however, is of formidable complexity
for all but the smallest number of channels, and is the main ob-
stacle in considering larger subnetworks.

We have performed numerical experiments to compare the
bounds with the performance of MP and FCA, both adapted to
the varying reuse constraints. In FCA, we statically assign
channels to each of the inner regions, andchannels to each
of the outer regions, with . MP always accepts
calls as long as the clique constraints remain satisfied (cliques
now existing of one inner cell and two outer cells). The blocking
for MP is calculated using the exact analytical results obtained
in the Appendix.

The results for channels and a fraction
of traffic offered to the inner regions are shown in Fig. 10. For
FCA, we plot the minimum blocking over all feasible combi-
nations of . (Observe that the optimal combination de-
pends on the offered traffic.)

Fig. 10 indicates that also in the case of varying reuse MP may
substantially reduce blocking over FCA. Comparing with Fig.
6, we see that the reduction in blocking is larger than in the case
of uniform reuse. In contrast to MP, tighter reuse does not signif-
icantly help reduce blocking in FCA. Presumably, the benefits
from tighter reuse do not offset the loss in trunking efficiencies
from splitting the cells into smaller regions. This suggests that
DCA is crucial in fully extracting the potential capacity gains
from tighter reuse. Although the reward bounds still improve
upon the Erlang bound, they slightly diverge from the perfor-
mance of MP now. As it turns out, considering larger subnet-

works does not significantly help close the gap. To explain these
observations, it is helpful to consider the blocking of inner and
outer calls separately as displayed in Fig. 11.

Fig. 11 reveals that the blocking of outer calls in MP is
about twice that of inner calls for moderate values of blocking.
Drawing upon the theory of loss networks, see Kelly [8], the
blocking ratio may be understood from the fact that outer calls
require a channel in four cliques, whereas inner calls in only
two. To maximize carried traffic, however, blocking should be
primarily inflicted on the outer calls, since these put higher de-
mands on the network resources. Indeed, to minimize blocking
in FCA, more and more channels are shifted from the outer
regions to the inner regions as the offered traffic increases, and
thus the blocking ratio gets larger and larger, up to the point
that all the channels are allocated to the inner regions.

This reflects the inherent tradeoff between efficiency and
fairness that arises in the case of varying reuse, see also Shi-
madaet al. [14] and Valenzuela [15]. Schemes which minimize
blocking intrinsically favor inner calls over outer calls, whereas
schemes which do not discriminate among calls inevitably
produce higher network-average blocking.

The versions of FCA and MP described above may be viewed
as two extreme ways of operating a network with varying reuse.
For conciseness, let us refer to the set of all inner regions as
the inner layer, and to the outer regions as the outer layer. Two
possible intermediate approaches are as follows.

i) Borrowing channels within each cell, but not among cells.
We still statically assign channels to each of the inner
regions and channels to each of the outer regions, with

, but allow outer-region channels to be
borrowed by inner-region calls (not vice versa). The joint
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Fig. 10. Erlang bound, reward bounds, and performance of FCA and MP as a function of offered traffic on the doubly-infinite strip with varying reuse andC = 10

channels.

Fig. 11. Blocking of inner and outer calls for FCA and MP as a function of offered traffic on the doubly-infinite strip with varying reuse andC = 10 channels.

distribution of the number of inner and outer calls in a
particular cell then has the product form

for all with , with
representing the normalization constant. The blocking

for inner calls is . The
blocking for outer calls is .

ii) Sharing channels within both the inner and outer layer,
but not between these two layers. We now allocate
channels to the inner layer and channels to the outer
layer, with . The blocking for inner calls
is then simply given by . The blocking

for outer calls satisfies the bounds derived in Example
4.1 for the standard doubly-infinite strip (but now with

channels and offered traffic ). (Generally,
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Fig. 12. Performance of FCA, MP, approach A, and approach B as a function of offered traffic on the doubly-infinite strip with varying reuse andC = 10

channels.

imposing a hard boundary between the inner and outer
layer results in two independent networks with different
but fixed reuse factors.)

We have investigated how the performance of these two inter-
mediate approaches compares to that of the two extreme strate-
gies examined before. In case B, we also consider a scenario
in which the outer layer is operated using MP. The results for

channels and a fraction of traffic offered
to the inner regions are plotted in Fig. 12. We show the min-
imum blocking over all feasible combinations of and

, respectively. The figure indicates that the two inter-
mediate approaches for sharing the channels actually perform
quite similarly, but that both fall short of MP. This reinforces
the earlier statement that unrestricted sharing is crucial in fully
exploiting the potential capacity gains from tighter reuse.

B. Infinite Hexagonal Grid With Varying Reuse

Consider a similar infinite hexagonal grid as in the previous
section, but now a scenario with varying reuse as described in
Example 4.2. Each of the inner regions and each of the outer
regions is offered traffic at rate and ,
respectively.

Considering cliques consisting of three outer regions and one
inner region yields the Erlang bound

. Adding the constraints , the bound
may be tightened to

.
We now move to the reward bounds. Taking a clique

consisting of one inner region and three outer regions, we
obtain as an upper bound

on carried traffic. If we consider a subnetwork con-
sisting of two cliques with a common inner region, then

, with traffic offered to the

center cell at double the rate.
We have conducted numerical experiments to compare the

bounds with the performance of CMP and FCA, both adapted
to the varying reuse constraints. In FCA, we statically assign
channels to each of the inner regions, andchannels to each
of the outer regions, with . CMP always accepts
calls as long as the clique constraints remain satisfied (cliques
now existing of one inner region and three outer regions). (As
mentioned earlier, this may not be sufficient for a feasible as-
signment of channels to users to exist, but the reward bounds are
still valid for CMP.) In the absence of exact results, the blocking
for CMP is obtained using simulation for a wrap-around
grid.

The results for channels and a fraction
of traffic offered to the inner regions are shown in Fig. 13. For
FCA, we plot the minimum blocking over all feasible combina-
tions of .

Fig. 13 shows that also in the planar case with varying reuse
CMP may substantially reduce blocking over FCA. Although
the reward bounds improve upon the Erlang bound, they consid-
erably deviate from the performance of CMP. The discrepancy
may be attributed to two sources: i. Like in the planar case with
uniform reuse, the reward bounds for four-cell subnetworks fail
to be tight. Indeed, the gap may be somewhat reduced by consid-
ering larger subnetworks, which may however prove extremely
demanding; ii. Like in the linear case with varying reuse, CMP
fails to be nearly optimal. As observed before, CMP favors inner
calls over outer calls, but not to the extent required to maximize
carried traffic. This is illustrated in Fig. 14.
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Fig. 13. Erlang bound, reward bounds, and performance of FCA and MP as a function of offered traffic on an infinite hexagonal network with varying reuseand
C = 15 channels.

Fig. 14. Blocking of inner and outer calls for FCA and CMP as a function of offered traffic on an infinite hexagonal network with varying reuse andC = 15

channels.

VII. A SYMPTOTIC ANALYSIS

We now further investigate the tradeoff between efficiency
and fairness that arises in the case of varying reuse. We focus on
the doubly-infinite strip with uniform offered traffic of Example
4.2. We consider a scenario in which the number of channels and
the offered traffic grow large in proportion to one another, i.e.,

, and . Note that
as for any .

Denote by and the blocking of inner and outer calls,
respectively. Denote by and the carried traffic in each of
the inner regions and outer regions, respectively. By definition,

. Note that
.



BORST AND WHITING: DYNAMIC CHANNEL ASSIGNMENT SCHEMES 1261

Considering a clique of one inner cell and two outer cells, we
have

(19)

(20)

(21)

Observe that . Maximizing
subject to the constraints (19)–(21), we find that ,

with

(22)

Define . Now suppose we reserve a frac-
tion of the channels for the inner calls, and leave the re-
maining fraction of the channels for the outer calls. Then

. It
is easily verified that approaches as , i.e., the
bound is asymptotically achievable and hence tight. Observe
that this strategy only grants capacity to the outer calls that is
essentially not needed by the inner calls. This confirms that
schemes which minimize network-average blocking will intrin-
sically favor inner calls over outer calls.

We now examine what the increase in blocking is if we
require the blocking of inner calls and outer calls to be
equal. Adding the condition to the con-
straints (19)–(21), before maximizing , we find that

, with

(23)

Now suppose we allocate a fraction of the channels to
the inner calls, and assign the remaining fraction

of the channels to the outer calls in each cell. Then

. It is easily verified that , and approach as
, i.e., the bound is asymptotically achievable and

hence tight.
Define . From (22) and (23)

This demonstrates that schemes which do not discriminate
among calls inevitably produce higher network-average
blocking.

We now analyze the asymptotic performance of MP. The Er-
lang fixed-point approximation for MP may be constructed as
follows:

This approximation is consistent with the earlier observation
that for moderate values of blocking, i.e., , the blocking
of outer calls is about twice that of inner calls.

Asymptotically,

Since the Erlang fixed-point approximation is asymptotically
exact, see Kelly [8], , with

It may be verified algebraically that for all
values of and . Fig. 15 plots the values of , and
as a function of for .

VIII. C ONCLUSION

The Erlang bound may not always be tight because it fails to
exclude carried traffic combinations which are only feasible if
call dropping were permitted. The “trunk reservation” bounds
which we introduced are also obtained by considering cliques
of cells in the network. The construction of these bounds is
based on a reward paradigm as an intuitively appealing way of
characterizing thetrueachievable carried traffic region, thus ex-
posing any infeasible combinations that may weaken the Erlang
bound. The computational complexity increases somewhat, but
the bounds may be readily obtained in planar networks.

Even tighter bounds may be obtained by not considering
cliques, but subnetworks of cells in which a channel may be
used more than just once. In the case of uniform reuse, the
revenue-based bounds then closely approach the performance
of MP. This suggests not only that the bounds are extremely
tight, but also that no DCA scheme, however sophisticated,
will be able to achieve significant capacity gains beyond those
obtained from MP. The fact that such tight bounds can be
obtained by considering just three or four neighboring cells
in the network is striking. For a given subnetwork, no tighter
bound can be obtained, since the reward paradigm completely
demarcates the achievable carried traffic region.

Subsequently, we considered scenarios with varying reuse
which may arise in the case of reuse partitioning techniques,
measurement-based DCA schemes, or micro-cellular environ-
ments. We showed how the analysis presented in Kelly [7] for
MP on a doubly-infinite strip may be generalized. The revenue-
based bounds extend to these scenarios with varying reuse, but
the computational complexity increases further, which means
that only relatively small subnetworks can be considered. In
these circumstances, however, the bounds slightly diverge from
the performance of MP, which inflicts higher blocking on outer
calls than inner calls, but not to the extent required to maximize
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Fig. 15. Minimum average-blocking� , minimum equal-blocking� , and asymptotic performance of MP for varying reuse with a fraction� = 0:3 of traffic
offered to the inner regions.

carried traffic. This reflects the inherent tradeoff that arises in
the case of varying reuse between efficiency and fairness. This
observation is consistent with the empirical finding of spatially
inhomogeneous blocking in Shimadaet al. [14] and Valenzuela
[15]. Asymptotic analysis confirms that schemes which mini-
mize blocking intrinsically favor inner calls over outer calls,
whereas schemes which do not discriminate among calls in-
evitably produce higher network-average blocking.

In the present paper we have not considered any user mobility.
In reality, however, users move around so that calls in progress
may occasionally have to be handed off from one cell to another.
In the case of varying reuse, hand-off calls may be expected to
experience similar high blocking as peripheral calls at set-up.
Since calls in progress should in fact receive a preferential treat-
ment, this suggests an even greater need for channel reservation
mechanisms in the case of varying reuse.

In the presence of mobility, a more reasonable goal is prob-
ably to minimize blocking subject to a dropping constraint, or
to minimize a weighted combination of blocking and dropping.
The reward paradigm may be generalized to obtain bounds
in these cases. The bounds may still be obtained by solving
a linear program. However, the complexity of computing the
reward coefficients will increase considerably, because the
hand-off process is quite complicated. In contrast to fresh calls,
hand-off calls do not arrive according to independent Poisson
processes. The closer interaction between cells will also dilute
the capacity limits that can be lifted from a subnetwork in
isolation. Since the bounds may not be as tight, while MP may
be far from optimal in view of the need for channel reservation
mentioned above, the gap between the two should be expected
to increase dramatically.

APPENDIX

BLOCKING FORMAXIMUM PACKING UNDER VARYING RE-USE

In this Appendix, we extend the analysis presented in
Kelly [7] for MP on the doubly-infinite strip to the case
of varying reuse described in Example 4.2. We first con-
sider a finite array of cells indexed by the set

. Denote by and
the offered traffic to the inner and outer region of cell

, respectively. The state of the network may be described
by the vector , with and
representing the number of calls in the inner and outer region of
cell , respectively. The set of admissible states of the network
is defined as

for all

Observe that the equilibrium distribution satisfies the de-
tailed balance conditions

where denotes a vector consisting of all 0’s but for a 1 in
the position corresponding to the inner region of component
vector . The vector is defined similarly for the outer region
of cell . Thus, the equilibrium distribution is

(24)

with representing a normalization constant.
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We now consider the special case of uniform offered traffic,
i.e., for all . Define thesquarematrix

by

otherwise

From (24), we see that the sequence of vectors , deter-
mine an inhomogeneous Markov chain, with transition matrix
proportional to . Indeed, the equilibrium distribution may be
written

with

and representing the marginal equilibrium distribution for
cell 0. Observe that is simply the sum, over columns, of row

of .
Applying the detailed balance conditions to the component

vector for both the inner and outer region, we see that
must satisfy

That is, the marginal equilibrium distribution is similar to what it
would be for cell 0 in isolation, but with the birth rates modified
by .

Using standard arguments from the Perron-Frobenius theory
of nonnegative matrices, we find that as

where denotes the right eigenvector of the matrix. Thus, we
deduce that the marginal form of the equilibrium distribution for
cell 0 is

(25)

This result generalizes to similar linear networks with a larger
number of regions within cells. Numerical computation of the
marginal distribution for larger problems is impeded by the need
to find the Perron-Frobenius eigenvector of increasingly larger
matrices.

REFERENCES

[1] S. C. Borst and P. A. Whiting, “Achievable Performance of Dynamic
Bandwidth Allocation Algorithms in High-Speed Data Wireless Net-
works,” Technical memorandum BL0112120–980831–19TM, Bell Lab-
oratories, Lucent Technologies, 1998.

[2] D. E. Everitt and N. W. MacFadyen, “Analysis of multi-cellular mobile
radio telephone systems with loss,”Br. Telecom Technol. J., vol. 1, pp.
37–45, 1983.

[3] M. Frodigh, “Bounds on the performance of DCA-algorithms in
highway microcellular systems,”IEEE Trans. Veh. Technol., vol. 43,
pp. 420–427, 1994.

[4] A. Harel, “Convexity properties of the Erlang loss formula,”Oper. Res.,
vol. 38, pp. 499–505, 1990.

[5] S. Jordan and A. Khan, “A performance bound on dynamic channel allo-
cation in cellular systems: Equal load,”IEEE Trans. Veh. Technol., vol.
42, pp. 3137–3143, 1994.

[6] I. Katzela and M. Naghshineh, “Channel assignment schemes for
cellular mobile telecommunication systems: A comprehensive survey,”
IEEE Personal Commun., vol. 3, pp. 10–31, 1996.

[7] F. P. Kelly, “Stochastic models of computer communication systems,”J.
Roy. Statist. Soc., vol. B 47, pp. 379–395, 1985.

[8] , “Loss networks,”Ann. Appl. Prob., vol. 1, pp. 319–378, 1991.
[9] J. Kind, T. Niessen, and R. Mathar, Theory of maximum packing and re-

lated channel assignment strategies for cellular radio networks, in Math-
ematical Methods of OR, vol. 48, pp. 1–16, 1998.

[10] W. C. Y. Lee, Mobile Cellular Telecommunications Systems. New
York: McGraw-Hill, 1989.

[11] S. A. Lippman, “Applying a new device in the optimization of exponen-
tial queuing systems,”Oper. Res., vol. 23, pp. 687–710, 1975.

[12] B. Miller, “A queuing reward system with several customer classes,”
Manage. Sci., vol. 16, pp. 234–245, 1969.

[13] P.-A. Raymond, “Performance analysis of cellular networks,”IEEE
Trans. Commun., vol. 39, pp. 1787–1793, 1991.

[14] K. Shimada, T. Watanabe, and M. Sengoku, “A dynamic channel as-
signment approach to reuse partitioning systems using rearrangement
method,”IEICE Trans. Fundam., vol. E78-A, pp. 831–837, 1995.

[15] R. A. Valenzuela, “Dynamic resource allocation in line-of-sight micro-
cells,” IEEE J. Select. Areas Commun., vol. 11, pp. 941–948, 1993.

[16] P. A. Whiting, “Performance bounds for cellular radio management
schemes,” inProc. 6th U.K. Teletraffic Symp., IEE, 1989.

[17] P. Whittle, Optimization under Constraints, Chichester: John Wiley,
1971.

[18] Z. Xu and A. N. Akansu, A performance bound for interference adapta-
tion dynamic channel allocation in wireless communication networks, ,
Preprint NJ Inst. of Techn., 1997.

[19] J. Zander and H. Eriksson, “Asymptotic bounds on the performance of a
class of dynamic channel assignment algorithms,”IEEE J. Select. Areas
Commun., vol. 11, pp. 926–933, 1993.

Sem Borst received the M.Sc. degree in applied
mathematics from the University of Twente, The
Netherlands, in 1990, and the Ph.D. degree from
the University of Tilburg, The Netherlands, in 1994.
During the fall of 1994, he was a visiting scholar
at the Statistical Laboratory of the University of
Cambridge, U.K.

In 1995, he joined the Mathematics of Networks
and Systems Department of Bell Laboratories, Lu-
cent Technologies, Murray Hill, NJ, as a Member of
technical staff. Since the fall of 1998, he has been a

Senior Member of the Probability, Networks, and Algorithms department of the
Center for Mathematics and Computer Science (CWI) in Amsterdam. He also
has a part-time appointment as a Professor of Stochastic Operations Research
at Eindhoven University of Technology. His main research interests are in the
performance evaluation of communication networks and computer systems.



1264 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 4, JULY 2000

Phil Whiting received the M.Sc. degree in proba-
bility and statistics from the University of London, in
1983, and the Ph.D. degree in electronic engineering
from the University of Strathclyde, Scotland, in 1987.
His postdoctoral reasearch was at the Statistical Lab-
oratory of the University of Cambridge, U.K.

In 1993, he participated in the trial of Qualcomm
CDMA by Australia Telecom. In 1997, he joined the
Mathematics of Networks and Systems Department
of Bell Laboratories, Lucent Technologies, Murray
Hill, NJ, as a Member of technical staff. His main

research interests are in information theory and the performance evaluation of
wireless networks.


