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Abstract - We derive bounds for the performance of dynamic 
channel assignment (DCA) schemes which strengthen the exist- 
ing Erlang bound. The construction of the bounds is based on 
a reward paradigm as an intuitively appealing way of character- 
izing the achievable carried traffic region. In one-dimensional 
networks, our bounds closely approach the performance of Max- 
imum Packing (MP), which is an idealized DCA scheme. This 
suggests not only that the bounds are extremely tight, but also 
that no DCA scheme, however sophisticated, can be expected 
to outperform MP in any significant manner, if at all. 

Our bounds extend to scenarios with varying re-use which 
may arise in the case of dynamic re-use partitioning or 
measurement-based DCA schemes. In these cases, the bounds 
slightly diverge from the performance of MP, which inflicts 
higher blocking on outer calls than inner calls, but not to the 
extent required to maximize carried traffic. This reflects the 
trade-off that arises in the case of varying re-use between effi- 
ciency and fairness. Asyinptotic analysis confirms that schemes 
which minimize blocking intrinsically favor inner calls over 
outer calls, whereas schemes which do not discriminate among 
calls inevitably produce higher network-average blocking. 

1 Introduction 
Most cellular networks, such as AMPS, GSM, and TDMA IS- 
136, are operated according to a frequency re-use plan. The ra- 
dio frequencies are divided evenly into (say) N re-use groups, 
which are then arranged into a regular pattern, see Lee [7]. 
The re-use factor N is usually determined by considering the 
Carrier-to-Interference Ratio (CIR) which mobiles under worst- 
case conditions would experience. This approach to network op- 
eration is called Fixed Channel Assignment (FCA). 

Besides ensuring that i.he CIR is adequate, network operators 
are also concerned about the probability that a call is lost because 
all the channels are in us(:. Under standard assumptions of Pois- 
son traffic, no mobility, no mobile-to-mobile calls, and blocked 
calls cleared, the loss probability is given by the Erlang-B for- 
mula 

where v is the offered traffic and C is the number of channels 
per cell. 

In recent years, the use of cellular services has expanded dra- 
matically, forcing consideration of more efficient ways of using 
the radio frequencies. One approach to increase capacity is to 
allow channels to be allocated in a more flexible fashion, but 
still adhering to the re-use constraints. Channels may thus be 
taken away from cells which are being offered fewer calls, and 
diverted to cells which are being offered more calls. This ap- 
proach to network operation is called Dynamic Channel Assign- 
ment (DCA) [7]. 

The flexibility of DCA schemes is an important feature, since 
the pattern of offered traffic cannot be exactly determined in ad- 
vance, and is typically time-varying. Besides offering a poten- 
tial capacity increase, DCA schemes also reduce the complexity 
of frequency planning, which is of particular significance in the 
massive deployment of micro-cells. 

An important example of a DCA scheme is Maximum Pack- 
ing (MP), which was introduced by Everitt and MacFadyen [l]. 
Under MP, a call is admitted whenever possible, even if this 
involves rearranging the channels assigned to calls already in 
progress. An exact analysis of MP on a doubly-infinite strip, in 
which a channel cannot be used simultaneously in two adjacent 
cells, is presented in Kelly [3]. The results show that even for 
uniform offered traffic, MP outperforms FCA, unless the load 
exceeds a certain critical value. Jordan & Khan [2] and Kind 
et al. [6] have reported a similar observation. 

In fact, the above example is one of the rare instances in 
which DCA schemes allow for an exact analysis. Even so, 
the blocking-minimizing scheme is not known nor is it known 
how far FCA and MP are removed from the optimum policy. 
This situation motivates the construction of simple bounds for 
the blocking to provide insight into the performance of DCA 
schemes. An example is the Erlang bound, which was first de- 
rived in Whiting [13], and later studied in Raymond [lo]. The 
Erlang bound provides a lower limit on the network-average 
blocking under any DCA scheme, and may be obtained as the 
solution to a linear program. 

In the present paper, we derive bounds which substantially 
strenghten the Erlang bound. They may be obtained by careful 
selection of a reward vector w, with each call carried in cell i 
generating a reward w,. Clearly, no DCA scheme can produce 
a greater revenue than the optimum policy with respect to this 
reward vector. This observation functions as the basis for our 
bounds. 

0-7803-4383-2/98/$10.00 0 1998 IEEE. 51 

mailto:research.bell-labs.com


Now let us return to the issue of increasing the network capac- 
ity. A further extension to adopting DCA is made by modifying 
the frequency re-use plan or even dropping it altogether. This 
allows tighter re-use than would be permitted under the worst- 
case conditions of the plan mentioned earlier. One approach is 
to adopt an underlay-overlay network, where each cell now in- 
cludes an inner region in which lower powers are used. This 
allows the channels allocated to the calls in the inner region to 
be re-used more frequently, while channels assigned to the outer 
calls continue to operate at the original re-use factor. 

A second approach is to assign channels based on interfer- 
ence measurements, and to exploit those measurements to ob- 
tain tighter re-use than under the frequency plan. The questions 
of when to admit a call and of how to operate the network now 
need to be reasserted. In particular, the issue how the CIR is to 
be held at an adequate level needs to be addressed by the algo- 
rithm itself or through supplementary control mechanisms. 

In these circumstances, the Erlang bound no longer directly 
applies, and indeed the blocking may be significantly lower than 
under more conventional forms of DCA. We will show how our 
revenue-based bounds extend to these scenarios with tightened 
re-use. (Xu & Akansu [14] and Zander & Eriksson [15] derive 
asymptotic lower and upper bounds.) Furthermore, we are once 
again in a position to compare our bounds with exact results for 
a version of MP which incorporates tightened re-use. 

In summary, the paper is organized as follows. In Section 2, 
we present a more detailed model description, and briefly review 
the derivation of the Erlang bound. We then provide some basic 
examples illustrating how the Erlang bound may be calculated. 
Subsequently, we examine the achievable carried traffic region 
to understand why the Erlang bound may not always be tight. 
Section 3 introduces a reward paradigm which paves the way 
for the construction of sharper bounds. In Section 4, we revisit 
the examples studied in Section 2 to illustrate how the revenue- 
based bounds may be used to improve upon the Erlang bound. 
In Section 5, we investigate the trade-off between efficiency and 
fairness that arises in the case of varying re-use. Finally, Sec- 
tion 6 summarizes our main conclusions. 

2 The Erlang bound 
We first present a more detailed model description. We consider 
a cellular network of arbitrary topology. The cells, which are in- 
dexed by the set Z, share a pool of C channels. Users in cell i 
generate calls as a Poisson process of rate v,. All calls have ex- 
ponentially distributed holding times with unit mean. 

When a user generates a call, the admission policy determines 
whether to accept or reject it. If accepted, the call is carried for 
the complete duration of the holding time. In case a call is re- 
jected, the user does not make any retrials. 

We assume that the admissible states of the network satisfy 
the constraints n; 5 C for all C E R, with n, denoting the 

number of calls in cell i. The set R is the collection of cliques, 
which are defined as the subsets C of Z such that no two users 
within C can share a channel. 

As shown in Whiting [ 131, the Erlang bound provides a lower 

2EC 

limit on the network-average blocking under any admission 
scheme. It may be obtained as the solution to the following lin- 
ear program 

with the variables B; representing the probability of call block- 
ing in cell i under some arbitrary admission policy. 

The key constraints are provided by the inequalities ( 3 ) ,  
which are obtained by considering each clique C E R in isola- 
tion. Since no two users within a clique can share a channel, 
we cannot accommodate more than C calls in any one clique 
simultaneously. Thus, we can never reject fewer calls in a 
clique C E R than the number of blocked call for a single group 
of C channels offered traffic vi. This number is determined 

by the Erlang-B formula (1). 
i E C  

We now provide some basic examples illustrating how the 
Erlang bound may be calculated. 

Example 3.1: three-cell network 
Consider the three-cell network depicted in Figure 1. Each cell 
is offered traffic at rate v. We assume that a channel cannot be 
used simultaneously in two adjacent cells, Le., the cliques are 
{ 1,2} and {2,3}, labeled A and B in the figure, respectively. 
Thus, the clique constraints are B1 + B2 2 2Er1(2v; C )  and 
Bz + B3 2 2Er1(2v; C ) .  The solution to the linear program 
- is B1 = B3 = 0,  B2 = 2Er1(2v; C ) ,  yielding the bound 
B = 2Er1(2v; C)/3. For C = 2, v = 1 for example, we ob- 
tain B = 0.266 * + .. 

The bound may be tightened by adding the single-cell clique 
constraints B, 2 Erl(v;C),  i = 1 , 2 , 3 .  The solution 
to the linear program is then B1 = B3 = Erl(v; C), 
B2 = 2Er1(2v; C )  - Erl(v; C), sharpening the bound to B = 
(2Er1(2v; C) + Erl(v; C ) ) / 3 .  For C = 2, v = 1, we obtain 
B = 0.333.  . .. Using Markov decision theory, we find that the 
minimum achievable blocking in fact is B M 0.411. 

- 

U 

1 A 2 B 3  

Figure 1 : Three-cell network. 

Example 3.2: doubly-infinite strip 
Consider a similar network with uniform offered traffic as in the 
previous example, but now a doubly-infinite strip of cells, in- 
stead of just three, as shown in Figure 2 below. The clique con- 
straints are B; + B;+1 > 2Er1(2v; C )  for all i E 2. Using 
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an elementary limiting argument, it may be concluded that the 
linear program yields the bound 3 = Erl(2v; C). Adding the 
single-cell clique constraints does not strengthen the bound in 
this case. 

0 

I 

n i  - 1 

I 

n i  n i  + I  

V v V 

Figure 2: Linear array of cells. 

Example 3.3: doubly-infinite strip with varying re-use 
Consider a similar linear array of cells as in the previous ex- 
ample, but now a scenario with varying re-use, as illustrated in 
Figure 3 below. We assume that each cell i is partitioned into 
an inner region ( i l  1) and an outer region (i, 2). Each of the in- 
ner regions and each of the outer regions is offered traffic at rate 
v1 = av and v2 = (1 - cu)v, respectively. Calls in two different 
inner regions may always share a channel. Calls in outer regions 
cannot share a channel with any call in the two adjacent cells. 
The Erlang bound no longer applies at the level of cells now, but 
does still apply at the level of the regions. The clique constraints 
areaBi , l  +(l-a)(Bi,2+Bi+1,2) 2 ( 2 - a ) E r l ( ( 2 - a ) v ; C )  
and aBi+l,1+ (1 -a) (B, , 2  +B;+1,2) 1 (2-a)Erl( (2 -a)  v ;  C) 
for all i E 2. Using a simple limiting argument, it may be 
shown that the linear program produces the bound B = (2 - 
a)Er l ( (2-a)v;  C)/2. Kot surprisingly, the boundis decreasing 
in a,  the fraction of traffic offered to the inner regions. Adding 
the constraints Bi,l 2 Erl(av; C), the bound may be tightened 
to 3 = ((2 - a)Erl((2 -- a)v; C) + aErl(cuv; C)) /2 .  

0 

* * . . .~---...-. 
i -  1 i i + l  

Figure 3: Linear array of cells with varying re-use. 

Discussion 
The Erlang bound as exemplified above may not always be tight. 
To understand why, we now examine the region of achievable 
carried traffic combinations. The clique constraints (3) underly- 
ing the Erlang bound may be rewritten 

At  5 vi (1 - Erl (E vi; C ) )  for all C E R, ( 5 )  
2EC 2EC \ \2EC / /  

with the variables A i  = ~ ~ ( 1 -  B,) representing the carried traf- 
fic in cell i under some arbitrary admission policy. Now let us 
return to Example 3.1. ‘The outer region in Figure 4 delineates 
the set of all carried traffic pairs (A1 A,) that satisfy the con- 
straints ( 5 )  for clique A. However, the true achievable carried 

traffic pairs for clique A, are demarcated by the inner region in 
the figure. 

I O  

Achievable Region Boundary 
0 9  Erlang Bound 

2 0.5 

0 4 

0 3  

0. I I 
Figure 4: Achievable carried traffic region for a single group of 
C = 2 channels offered two streams of traffic of rate v = 1 
each. 

The piece-wise linear boundary of the achievable region may 
be interpreted as follows. Consider a reward vector (w1, wg), 
with w, rcpresenting the reward generated by each stream-i call 
that is carried. The reward-maximizing policy is then a trunk 
reservation strategy, see Lippman [8], Miller [9]. Under trunk 
reservation, the calls of the lower-earning stream are rejected 
when there are no more than T free channels. 

The carried traffic pairs for the class of trunk reservation 
strategics are represented by the vertices of the inner region in 
Figure 4. They are labeled with the value of the corresponding 
trunk rcservation parameter, taken negative when used against 
stream- 1 calls. No carried traffic pair outside the inner region is 
achievable, since otherwise the optimality of the class of trunk 
reservation strategies would be contradicted. 

The Erlang bound in Example 3.1 followed from the solution 
(B1, Bz) = (0.2,0.6) to the linear program. Figure 4, how- 
ever, shows that the corresponding carried traffic pair ( A 1  l A,) = 
(0.8,0.4) is infeasible. Thus, the Erlang bound may be strength- 
ened if we replace the clique constraints (3) by the linear in- 
equalities describing the boundary segments of the achievable 
region. This insight will be formalized in the next section. 

Note that a different picture would emerge if call dropping 
were permitted. If pre-emption were allowed, then the achiev- 
able carried traffic pairs are exactly the vertices of the outer 
region in Figure 4. Thus, the Erlang bound may not be tight 
because it fails to exclude carried traffic combinations which 
are only feasible if call dropping were permitted. Allowing for 
pre-emption, however, appears inappropriate as call dropping 
should be negligibly small for any sensible admission control 
scheme. 
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3 Tighter bounds 
We now proceed with a formal statement of the proposed 
bounds. As we have seen in the previous discussion, we may 
use a reward paradigm as an insightful way of characterizing 
the achievable carried traffic region, and thus sharpening the 
Erlang bound. Specifically, suppose that each call carried in 
cell i generates a reward wi. For any vector w E R:, denote by 
R ( w )  the maximum achievable mean reward rate. Clearly, no 
admission policy can produce a greater revenue rate than R(w). 
This observation constitutes the basis for the next theorem. 

Theorem 4.1 
For any set W C R:, the carried traffic under any admission 
policy is bounded above by the optimum value XW of the fol- 
lowing linear program 

max Ex; 
i € Z  

sub cw;x; 5 R ( w )  for all w E W ,  (7) 
i€Z 

xi 2 0 for all i E Z. (8) 

Proof 
The proof follows by interpreting the variables xi as the car- 
ried traffic in cell i under some arbitrary admission policy. The 
objective function (6) then exactly represents the carried traf- 
fic. Constraint (7) is satisfied since the policy cannot produce 
a greater revenue than the maximum achievable reward rate. 
Hence, the optimum value of the linear program provides an up- 
per bound for the carried traffic under any admission policy. 

0 

Corollary 4.2 
For any set W 'R:, the carried traffic under any admission 
policy is bounded above by the optimum value pw of the fol- 
lowing linear program 

W E W  

sub y(w)wi 2 1 for all z E 2, (10) 
w € W  

y(w) 2 0 for all w E W. (11) 

Proof 
The proof follows by observing that (9)-( 11) is the dual problem 
to (6)-(8). Strong duality then implies that Xw = pw. 

0 

The main difficulty in evaluating the above bounds does usu- 
ally not arise from solving the linear programs, but from com- 
puting the R(w) 's  for a suitable set W .  Typically, determining 
R(w) requires numerically solving a Markov decision problem 
with a state space in as many dimensions as the reward vector w 
has non-zero components. In certain cases, however, R ( w )  may 
be obtained in closed form. For any clique C E R for example, 

R(xc)  = vi; C)), with xc denoting the char- 

acteristic vector of C. From A; = vi(1 - B%),  we then immedi- 
ately see that the inequalities xFA; 5 R(xc)  are equivalent 

i € Z  
to the clique constraints (3). Thus, for the set W := u {xc}, 
the above bounds coincide with the Erlang bound. 

At the opposite side of the spectrum, R(1,. . . , 1) equals 
the maximum achievable carried traffic, but it is exactly the 
formidable complexity of calculating this quantity directly 
which motivated us to consider bounds. This contrast is charac- 
teristic of the trade-off between the computational complexity 
of determining the R(w) ' s  and the tightness of the correspond- 
ing bounds. 

vi( 1 - Erl( 
i € C  i € C  

CER 

For any subset J C 2, denote 2; := {w E 'R$ : w; = 
0 for all i J } .  Now suppose that II is the collection of sub- 
sets D 5 Z such that R(w) can be obtained if w E 72:. Define 
W" := u 72: as the set of all reward vectors w for which 

R(w) can be obtained. In case II C R, the collection of cliques 
in the network, we know that for any w E W" the maximum 
reward rate R(w) is achieved by some trunk reservation strat- 
egy. Occasionally, we will therefore refer to the corresponding 
bounds as 'trunk reservation bounds'. 

Note that we cannot determine Awn by solving either of the 
above two linear programs directly, since there are an infinite 
number of inequalities (variables in the dual version) involved. 
From linear programming theory, however, we know that at 
most a finite number of these are relevant. We now describe two 
approaches to obtain Awn exploiting that fact. 

In the first approach, we generate a finite yet exhaustive sub- 
set including all the relevant inequalities. For any subset 3 C Z, 
denoteUJ := {x E 'Rf : w;x; 5 R(w) for all w E 'Rf}. 

By definition, Awn may be obtained by maximizing 2; 

subject to the constraints ( Z ~ ) ; € J  E Uv for all D E IT. Also, 
define AT as the convex hull of the carried traffic combinations 
in the subnetwork of the cells i E 1 achievable by the class of 
stationary deterministic admission policies. Observe that the 
convex hull is a polytope, since there are only finitely many 
stationary deterministic admission policies. 

D € n  

i€Z 

Lemma4.3 
For any subset J' C 1, 

A' = U'. 

Proof 
The inclusion to the right is implied by the definition of R(w) .  
The inclusion to the left holds by virtue of the optimality of the 
class of stationary deterministic admission policies. 

0 

The above lemma implies that Awn may be obtained by max- 
imizing xi subject to the constraints (x;);€.y E dv for 

all D E n. Thus, it suffices to generate the set of facet-defining 
inequalities of the polytopes dv for all D E IT. 
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In the second approach, we identify the subset of relevant 
inequalities more indirectly. In the dual formulation, it is quite 
natural to interchange the roles of the coefficients w and the 
variables y (w) .  For example, fixing y (w)  = 1 for all w E W*,  
we find that R(w) 2 pw* 2 p w n  for any subset 

W€W* 
W* C W" with the property that w; 2 1 for all i E I. 

w E,W * 
The next theorem establishes that this in fact holds with equality 
for subsets W* of remarkably small size. 

Theorem 4.4 
For any set II, the optimum value A w n  = p W n  equals the opti- 
mum value Vn of the following convex programming problem 

DEII 

sub 1 w? = 1 for all i E 1, (13) 
DEII 

Proof 
We first prove that V" 2 pwn. Let {vD}~€n be 
the optimal solution to the problem (12)-(14), so V" = 

R(vD).  The statement preceding the theorem then indi- 
'DE" 
cates that R(vD)  1: ' PW". 

VEn 
We now prove that pwn > Vn. Let {z(w)},,wn be 

the optimal solution to the dual problem (9)-(ll), so p w n  = 
z (w)R(w) .  Frorn optimality, we may conclude that the 

W E W "  
z(w) 's  satisfy the constraints (10) with strict equality, since R(.) 
is an increasing function. 

z D ( w )  = z ( w )  

for all w E W a n d  z"(w) = 0 if w 4 72:. Now define 

Let z v ( w )  2 0 be variables such that 
veri 

vv ._ .- zv(w)w for all D E II. It is easily verified that 
WEW" 

{ v D } ~ ~ n  satisfies the c:onstraints (13)-( 14). Plugging the vD's 
into the objective function (12) then gives 

It remains to be shown that z ( w ) R ( w )  2 R(v"). 

R ( v D )  2 V". 
DE" 

W E W "  DE" 

Note that z ( w ) R ( w )  = z D ( w ) R ( w )  = 
W E W "  w ~ ~ n  Den 

z D ( w ) R ( w ) .  Now define C D  := z D ( w )  
W E W "  vm?,,gwn - - _ . .  

for all D E II. Using the fact that R(.) is a convex func- 
tion, and that R(qw)  = qR(w)  for any scalar q 2 0, 

we obtain zD(w)R(w)  = CV P R ( w )  2 
W E W "  w '  

U 

We now consider two special cases. 

Doubly-injinite strip 
Consider the doubly-inifinite strip studied in Example 3.2. De- 
fine A,,, as the maximum average amount of carried traffic in 
each cell. Suppose that I I K  is the set of all the subnetworks of 
K consecutive cells. An elementary limiting argument shows 
that the bound of Theorem 4.4 applies. Exploiting the symmetry 
and the convexity of the function R(.) ,  we conclude that Amax 
is bounded above by the optimum value of the following convex 
programming problem 

min R(w1, . . . , W K )  
K 

k=l 

W1 W K ,  w2 = W K - 1 , .  . . 

Doubly-in.nite strip with varying re-use 
Consider again the doubly-inifinite strip, but now a scenario 
with varying re-use as described in Example 3.3. Suppose that 
rIK is the set of all subnetworks of the form { (i + 1,2) ,  . . . , (z + 
K ,  a) ,  (i + L(K + 1)/2], 1)) .  Again, a simple limiting argument 
indicates that the bound of Theorem 4.4 applies. Exploiting the 
symmetry and the convexity of the function R(.) ,  we find that 
A,,, is bounded above by the optimum value of the following 
convex programming problem 

min R(1; w1,. . . , W K )  
K 

4 Numerical results 
We now revisit the examples studied in Section 2 to illustrate 
how the revenue-based bounds may be used to improve upon 
the Erlang bound. 

Example 3.1 (cont'd) 
We return to the three-cell network described in Example 3.1, 
but we no longer assume that the offered traffic is uniform. From 
Theorems 4.1 and 4.4, we conclude that the carried traffic is 
bounded above by min V(y), with V(y) = R( l ,y ,O)  + 
R ( 0 , l  - y,  1). Since the function R(.)  is convex, the func- 
tion V ( . )  is convex as well. Thus, for uniform offered traffic, we 
may conclude from symmetry that V(y) is minimal for y = 1/2. 
For C = 2 channels and offered traffic v = 1, we obtain an up- 
per bound of 1.8 on carried traffic, which corresponds to a lower 
bound 

= 
(1/2,1,3/2). The Erlang bound then yields B x 0.405. Since 
the function V ( . )  is convex, we may use a bi-section search to 
find that in this case V(y) is minimal for y x 0.263. This yields 
an upper bound of approximately 1.708 on carried traffic, which 
corresponds to a lower bound B x 0.431 on blocking. Using 
Markov decision theory, we find that the minimum achievable 
blocking is in fact B M 0.439. 

O < Y < l  

= 0.4 on blocking, tightening the Erlang bound. 
Now suppose the offered traffic vector is (VI, v2, v3) 
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Example 3.2 (cont’d) ner cell, then we obtain A,,, 5 min R(1; y, 1 - Zy, y). As 

+-+ Reward Bound (4 Consecutive Cells) 

We return to the doubly-infinite strip studied in Example 3.2. 
If we consider a subnetwork of just two cells, then we ob- 
tain X < R(1/2,1/2).  Note that R(1/2, l / 2 )  = v(1 - 
Erl(2v; C ) ) ,  so the revenue-based bound then coincides with the 
Erlang bound. If we consider a subnetwork of three cells, then 
we obtain A,,, 5 R(y, 1 - Zy, y). If we take a sub- 

network of four cells, then we find A,,, 5 min R(y, 1/2 - 

y, 1 /2  - y, y). In both these cases, the convexity properties al- 
low us to minimize the function numerically through a simple bi- 
section search. Considering a subnetwork of five or more cells 
would involve solving a convex programming problem in more 
than one dimension. 

We have conducted numerical experiments to compare the 
bounds with the performance of FCA and that of Maximum 
Packing (MP) as described earlier. The blocking for FCA is ob- 
tained from the Erlang-B formula (1). The blocking for MP is 
computed using the exact analytical results obtained in [ 3 ] .  The 
results for C = 20 channels are shown in Figure 5. 

The figure indicates that, unlike the Erlang bound, the 
revenue-based bounds closely approach the performance of MP. 
This suggests not only that the bounds are extremely tight, but 
also that no DCA scheme, however sophisticated, can be ex- 
pected to outperform MP in any significant manner, if at all. 

n 

min 
05Y11/2 

O < Y < 1 / 2  

O l Y  1 1 / 2  
before, the convexity properties allow us to minimize the func- 
tion numerically through a simple bi-section search. The calcu- 
lation of R( . )  in each iteration, however, is of formidable com- 
plexity for all but the smallest number of channels, and is the 
main obstacle in considering larger subnetworks. 

We have performed numerical experiments to compare the 
bouilds with the performance of a version of MP adapted to the 
varying re-use constraints. Under MP, this particular scenario 
may be viewed as a form of underlay-overlay cellular network, 
but with dynamic allocation of channels, see Lee [7]. The block- 
ing for MP is calculated using exact results obtained by extend- 
ing the analysis presented in Kelly [ 3 ] .  The results for C = 10 
channels and a fraction cy = 0.3 of traffic offered to the inner 
regions are shown in Figure 6. 

The figure reveals that the blocking of outer calls is about 
twice that of inner calls for moderate values of blocking. Draw- 
ing upon the theory of loss networks, see Kelly [4], this ra- 
tio may be understood from the fact that outer calls require a 
channel in four cliques, whereas inner calls in only two. The 
revenue-based bounds now slightly diverge from the perfor- 
mance of MP. Although MP inflicts higher blocking on outer 
calls than inner calls, it does not so to the extent required to 
maximize carried traffic. This phenomenon reflects the trade-off 
between efficiency and fairness that arises in the case of vary- 
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ing re-use, see also Shimada et al. [ l l ]  and Valenzuela [12]. 
Schemes which minimize blocking intrinsically favor inner calls 
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B 
m 
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.o 

V 
0.05 

Figure 5: Erlang bound, revenue-based bounds, and perfor- 
mance of FCA and MP for C = 20 channels. 

Example 3.3 (cont’d) 0.00 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

V 
We return to the doubly-infinite strip with varying re-use as de- 
scribed in Example 3.3. If we consider a clique consisting of 
one inner cell and two outer cells, then we obtain A,,, 5 
R(1; 1/2,1/2) as an upper bound on carried traffic. If we con- 
sider a subnetwork consisting of two cliques with a common in- 

Figure 6:  Revenue-based bounds and performance of MP for 
varying re-use with c = 10 channels and a fraction cy = 0.3 
of traffic offered to the inner regions. 
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5 Asymptotic analysis 

0 7 :  

We now further investiga.te the trade-off between efficiency and 
fairness that arises in the (case of varying re-use. We focus on the 
doubly-infinite strip with uniform offered traffic of Example 3.3. 
We consider a scenario in1 which the number of channels and the 
offered traffic grow large in proportion to one another, Le., C --+ 

00, v 4 03, and Y / C  = p. Note that Erl(pC; C )  --+ max{ 1 - 
l / p ,  0) as C -+ 00 for any p 2 0. 

Denote by B1 and B2 the blocking of inner and outer calls, 
respectively. Denote by A1 and A2 the carried traffic in each of 
the inner regions and outer regions, respectively. By definition, 
A 1  = (1 - &)VI, A2 =: (1 - B 2 ) v ~ .  Note that = aBl + 

Considering a clique of one inner cell and two outer cells, we 
(1 - a)B2 = (YlB1 + v&)/v  = 1 - (A, + A 2 ) / v .  

have 

c 

~ Minimum Average Blocking 
Maximum Packing 

A1 + 2 A 2  5 W , 1 , 1 ) ,  (15) 
A 1  5 av, (16) 
A2 5 (1 -a)v. (17) 

Observe that R(1,1,1) 5; min{(Z-a)v, C } .  Maximizing A1 + 
A2 subject to the constraints (15)-( 17), we find t h a t z  2 p*, with 

1 0 P 5 G  
A< < L  

2 p  2--01 - p -  CY 1 __  1. 1 P > , .  

Define y := min{ap, 1). Now suppose we reserve a frac- 
tion y of the channels for the inner calls, and leave the remain- 
ing fraction 1 - y of the channels for the outer calls. Then 
B1 = Erl(apC;yC),  132 = Erl((1 - a ) p C ;  (1 - y)C). It 
is easily verified that B approaches p* as C 4 00, i.e., the 
bound p* is asymptotically achievable and hence tight. Observe 
that this strategy only grants capacity to the outer calls that is 
essentially not needed by the inner calls. This strongly suggests 
that schemes which minimize network-average blocking will in- 
trinsically favor inner calls over outer calls. 

We now examine what the increase in blocking is if we require 
the blocking of inner calls and outer calls to be equal. Adding the 
condition A1/v1 = X 2 / v 2  to the constraints (15)-(17), before 
maximizing A1 + A 2 ,  we find that B1 = B2 = 

(18) 

2 ,@, with 

Now suppose we allocate a fraction a/(Z - CY) of the channels to 
the inner calls, and assign the remaining fraction (1 - a ) / (2  - 
a)  of the channels to the: outer calls in each cell. Then B1 = 
Er l ( apC;aC/ (2  - a ) ) ,  B2 = Erl((1- a )pC;  (1 - a)C/(Z - 
a ) ) .  It is easily verified thlat B1, B2, and approach p# as C + 

03, i.e., the bound /3# is asymptotically achievable and hence 
tight. 

DefineS:= /3# - p * .  From(18),(19), 

0 P 1 &  .=( . . L ( L - 1 )  2 p , 2  2--a 1 2--a 

; ( I - & )  P 2 , .  1 

This confirms that schemes which do not discriminate among 
calls inevitably produce higher network-average blocking. 

We now analyze the asymptotic performance of MP. The Er- 
lang fixed-point approximation for MP may be constructed as 
follows. 

1 - A = Erl (apCA + 2(1- a)pCA3; C )  , 
1-B1 M A2,  
1-B2  M A4. 

This approximation is consistent with the earlier observation 
that for moderate values of blocking, i.e., A M 1, the blocking 
of outer calls is about twice that of inner calls. 

Asymptotically, 

1 
a p A  + 2(1- a)pA3 A --+ min{ 7 11. 

0.1 1 J 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
P 

Figure 7: Minimum average-blocking p*, minimum equal- 
blocking p#,  and asymptotic performance of MP for varying re- 
use with a fraction a = 0.3 of traffic offered to the inner regions. 
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6 Conclusion References 

The Erlang bound may not always be tight because it fails to ex- 
clude carried traffic combinations which are only feasible if call 
dropping were permitted. The ‘trunk reservation bounds’ which 
we introduced are also obtained by considering cliques of cells 
in the network. The construction of these bounds is based on a 
reward paradigm as an intuitively appealing way of characteriz- 
ing the true achievable carried traffic region, thus exposing any 
infeasible combinations that may weaken the Erlang bound. 

Even tighter bounds may be obtained by not considering 
cliques, but subnetworks of cells in which a channel may be used 
more than just once. In one-dimensional networks, the revenue- 
based bounds then closely approach the performance of Maxi- 
mum Packing (MP). This suggests not only that the bounds are 
extremely tight, but also that no DCA scheme, however sophisti- 
cated, can be expected to outperform MP in any significant man- 
ner, if at all. The fact that such tight bounds can be obtained by 
considering just 3 or 4 consecutive cells in the network is strik- 
ing. For a given subnetwork, no tighter bound can be obtained, 
since the reward paradigm completely demarcates the achiev- 
able carried traffic region. 

Subsequently, we considered scenarios with varying re-use 
which may arise in the case of dynamic re-use partitioning or 
measurement-based DCA schemes. The revenue-based bounds 
extend to these scenarios, but the computational complexity in- 
creases further, which means that only relatively small subnet- 
works can be considered. In these circumstances, however, the 
bounds slightly diverge from the performance of MP, which in- 
flicts higher blocking on outer calls than inner calls, but not 
to the extent required to maximize carried traffic. This phe- 
nomenon reflects the trade-off that arises in the case of vary- 
ing re-use between efficiency and fairness. This observation 
is consistent with the empirical finding in Shimada et al. [ l l ]  
and Valenzuela [ 121, obtained by means of simulation, of inho- 
mogeneous blocking in distinct portions of the coverage area. 
Asymptotic analysis confirms that schemes which minimize 
blocking intrinsically favor inner calls over outer calls, whereas 
schemes which do not discriminate among calls inevitably pro- 
duce higher network-average blocking. 

In the present paper, we have not considered mobility, but 
calls in hand-off may be expected to experience similar high 
blocking as peripheral calls at set-up. Since calls already in 
progress should in fact receive a preferential treatment, this sug- 
gests an even greater need for a channel reservation mechanism 
for hand-offs in the case of varying re-use. 

Finally, we add that our bounding approach not only applies to 
cellular networks, but also to loss networks in general. A related 
analysis appears in Kelly [ 5 ] .  
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