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Abstract— Channel-aware scheduling strategies, such as the
Proportional Fair algorithm for the CDMA 1xEV-DO system,
provide an effective mechanism for improving throughput per-
formance in wireless data networks by exploiting channel fluctua-
tions. The performance of channel-aware scheduling algorithms
has mostly been explored at the packet level for a static user
population, often assuming infinite backlogs. In the present paper,
we focus on the performance at the flow level in a dynamic setting
with random finite-size service demands. We show that in certain
cases the user-level performance may be evaluated by means of
a multi-class Processor-Sharing model where the total service
rate varies with the total number of users. The latter model
provides explicit formulas for the distribution of the number of
active users of the various classes, the mean response times, the
blocking probabilities, and the mean throughput. In addition we
show that, in the presence of channel variations, greedy, myopic
strategies which maximize throughput in a static scenario, may
result in sub-optimal throughput performance for a dynamic user
configuration and cause potential instability effects.

Index Terms— Channel-aware scheduling, elastic traffic, in-
sensitivity, Processor Sharing, Proportional Fair scheduling, re-
sponse time, stability, throughput optimization, wireless data
networks.

I. INTRODUCTION

Next-generation wireless networks are expected to support
a wide variety of data services. Data applications have funda-
mentally different traffic characteristics and different quality-
of-service requirements than traditional voice services, calling
for a significant departure from a conventional circuit-switched
operation. In particular, the relative delay tolerance of data
applications, combined with the bursty activity patterns, opens
up the possibility of scheduling transmissions so as to obtain
efficiency gains. An especially attractive approach, in fading
environments, is to use channel-aware scheduling strategies,
such as the Proportional Fair algorithm for the CDMA 1xEV-
DO system [4], [11], [20], which harness channel variations
so as to improve the throughput performance.

The performance of channel-aware scheduling algorithms
has mostly been investigated at the packet level for a static user
population, sometimes including packet-scale dynamics [3],

[17], but often assuming infinite backlogs [1], [8], [14], see
also [15], [19] for related results. The assumption of a static
user population is a reasonable modeling convention because
of the separation of time scales: the scheduling algorithms
operate at the packet level on which the user population
evolves only relatively slowly. However, when examining
throughput performance, and in particular comparing the
throughput allocation among elastic traffic users under various
strategies, it does not seem entirely satisfactory to assume
that the user population is independent of the throughput
characteristics and the parameter settings of the scheduling
algorithm. For example, a scheduling algorithm that provides
high throughput to users with favorable channel conditions,
will tend to satisfy the service demands of these users sooner.
As a result, the algorithm would tend to be left facing a user
population with a higher fraction of users with poor channel
conditions. Conversely, a scheduling algorithm that grants
reasonable throughput to users with poor channel conditions,
should to a certain degree benefit from that by seeing fewer
of these users.

In order to capture the above interdependence between
the scheduling algorithm and the user population, we move
away from a static scenario with a fixed ensemble of users
to a dynamic setting where elastic traffic users come and
go as governed by the arrival and completion of service
demands over time. The notion of finite-size service demands
additionally allows us to consider user-perceived performance
in terms of response times for file transfers for example, as
opposed to delays experienced by individual packets. We will
show that in certain cases the user-level performance may be
evaluated by means of a multi-class Processor-Sharing model
where the total service rate varies with the total number of
users. The latter model provides explicit formulas for the
distribution of the number of active users of the various
classes, the mean response times, the blocking probabilities,
and the mean throughput.

To put the above observations further into perspective, it is
helpful to make a comparison with a situation where the trans-
mission rates are possibly different across users but constant
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over time. In that case, a standard work conservation argument
implies that the ‘amount of work’ in the system (measured in
transmission time rather than bits) is the same under any non-
idling scheduling rule. In that sense, the throughput allocation
among users corresponding to various scheduling strategies
will have an impact on the delay characteristics, but no
effect on the system throughput in case of finite-size service
demands.

The above-mentioned work conservation property does not
extend to a situation where the transmission rates vary over
time, and it will no longer be the case that any non-idling
scheduling strategy yields the same system throughput. As
it turns out, it is not so much maximizing the instantaneous
throughput in an absolute sense that determines stability then,
but serving users at the right time so as to extract the
maximum possible gains from the varying channel conditions.
In particular, we will show that greedy, myopic strategies
which maximize throughput in a static scenario, may result
in sub-optimal throughput performance for a dynamic user
configuration and cause potential instability phenomena. Of
course, (in)stability is to a certain extent a theoretical concept
that cannot occur in an actual system due to admission and
flow control mechanisms and the inherent finiteness of buffers.
However, it is plausible that instability effects will be reflected
in poor performance in terms of long delays in practical
circumstances as well.

The remainder of the paper is organized as follows. In
Section II we recapitulate some relevant results from the
literature for a static user population and state some prelimi-
nary facts. We extend the model to accommodate a dynamic
user configuration in Section III. We describe how in certain
symmetric cases the system behavior may be described by
means of a multi-class Processor-Sharing model where the
total service rate varies with the total number of users. We
present exact results for the distribution of the number of active
users of the various classes, the mean response times, the
blocking probabilities, and the mean throughput. In Section IV
we turn the attention to asymmetric scenarios and derive
some stochastic majorization properties. We examine stability
issues in Section V. In Section VI we discuss some numerical
experiments that we conducted to illustrate the results.

II. STATIC USER POPULATION

We first review some relevant results from the literature for
a static scenario with a population of M data users served by
a single base station. The base station transmits in slots of
some fixed duration. In each slot, the base station transmits to
exactly one of the users.

We assume that the feasible rates for the various users vary
over time according to some stationary discrete-time stochas-
tic process {R1(t), . . . , RM (t)}, with Ri(t) representing the
feasible rate for user i in time slot t. In order to estimate the
feasible rates, the base station relies on feedback information
from the users on the instantaneous rates that can reliably be
supported, as is for instance the case in the CDMA 1xEV-
DO system (also known as HDR) [4]. The prediction of the
feasible rates should be reasonably accurate when the feedback

delay is relatively short compared to the fading frequency.
For convenience, we assume that the base station has perfect
knowledge of the feasible rate Ri(t) for every user i at the
start of slot t, although the results may be extended to account
for possible prediction errors.

Let (R1, . . . , RM ) be a random vector with as distribution
the joint stationary distribution of the feasible rates. We focus
on the case where the feasible rates (R1, . . . , RM ) have a
discrete distribution on some finite set R ⊆ RM

+ . Let p(r) be
the stationary probability that the instantaneous feasible rate
vector is r ∈ R. With minor modifications, most of the results
extend to scenarios with a continuous rate distribution.

Let Ti be the (long-term) throughput received by user i,
and let A ⊆ RM

+ be the set of achievable throughput vectors.

The next proposition provides a characterization of the
set A [3], [8].

Proposition 2.1: The set of achievable throughput vec-
tors A may be characterized as

A = {T ∈ RM
+ : z(T ) ≥ 1},

where z(T ) is the optimal value of the linear program

max z

sub z ≤ zi =
∑

r∈R
p(r)xi(r)ri/Ti i = 1, . . . ,M

M∑

i=1

xi(r) ≤ 1 r ∈ R

xi(r) ≥ 0 i = 1, . . . ,M, r ∈ R.

The variable xi(r) in the above linear program may be
interpreted as the fraction of time slots allocated to user i
in which the instantaneous rate vector is r. Thus, the term∑
r∈R

p(r)xi(r)ri represents the throughput received by user i,

and the variable zi measures the throughput as a fraction of
the target throughput Ti.

The next proposition provides a characterization of the
optimal solution of the above linear program based on the
complementary slackness conditions [3], [8].

Proposition 2.2: There exists a vector w∗ ∈ RM
+ such

that any optimal solution x∗
i (r) to the above linear program

satisfies

x∗
i (r)

[
w∗

i ri − max
j=1,...,M

w∗
j rj

]
= 0,

for all i = 1, . . . ,M , r ∈ R.

The above proposition shows that any feasible (non-
dominated) throughput vector can be achieved by some
weight-based strategy which allocates time slot t to a user i∗

identified as

w∗
i∗Ri(t) = max

j=1,...,M
w∗

jRj(t),

augmented with a suitable tie-breaking rule. In particular, any
component-wise increasing function of the throughput vector
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is maximized by some weight-based strategy.

We now state some simple auxiliary results that will play
a crucial role in the further analysis.

Lemma 2.1: Any feasible throughput vector T ∈ A satisfies
M∑

j=1
αjTj ≤ E{ max

j=1,...,M
αjRj} for any vector (α1, . . . , αM ) ∈

RM
+ .

Proof

Note that the throughput function
M∑

j=1
αjTj is maximized

by a weight-based strategy which assigns a weight wi = αi

to user i (in fact, sample-path wise), and that the optimal
value equals E{ max

j=1,...,M
αjRj}. ✷

We now consider a scenario where the distribution of
the rate vector is symmetric in the sense that the relative
fluctuations in the feasible rates for the various users
around the respective time-average values are statistically
identical. Specifically, we assume that Ri

d= CiYiZ, where
Ci := E{Ri} is the time-average rate of user i, Y1, . . . , YM

are independent and identically distributed copies, and Z
represents a possible correlation component with unit mean.
Define G(M) := E{ max

j=1,...,M
Yj}.

Lemma 2.2: In the case of a symmetric rate distribution as
described above, the weight-based strategy which assigns a
weight wi = 1/Ci to user i, and breaks ties between users at
random, provides each user a fraction G(M)/M of its time-
average rate.

Proof
Note that user i is selected when Ri

Ci
= max

j=1,...,M

Rj

Cj
, i.e.,

Yi = max
j=1,...,M

Yj , and possible ties are broken to its advantage.

By symmetry considerations, user i thus receives a fraction
1/M of the time slots, and the expected rate when selected is

E{Ri|
Ri

Ci
= max

j=1,...,M

Rj

Cj
} = E{CiYiZ|Yi = max

j=1,...,M
Yj} =

CiE{Yi|Yi = max
j=1,...,M

Yj} = CiE{ max
j=1,...,M

Yj} = CiG(M).

✷

Remark 2.1: The assumption that the relative rate fluctu-
ations are statistically identical is roughly valid when the
users for example have Rayleigh fading channels and the
feasible rate is approximately linear in the SNR (signal-
to-noise ratio). The latter approximation is reasonably ac-
curate when the SNR is not too high. It is not necessary
that the Doppler frequencies are identical, since only the
instantaneous rate distribution affects the long-term average
throughput achieved under a weight-based strategy. Of course,
the Doppler frequencies do matter for the transient throughput
behavior and also affect the ability to predict the feasible rate.
Also, the assumption Ri

d= CiYiZ could be further relaxed.
For instance, a somewhat milder condition would be that

P{(R1/C1, . . . , RM/CM ) ≤ (tπ(1), . . . , tπ(M))} is invariant
under permutations π(1), . . . , π(M).

Remark 2.2: In certain cases, the Proportional Fair schedul-
ing algorithm for the CDMA 1xEV-DO system mentioned
earlier behaves approximately like a weight-based strategy. In
Proportional Fair scheduling, the weights wi are dynamically
adapted and are inversely proportional to the exponentially
smoothed throughputs Wi of the users. Thus, the expected
rate of user i when selected is

E{Ri|wiRi = max
j=1,...,M

wjRj} = E{Ri|
Ri

Wi
= max

j=1,...,M

Rj

Wj
}.

Now observe that both the instantaneous rate Ri and the
exponentially smoothed throughput Wi scale linearly with the
time-average rate Ci in case the relative rate fluctuations are
statistically identical. As a result, the allocation of time slots
only depends on the relative rate fluctuations and not on the
time-average rates. Thus, each user receives a fraction 1/M
of the time slots, and we may write Wi

d= CiVi, where
the random variables V1, . . . , VM are identically distributed
(but not independent). In addition, the exponentially smoothed
throughputs will not show any significant variation when
the time constant in the exponential smoothing is large, i.e.,
V1, . . . , VM ≈ V for some constant V . Substituting Ri

d=
CiYiZ and Wi ≈ V Ci in the above formula, we find that the
expected rate of user i when selected approximately equals
E{CiYiZ|Yi = max

j=1,...,M
Yj} = CiG(M). In conclusion, in

case the relative rate fluctuations are statistically identical and
the time constant in the exponential smoothing is not too small,
the Proportional Fair scheduling algorithm roughly behaves
as the weight-based strategy which assigns a constant weight
wi = 1/Ci to user i. We refer to [13], [18] for a rigorous
justification of the above claims.

We would like to add that the above statements assume the
users to have infinite backlogs. In situations with packet-scale
dynamics, the Proportional Fair algorithm may be ill-behaved,
and the throughput performance be degraded by convergence
and fragmentation issues, giving rise to potential instability
phenomena [2].

III. DYNAMIC USER CONFIGURATION

We now extend the model to accommodate a dynamic
configuration of users. The user dynamics result from finite-
size service demands that arrive randomly over time. We
assume that the duration of the time slots is short relative to the
size and arrival frequency of the service demands. Thus, the
scheduling strategy operates on an extremely fast time scale
compared to the user dynamics, making it natural to analyze
the user-level performance in continuous rather than discrete
time, and assume that the users are served simultaneously
rather than in a time-slotted fashion. The continuous-time
model naturally inherits its service characteristics from the
discrete-time model. Specifically, we assume that the set of
feasible service rate vectors in the continuous-time context for
a given user population coincides with the set of achievable
throughput vectors for that user population in a discrete-time
setting.
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For the latter model, we consider a scenario where the
relative fluctuations in the feasible rates for the various users
around the respective time-average values are statistically
identical as described in the previous section. Thus, we assume
that the instantaneous rate of user i with time-average rate Ci

is distributed as Ri
d= CiYiZ, where Y, Y1, Y2, . . . are inde-

pendent and identically distributed copies and Z represents a
possible correlation component with unit mean. According to
Lemma 2.2, we then have that under the strategy S∗ which
assigns a weight wi = 1/Ci to a user i with a time-average
rate Ci, each user is continuously served at a fraction G(n)/n
of its time-average rate whenever there are n users in the
system.

The above assumptions ignore the discrete nature of the time
slots and neglect the transient fluctuations in the throughput.
However, the law of large numbers suggests that these effects
should be negligible in some suitable asymptotic sense in a
limiting regime where the duration of the time slots shrinks
relative to the time scale of the user dynamics.

To describe the service demands, we assume that users
initiate file transfer requests randomly over time. We consider
a scenario with K user classes. Class-k users submit file
transfer requests as a Poisson process of rate λk. We assume
that at most M users in total are admitted into the system
simultaneously (possibly M = ∞). Users which submit
requests when there are already M transfers in progress are
denied access and abandon. Let (Ck, Fk) be a pair of random
variables with as distribution the joint distribution of the time-
average transmission rate and the file size of an arbitrary
class-k user. We assume that the file size and time-average
transmission rate are independent across users, but we allow
for possible dependence between the file size and time-average
transmission rate of a given user. Let Bk := Fk/Ck be
the normalized service requirement of a class-k user, with
mean βk := E{Bk} = E{Fk/Ck}. The normalized service
requirement is the amount of time it would take to complete
the file transfer if a user were the only user in the system. Note
that the normalized service requirement encapsulates both the
file size and the time-average transmission rate of a user, and
is measured in transmission time rather than data volume.
Define ρk := λkβk as the offered traffic associated with class-

k users. Denote by ρ :=
K∑

k=1
ρk the total amount of offered

traffic. Let Br
k be a random variable representing the residual

lifetime of Bk and Br
k(·) the associated distribution function,

i.e., Br
k(x) := P{Br

k < x} := 1
βk

x∫
y=0

P{Bk > y}dy.

Let (N1, . . . , NK) be a random vector representing the
number of users of the various classes in the system under
strategy S∗ at an arbitrary epoch in statistical equilibrium
(assuming it exists). Denote by N := N1 + . . .+NK the total
number of users in the system. Given that there are nk class-k
users in the system, let Br

k,i be the remaining normalized
service requirement of the i-th class-k user, i = 1, . . . , nk,
k = 1, . . . ,K. Define G∗ := sup

M=1,2,...
G(M) = lim

M→∞
G(M).

Note that G∗ = ∞ when the distribution of Y has infinite
support.

Proposition 3.1: Strategy S∗ achieves stability for ρ < G∗

or M < ∞, in which case

P{Nk = nk, B
r
k,i ≤ tk,i; i = 1, . . . , nk, k = 1, . . . ,K} =

H−1 n!ρ
n

φ(n)

K∏

k=1

1
nk!

(
ρk

ρ

)nk nk∏

i=1

Br
k(tk,i),

with n = n1 + . . . + nK ≤ M , φ(n) :=
n∏

i=1
G(i), and

normalization constant

H :=
M∑

n=0

ρn

φ(n)
.

In particular,

P{N = n} = H−1 ρ
n

φ(n)
,

E{N} = H−1
M∑

n=1

nρn

φ(n)
,

and
E{Nk} =

ρk

ρ
E{N}.

The blocking probability is given by

L = P{N =M}.

Proof
According to Lemma 2.2, each user is served at a fraction

G(n)/n of its time-average rate whenever there are n users
in the system. Thus, the normalized remaining service
requirement of each user is reduced at rate G(n)/n, which
means that the normalized remaining service requirements
evolve in a similar probabilistic fashion as the remaining
service requirements in a multi-class Processor-Sharing
system with arrival rates λk, generic service requirements Bk,
and service rate G(n) when there are n users in total
present. The statements then follow from results for the latter
system [9], [12]. ✷

Remark 3.1: Proposition 3.1 extends to the case where
users generate sessions consisting of multiple file requests
separated by arbitrarily distributed ‘think times’ [5], [7]. In that
case, the offered traffic should be calculated so as to include
the mean number of file requests per session.

Using Little’s law, we find that the mean transfer delay
experienced by a class-k user is given by

E{Sk} =
βk

ρ(1 − L)
E{N}.

The above formula reflects the celebrated insensitivity property
of the Processor-Sharing discipline, which shows that the mean
delay of a class-k user only depends on the service requirement
distribution of class k through its mean βk. In fact, it may be
shown that the conditional expected delay of any user with
actual service requirement b is given by

E{S|B = b} =
b

ρ(1 − L)
E{N}.
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Thus, the expected transfer delay incurred by a user is
proportional to its normalized service requirement, with
factor of proportionality E{N}/(ρ(1 − L)). The latter
property embodies a certain fairness principle, which
means that users with larger service requirements tend
to experience longer delays. Recall that the normalized
service requirement encapsulates both the file size and the
time-average transmission of a user, and is expressed in time
units rather than data bits.

Proposition 3.2: No strategy achieves stability for ρ > G∗.

Proof
Define the normalized amount of work as the sum of the

normalized remaining service requirements of all the users in
the system. Let Am and Bm be the arrival epoch and the
normalized service requirement of the m-th arriving user, let
Xm be the normalized amount of work in the system at time
t = Am, and let Dm be the reduction in the normalized
amount of work between time epochs Am and Am+1. Ac-
cording to Lemma 2.1, taking αi = 1/Ci, no strategy is able
to reduce the normalized amount of work at a rate higher
than G(M) ≤ G∗ when there are M users present. Hence,

Xm+1 = Xm +Bm −Dm ≥ Xm +Bm −G∗(Am+1 −Am),

so that when ρ > G∗,

E{Xm+1} ≥ E{Xm} +
K∑

k=1

λk

λ
βk − 1

λ
G∗

= E{Xm} +
1
λ

[ρ−G∗] > E{Xm},

with λ :=
K∑

k=1
λk. Thus, the normalized workload process has

positive drift when ρ > G∗ for any strategy. ✷

Propositions 3.1 and 3.2 combined imply that strategy S∗

achieves stability whenever feasible. The heuristic explanation
is that the rate at which strategy S∗ reduces the normalized
amount of work will approach the maximum possible value G∗

as the number of users tends to infinity. In fact, the proof of
Proposition 3.2 shows that strategy S∗ reduces the normalized
amount of work at a higher rate than any other strategy, given
the same number of users. (It is thus tempting to conjecture
that strategy S∗ actually minimizes the normalized amount of
work among all strategies, but that does not appear to be true
without further assumptions.) In particular, a weight-based
strategy which assigns a weight F (C)/C to a user with
a time-average rate C reduces the normalized amount of

work at a rate
M∑
i=1

E{YiI{F (Ci)Yi= max
j=1,...,M

F (Cj)Yj}} when

there are M users with time-average rates C1, . . . , CM . In
general, there is no guarantee that the latter quantity under
any circumstances approaches G∗ when M tends to infinity.
Intuitively, unless the weights are set inversely proportional
to the time-average transmission rates, the relative rate
fluctuations are not maximally exploited. We will examine
these issues further in Section V.

Remark 3.2: As mentioned in Section II, strategy S∗ may
be viewed as a proxy for the Proportional Fair scheduling
algorithm in case the relative rate fluctuations are statistically
identical and the time constant in the exponential smoothing
is not too small. The latter statement assumed a static user
population with infinite backlogs. With a dynamic user con-
figuration, we need to assume that the duration of the time
slots is relatively short compared to the backlog periods of the
users, so that the throughput performance of the Proportional
Fair algorithm is not substantially hampered by convergence or
granularity issues. Otherwise, when the weights are initialized
to zero, the algorithm may allocate time slots to arriving users
almost regardless of the channel conditions, and thus fail
to extract the maximum gains from the channel variations.
The Proportional Fair algorithm may then result in sub-
optimal throughput performance and potentially collapse into
instability.

IV. ASYMMETRIC SCENARIOS

In the previous section we considered a scenario with
K user classes where the relative rate fluctuations in the fea-
sible rates are statistically identical for all users. We assumed
that the system is operated according to the weight-based
strategy S∗ which assigns a weight wi = 1/Ci to a user i
with a time-average transmission rate Ci.

We now consider a scenario where the relative fluctuations
in the feasible rates around the respective time-average val-
ues for all users of a given class are statistically identical
as before. However, we allow for the distributions of the
fluctuations to vary across user classes. Thus, we assume
that the instantaneous rate of a class-k user i is distributed
as Rk,i

d= Ck,iYkiZ, where Yk, Yk1, Yk2, . . . are independent
and identically distributed copies and Z represents a possible
correlation component with unit mean.

The system is operated using a weight-based strategy Sα

which assigns a weight wk,i = αk/Ck,i to a class-k user i
with a time-average rate Ck,i. The parameters αk allow for
differentiation among the various user classes. The differentia-
tion could be based on channel statistics, traffic characteristics,
or Quality-of-Service requirements.

With the heterogeneous user classes, the system loses the
symmetry properties of the ordinary Processor-Sharing disci-
pline which facilitated the analysis in the previous section. In
fact, asymmetric (discriminatory) versions of the Processor-
Sharing discipline have remained largely intractable so far,
even under exponentiality assumptions and when the service
rates are constant [10], [16]. Therefore, we will not aim for
full distributional results but focus on stochastic majorization
properties and stability issues.

Note that strategy Sα allocates a time slot to a class-k user i
when wk,iRk,i = max

l=1,...,K
max

j=1,...,nl

wl,jRl,j , i.e., αkYki =

max
l=1,...,K

max
j=1,...,nl

αlYlj . In order to avoid technicalities, we

assume that P{αkYk = αlYl} = 0 for k �= l, so that there
are no tie-breaking issues between user classes. Ties between
users from the same class are broken at random.

Let yk := inf{y : P{Yk > y} = 0} be the maximum
value that Yk can achieve. We assume that the user classes are
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indexed such that α1y1 > α2y2 > . . . > αKyK . Note that we
do not allow for any ties, which implies that when the number
of class-k users tends to infinity, classes k+ 1, . . . ,K will be
completely starved, and hence be driven unstable as well.

Denote by Gα
k (n1, . . . , nK) the total normalized service rate

for class k when there are nl class-l users, l = 1, . . . ,K. We
may write

Gα
k (n1, . . . , nK) = E{max{Yk1, . . . , Yknk

}×

I{αk max{Yk1,...,Yknk
}≥αl max{Yl1,...,Ylnl

} for all l=1,...,K}}.

For any 1 ≤ k ≤ m ≤ K, define Gα
k (n1, . . . , nm) :=

inf
nm+1,...,nK=0,1,2,...

Gα
k (n1, . . . , nK). The quantity

Gα
k (n1, . . . , nm) may be interpreted as the minimum

guaranteed total normalized service rate for class k when
there are nl class-l users, l = 1, . . . ,m, competing against
any number of class-p users, p = m+ 1, . . . ,K. Also, denote
Gα

k (n1, . . . , nk−1) := sup
nk=0,1,2,...

Gα
k (n1, . . . , nk). The latter

quantity may be interpreted as the maximum of the minimum
guaranteed total normalized service rate for class k when
there are nl class-l users, l = 1, . . . , k − 1.

The next lemma lists some useful properties of the function
Gα

k (n1, . . . , nK) and various derived quantities.

Lemma 4.1: The function Gα
k (n1, . . . , nK) satisfies the

following properties:
(i) For any 1 ≤ k ≤ m ≤ K, Gα

k (n1, . . . , nm) =
lim

nm+1,...,nK→∞
Gα

k (n1, . . . , nK);

(ii) For any 1 ≤ k ≤ K, Gα
k (n1, . . . , nk−1) =

lim
nk→∞

Gα
k (n1, . . . , nk);

(iii) For any 1 ≤ k ≤ m ≤ K, Gα
k (n1, . . . , nm) is increasing

in nk and decreasing in nl, l �= k, l = 1, . . . ,m;
(iv) For any 1 ≤ k ≤ m ≤ K, Gα

k (n1, . . . , nm)/nk is
decreasing in nl, l = 1, . . . ,m;
(v) For any 1 ≤ k ≤ K, Gα

k (n1, . . . , nk−1) =
ykP{αkyk ≥ αl max

l=1,...,k−1
max{Yl1, . . . , Ylnl

}} =

lim
nk→∞

Gα
k (n1, . . . , nK) = sup

nk=0,1,2,...
Gα

k (n1, . . . , nK)

for all (nk+1, . . . , nK);
in particular, Gα

1 = y1 = lim
n1→∞

Gα
1 (n1, . . . , nK) =

sup
n1=0,1,2,...

Gα
1 (n1, . . . , nK) for all (n2, . . . , nK);

(vi) The function Hα(n1, . . . , nm) :=
m∑

k=1
αkG

α
k (n1, . . . , nm)

is increasing in nl, l = 1, . . . ,m.

Proof
To prove Properties (i)-(iii), it suffices to show that

Gα
k (n1, . . . , nK) is increasing in nk and decreasing in nl,

l �= k, l = 1, . . . ,m, which follows immediately from the
definition.

To check Property (iv), it is enough to verify that
Gα

k (n1, . . . , nK)/nk is decreasing in nl, l = 1, . . . ,K. We
may write Gα

k (n1, . . . , nK)/nk as

E{YkI{αkYk≥αl max{Yl1,...,Ylnl
} for all l=1,...,K}},

which yields the desired statement.

Property (v) follows immediately from the definition com-
bined with Property (ii) and the fact that α1y1 > α2y2 >
. . . > αKyK .

To prove Property (vi), it suffices to show that
m∑

k=1
αkG

α
k (n1, . . . , nK) is increasing in nl, l = 1, . . . ,m. To

do so, we may write
m∑

k=1

αkG
α
k (n1, . . . , nK) =

m∑

k=1

αkE{max{Yk1, . . . , Yknk
}×

I{αk max{Yk1,...,Yknk
}≥αl max{Yl1,...,Ylnl

} for all l=1,...,K}} =

m∑

k=1

E{αk max{Yk1, . . . , Yknk
}×

I{αk max{Yk1,...,Yknk
}≥αl max{Yl1,...,Ylnl

} for all l=1,...,K}} =

E{ max
k=1,...,m

αk max{Yk1, . . . , Yknk
}},

which yields the desired statement. ✷

We now introduce two corresponding ‘restricted’ versions
of the system. For any m = 1, . . . ,K, the m-restricted
version is a system with user classes 1, . . . ,m only. In the m-
restricted integrated system, each class-k user, k = 1, . . . ,m,
is served at a fraction Gα

k (n1, . . . , nm)/nk of its time-average
rate whenever there are nl class-l users in the system, l =
1, . . . ,m. In the m-restricted segregated system, each class-
m user is also served at a fraction Gα

m(n1, . . . , nm)/nm of
its time-average service rate, while each class-k user, k =
1, . . . ,m − 1, is served at a fraction Gα

k (n1, . . . , nm−1)/nk

of its time-average rate whenever there are nl class-l users
in the system, l = 1, . . . ,m. Let Nk(t), Ñ (m)

k (t), and
N̂

(m)
k (t) be the number of class-k users at time t in the

original system, the m-restricted integrated system, and the
m-restricted segregated system, k = 1, . . . ,m, respectively.
Note that each class-k user, k = 1, . . . ,m − 1, in the m-
restricted segregated system receives the same service rate
as in the (m − 1)-restricted integrated system. Hence, un-

der equal initial conditions, (Ñ (m−1)
1 (t), . . . , Ñ (m−1)

m−1 (t)) d=
(N̂ (m)

1 (t), . . . , N̂ (m)
m−1(t)) for all t ≥ 0. Since all users

in the m-restricted integrated system are worse off than
in the original system, and are yet worse off in the m-
restricted segregated system, it is further plausible that,
again under equal initial conditions, (N1(t), . . . , Nm(t)) ≤st

(Ñ (m)
1 (t), . . . , Ñ (m)

m (t)) ≤st (N̂ (m)
1 (t), . . . , N̂ (m)

m (t)) for all
t ≥ 0.

In order to prove the latter stochastic ordering property, we
now compare two systems restricted to user classes 1, . . . ,m,
labeled I and II, where each class-k user is served at a
fraction GI

k(n1, . . . , nm)/nk and GII
k (n1, . . . , nm)/nk of its

time-average rate, k = 1, . . . ,m, respectively. We assume that
GI

k(n1, . . . , nm) ≥ GII
k (n1, . . . , nm) for all (n1, . . . , nm) and

that GI
k(n1, . . . , nm)/nk is decreasing in nl for all k, l =

1, . . . ,m. Let BI
k,i(t) and BII

k,i(t) be the remaining service
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requirements at time t of the i-th arriving class-k user from
time 0 onward in systems I and II, respectively. Users which
have left by time t will simply be considered to have a zero
remaining service requirement. To avoid excessive notation,
we will view the users which are present at time 0 as having
arrived at time 0.

By assumption, for an identical user population, the
service rate of each user in system II is at most equal to
that in system I. In addition, the service rate of each user
in system I is decreasing in the number of users of the
various classes. This suggests that system I should provide a
lower bound for system II, as is confirmed by the next lemma.

Lemma 4.2: Assume that M = ∞. If
(N I

1 (0), . . . , N I
m(0)) = (N II

1 (0), . . . , N II
m (0)) and

BI
k,i(0) = BII

k,i(0) for all i = 1, . . . N I
k (0), k = 1, . . . ,m,

then (N I
1 (t), . . . , N I

m(t)) ≤st (N II
1 (t), . . . , N II

m (t)) for all
t ≥ 0.

Proof
The proof uses stochastic coupling arguments. Specifically,

we assume that the same users arrive to both systems at the
same time epochs, with the same transmission rates and the
same service requirements. Denote by Ak(t) the number of
class-k users arriving up to time t in both systems (including
the users which are present at time 0). We will show that
BI

k,i(t) ≤ BII
k,i(t) for all users i = 1, . . . , Ak(t), k ≤ m, and

in particular N I
k (t) ≤ N II

k (t) for all t. The proof proceeds
by forward induction on the time parameter t. Let t0 =
0, t1, t2, . . . be the event times, i.e., the time epochs at which
users arrive or depart from either system. By assumption,
the statement is true for all t ≤ t0. Now suppose that the
statement is true for all t ≤ tn. Thus, BI

k,i(tn) ≤ BII
k,i(tn)

for all users i = 1, . . . , Ak(tn), k ≤ m, and in particular
N I

k (tn) ≤ N II
k (tn). We will prove that the statement is then

also true for all t ∈ (tn, tn+1]. Note that it suffices to show
that the service rate of each user in system II is at most equal
to that in system I. Using the dominance and monotonicity
properties of the service rates, it thus suffices to show that
N I

k (t+n ) ≤ N II
k (t+n ) for all k = 1, . . . ,m. In order to do so,

we distinguish between three different cases, depending on the
type of event that occurs at time tn.

(i) Arrival of a class-l customer. Using the induction
hypothesis, N I

k (t+n ) = N I
k (t−n ) + I{k=l} ≤ N II

k (t−n ) +
I{k=l} = N II

k (t+n ). Also, by construction BI
l,Al(t

+
n )

(t+n ) =
BII

l,Al(t
+
n )

(t+n ).
(ii) Service completion of a class-l user in system I. Using

the induction hypothesis, N I
k (t+n ) = N I

k (t−n ) − I{k=l} ≤
N II

k (t−n ) = N II
k (t+n ).

(iii) Service completion of a class-l user in system II.
Using the induction hypothesis, we conclude that the class-
l user which completes service in system II must already have
done so earlier in system I, i.e., N I

l (t−n ) ≤ N II
l (t−n ). Thus

N I
k (t+n ) = N I

k (t−n ) ≤ N II
k (t−n ) − I{k=l} = N II

k (t+n ).
Removing the conditioning completes the proof. ✷

Applying Lemma 4.2, we obtain the following two
corollaries.

Corollary 4.1: Under equal initial conditions,
(N1(t), . . . , Nm(t)) ≤st (Ñ (m)

1 (t), . . . , Ñ (m)
m (t)) for all

t ≥ 0.

Corollary 4.2: Under equal initial conditions,
(Ñ (m)

1 (t), . . . , Ñ (m)
m (t)) ≤st (N̂ (m)

1 (t), . . . , N̂ (m)
m (t)) for

all t ≥ 0.

V. STABILITY PROPERTIES

We now use the notion of the restricted system and
the stochastic majorization properties derived in the pre-
vious section to establish necessary and sufficient con-
ditions for stability of the various user classes. We as-
sume that M = ∞ because otherwise stability is obvi-
ously not an issue. Let (Ñ (m)

1 , . . . , Ñ
(m)
m ) be a random

vector with as distribution the joint stationary distribution
of (Ñ (m)

1 (t), . . . , Ñ (m)
m (t)), assuming the m-restricted in-

tegrated system is stable. Denote π(m)(n1, . . . , nm) :=
P{(Ñ (m)

1 , . . . , Ñ
(m)
m ) = (n1, . . . , nm)}, with the convention

that π(m)(n1, . . . , nm) = 0 for all (n1, . . . , nm) when the m-
restricted integrated system is unstable. Define

Gα
k :=

∞∑

n1=0

. . .

∞∑

nk−1=0

π(k−1)(n1, . . . , nk−1)Gα
k (n1, . . . , nk−1),

with the convention that Gα
1 = y1. The quantity Gα

k may be
interpreted as the long-term average service rate for class k in
the k-restricted segregated system when unstable. Also, define
K∗ := max{k : ρl < G

α
l for all l = 1, . . . , k}. We will show

that strategy Sα achieves stability for user classes 1, . . . ,K∗,
and does not achieve stability for user classes K∗ +1, . . . ,K,
assuming that in fact ρK∗+1 > Gα

K∗+1. The result may be
heuristically explained as follows. Suppose that some class
k ≤ K∗ were unstable. Let k∗ be such class with the lowest
index. According to Corollaries 4.1 and 4.2, class k∗ must then
be unstable in the k∗-restricted segregated system as well. In
that system however, the long-term average service rate for
class k∗ when unstable will be equal to Gα

k∗ > ρk∗ , which is
not possible.

Conversely, suppose that some class k > K∗ were stable.
First observe that classes 1, . . . , k − 1 would then all have
to be stable as well, because otherwise class k would be
starved due to the fact that α1y1 > α2y2 > . . . > αKyK . In
particular, classK∗+1 would have to be stable. It is intuitively
plausible, and can be rigorously shown, that the long-term
average service rate for class K∗ +1 cannot be larger than the
maximum possible long-term average service rate for class
K∗ +1 in the (K∗ +1)-restricted segregated system, which is
equal to Gα

K∗+1 < ρK∗+1, precluding stability of classK∗+1.

Proposition 5.1: Strategy Sα achieves stability for classes
1, . . . ,K∗.

Proposition 5.2: Strategy Sα does not achieve stability for
classes K∗ + 1, . . . ,K.

The detailed proofs of the above two propositions may be
found in [6].
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Recall that Proposition 3.1 showed that strategy S∗ achieves
stability for ρ < G∗. The above two propositions suggest
that strategy Sα may in general not achieve stability for
ρ < G∗. To show that strategy Sα is not guaranteed to achieve
stability whenever possible, it is useful to consider a two-
class scenario where Y1 and Y2 are identically distributed
as Y0 with P{α2y < Y0 < α1y} for some fixed y, so
that P{α1Y1 < α2Y2} = 0. Recall that the weights are set
according to wk,i = αk/Ck,i, so the above situation could
correspond to two different scenarios: (i) both classes have
the same time-average transmission rates Ck,i, but class 1
is assigned a larger weight and thus effectively receives
priority over class 2; (ii) both classes are assigned the same
weights wk,i, but class 1 effectively receives priority over
class 2 due to a larger time-average transmission rate (or a
combination of these two scenarios). In either case, service
of class 1 takes precedence over that of class 2, and we have
Gα

1 (n1, n2) = G(n1) and Gα
2 (n1, n2) = I{n1=0}G(n2), with

G(n) := E{max{Y01, . . . , Y0n}}. Thus, there are scheduling
gains within both user classes, but not between classes.

Using Proposition 3.1, we deduce that class 1 is stable under
strategy Sα as long as ρ1 < G∗, in which case the probability
that there are no class-1 users in the system is

π0 =

[ ∞∑

n=0

ρn

φ(n)

]−1

,

with φ(n) =
n∏

i=1
G(i). Class 2 is stable if in addition ρ2 <

π0G
∗. Now observe that G(i) < G∗ for all i = 1, 2, . . .

implies that π0 < 1 − ρ1/G
∗ − γ for some γ > 0. Hence,

class 2 is stable under strategy Sα only if ρ < (1 − γ)G∗,
which is a strictly stronger condition than for strategy S∗.

VI. NUMERICAL EXPERIMENTS

We now present some numerical experiments that we per-
formed to illustrate the results. We consider a system where
users initiate file transfer requests as a Poisson process. At
most M = 20 users are admitted into the system simultane-
ously. Users which generate download requests when there
are already M transfers in progress are blocked and lost.
The system operates in a time-slotted fashion, with a slot
duration of 1.67 ms (600 slots per second) as in the CDMA
1xEV-DO system. Throughout, we assume that the users have
independent Rayleigh fading channels.

We consider three different scenarios for the distribution
of the mean SNR: (I) identical to 0 dB for all users; (II)
a bi-modal distribution, either -2.0 dB or 4.0 dB with equal
probability; (III) a linearized version of the distribution plotted
in Figure 1 taken from [4].

The above assumptions determine how the instantaneous
SNR values of the various users behave over time. It remains
to specify how the instantaneous transmission rate of a user
varies with the instantaneous SNR value. We distinguish
between three different scenarios: (A) the instantaneous rate
is linear in the instantaneous SNR (on an absolute scale):
R = C1 × SNR, with C1 = 400 Kbs; (B) the instantaneous
rate is logarithmic in the instantaneous SNR (on an absolute
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Fig. 1. CDF of SNR distribution from [4]

SNR ≥ Rate (Kbs)

- 12.5 38.4
- 9.5 76.8
- 8.5 102.6
- 6.5 153.6
- 5.7 204.8
- 4.0 307.2
- 1.0 614.4

1.3 921.6
3.0 1228.8
7.2 1843.2
9.5 2457.6

TABLE I

RATE (KBS) AS FUNCTION OF SNR IN 1XEV-DO SYSTEM

scale): R = C2 × log(1+SNR), with C2 = 800 Kbs; (C) the
instantaneous rate is determined from the instantaneous SNR
value (in dB) according to Table I as is used in the CDMA
1xEV-DO system [4].

In the first set of experiments, we examined the strategy S∗

which assigns a weight wi = 1/Ci to a user i with a time-
average transmission rate Ci. We determined the mean number
of users, the mean response times, the blocking probabilities,
and the mean throughput for varying arrival rates, comparing
the analytical formulas given in Proposition 3.1 with sim-
ulation results. The simulations were run for 100,000,000
time slots, or equivalently, about 167,000 seconds of real
time. Throughout, the (mean) file size is assumed to be
60 Kbytes (480 Kbits). We focus the discussion on results
that we obtained for deterministic file sizes. Observe that
Proposition 3.1 indicates that the above-mentioned perfor-
mance metrics should be mostly insensitive to the file size
distribution in case of a symmetric rate distribution. However,
we will also present some results for exponentially distributed
file sizes, which suggest that the performance metrics continue
to be fairly insensitive even when the rate variations fail to be
entirely symmetric.

We considered a total of nine cases obtained via pairwise
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combination of the above scenarios for the mean SNR dis-
tribution and the rate variations. Note that the relative rate
fluctuations are only statistically identical in case all users have
identical mean SNR values or the instantaneous rate is linear in
the instantaneous SNR value, i.e., in cases IA, IB, IC, IIA, and
IIIA. In the remaining four cases, the relative rate fluctuations
differ across users, and the notion of a gain factor G(n) as
defined in Section II is not strictly valid. In order to evaluate
the analytical formulas, we used an approximate gain factor,
which was computed as the gain factor that would have been
obtained in a scenario with identical mean SNR values for
all users, where the mean was calculated as the average SNR
across users (on a logarithmic scale) The latter approximation
is expected to be somewhat conservative, since the actual user
populations will tend to be biased to low-SNR users, for whom
the relative gain factor tends to be larger due to the concavity
and the truncation of the transmission rate which limit the
potential relative gain for the high-SNR users.

Figure 2 depicts the mean transfer delay as a function of the
file arrival rate for cases IA-C, and indicates that the analytical
formulas provide a highly accurate estimate in cases where
the rate fluctuations are statistically identical: the analysis and
simulation curves are nearly indistinguishable. This confirms
that the separation of time scales underlying the analytical
formulas is a reasonable assumption.

Figures 3-5 display the mean total number of users and the
mean transfer delay for class-1 and class-2 users for cases
IIA-C. In Case IIA, the rate fluctuations are still statistically
identical, and Proposition 3.1 implies that the mean delays of
class-1 and class-2 users should be inversely proportional to
the time-average transmission rates, i.e., have a ratio of 10−0.2

to 100.4, which is roughly 1 to 4, as is confirmed by Figures 4
and 5. Remarkably enough, Figure 3 shows that the analytical
formulas continue to yield a fairly accurate prediction for the
mean total number of transfers in progress in cases IIB and
IIC, despite the fact that the rate fluctuations vary across users.
However, Figures 4 and 5 reflect that the accuracy of the
formulas for the mean per-class transfer delays is rather poor in
these cases. The formulas consistently underestimate the delay
for the high-SNR users and overestimate the delay for the low-
SNR users. This is attributed to the fact that the relative gain
from the rate variations is smaller for the high-SNR users due
to the concavity and the truncation of the transmission rate as
mentioned above.

Figure 6 plots the mean transfer delay as a function of
the file arrival rate for cases IIIA-C, and indicates that
the analytical formulas remain surprisingly accurate for a
continuous distribution of the mean SNR as well. We repeated
the latter experiment for exponentially distributed file sizes.
The results as graphed in Figure 7 show that the mean
transfer delay is fairly insensitive to the file size distribution,
even when the symmetry conditions of Proposition 3.1 are
not strictly satisfied.

In the second set of experiments, we evaluated similar
performance metrics for varying weight factors used in the
allocation of time slots. We considered a total of six cases
obtained via pairwise combination of channel scenarios as
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Fig. 2. Mean transfer delay as function of file arrival rate for Cases IA-C
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Fig. 3. Mean total number of active users as function of file arrival rate for
Cases IIA-C
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Fig. 4. Mean transfer delay for class-1 users as function of file arrival rate
for Cases IIA-C
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Fig. 5. Mean transfer delay for class-2 users as function of file arrival rate
for cases IIA-C
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Fig. 6. Mean transfer delay as function of file arrival rate for Cases IIIA-C
with deterministic file size
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Fig. 7. Mean transfer delay as function of file arrival rate for Cases IIIA-C
with exponentially distributed file sizes

before. In order to investigate the impact of the weight factors,
we focused on a system with two user classes. The mean SNR
values and the weights of the users are class-dependent. Within
classes, the users have identical mean SNR values and equal
weights. Throughout, the file size is deterministic and assumed
to be 60 Kbytes (480 Kbits) as before.

Figures 8 and 9 depict the mean system throughput and
the mean number of users as a function of log2(w2/w1)
for cases IA-C. Since all users have identical time-average
transmission rates, Propositions 3.1 and 3.2 imply that strat-
egy S∗ which sets the weights equal for both classes is optimal
from a stability perspective. Observe from the two figures
that the minimum aggregate occupancy and maximum total
throughput performance is achieved for equal weights as well.
This demonstrates that the maximal stability guarantee of
strategy S∗ translates into superior performance in terms of
overall throughput in systems with admission control where
strictly speaking stability is not an issue. Further observe that
Figures 8 and 9 indicate that differentiation between user
classes can only be accomplished at the expense of the overall
throughput performance.

Figures 10 and 11 plot similar performance characteristics
for cases IIA-C. The time-average transmission rates of class-
1 (4.0 dB) and class-2 (-2.0 dB) users in these three cases may
be computed to be 1005 and 252, 840 and 344, and 915 and
348 Kbs, respectively. The strategy S∗ in these three cases thus
corresponds to a ratio between the weights of approximately
3.99, 2.44 and 2.63, respectively. As before, the two figures
demonstrate that the minimum aggregate occupancy and the
optimum total throughput performance is obtained for weight
settings in that range. In addition, the priorization of the high-
SNR users incurs a relatively modest penalty in terms of the
overall system performance, but preferential treatment for the
low-SNR users can have major repercussions. Further observe
that the strategy which sets the weights equal for both classes,
and thus maximizes the throughput in a static scenario, fails
to do so in a dynamic setting, although not by a wide margin.
The intuitive explanation is that considering the absolute rates
does not extract the maximum gains from the relative rate
variations.
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