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Abstract—We consider a queue fed by a mixture of light-tailed and heavy-
tailed traffic. The two traffic classes are served in accordance with the Gen-
eralized Processor Sharing (GPS) discipline. GPS-based scheduling algo-
rithms, such as Weighted Fair Queueing (WFQ), have emerged as an impor-
tant mechanism for achieving service differentiation in integrated networks.
We derive the asymptotic workload behavior of the light-tailed class for the
situation where its GPS weight is larger than its traffic intensity. The GPS
mechanism ensures that the workload is bounded above by that in an isolated
system with the light-tailed class served in isolation at a constant rate equal
to its GPS weight. We show that the workload distribution is in fact asymp-
totically equivalent to that in the isolated system, multiplied with a certain
pre-factor, which accounts for the interaction with the heavy-tailed class.
Specifically, the pre-factor represents the probability that the heavy-tailed
class is backlogged long enough for the light-tailed class to reach overflow.
The results provide crucial qualitative insight in the typical overflow sce-
nario.

Keywords— Generalized Processor Sharing (GPS), heavy-tailed traffic,
large deviations, light-tailed traffic, Weighted Fair Queueing (WFQ), work-
load asymptotics.

I. Introduction

The next-generation Internet is expected to support a wide vari-
ety of services, such as voice, video, and data applications. Voice
and video communications induce far more stringent Quality-of-
Service (QoS) requirements than the typical sort of data applica-
tions which currently account for the bulk of the Internet traffic.
The integration of heterogeneous services thus raises the need
for differentiated QoS, catering to the specific requirements of
the various traffic flows.

One potential approach to achieve service differentiation is
through the use of discriminatory scheduling algorithms, which
distinguish between packets of various traffic streams. Because
of scalability issues, it is practically infeasible though to manip-
ulate packets at the granularity level of individual traffic flows in
the core of any large-scale high-speed network. To avoid these
complexity problems, traffic flows may instead be aggregated
into a small number of classes with roughly similar features, with
scheduling mechanisms acting at the coarser level of aggregate
streams. With a little simplification, the majority of applications
may for example be broadly categorized into just two classes, one
containing streaming traffic (e.g. audio and video communica-
tions), the other one comprising elastic traffic (e.g. file transfers).
This is a crucial element of the DiffServ proposal [5], which de-
fines the EF class (Expedited Forwarding) for delay-sensitive
traffic, and the AF class (Assured Forwarding) for traffic with
some degree of delay tolerance.

In view of the delay requirements, it is desirable that streaming
applications receive some sort of priority over elastic traffic, at
least over short time scales. Strict priority scheduling may how-

ever not be ideal, since it may lead to starvation of the best-effort
traffic. Even temporary starvation effects may cause end-to-end
flow control mechanisms such as TCP to suffer a severe degra-
dation in throughput performance. The Generalized Processor
Sharing (GPS) discipline provides a potential mechanism for
implementing priority scheduling in a tunable way, with strict
priority scheduling as an extreme option [26]. In GPS-based
scheduling algorithms, such as Weighted Fair Queueing, the link
capacity is shared in proportion to certain class-defined weight
factors. By setting the weight factor for the best-effort class rel-
atively low, one can still provide some degree of priority to the
streaming applications, while avoiding starvation of the elastic
traffic.

Besides achieving service differentiation, scheduling mech-
anisms also play a role in controlling the performance impact
of bursty traffic. Extensive measurements have shown that
bursty traffic behavior may extend over a wide range of time
scales, and may manifest itself in long-range dependence and
self-similarity [21], [28]. The occurrence of these phenomena
is commonly attributed to extreme variability and heavy-tailed
characteristics in the traffic patterns [3], [12]. These observa-
tions have triggered a strong interest in queueing models with
heavy-tailed traffic processes, see for instance [27], [31].

Although the presence of heavy-tailed traffic characteristics
is widely acknowledged, the practical implications for network
performance and traffic engineering remain controversial. For
small buffer sizes, the effect of heavy-tailed traffic characteristics
is not as dramatic as indicated by theoretical studies for infinite
buffer sizes, especially at high levels of multiplexing [11], [16],
[22], [30]. For large buffer sizes, flow control mechanisms such
as TCP prevent heavy-tailed activity patterns from overwhelming
the buffers [2].

In the present paper, we specifically examine the potential role
of GPS-based scheduling mechanisms in protecting light-tailed
traffic flows from the impact of heavy-tailed traffic processes.
Large-deviations results for GPS models with light-tailed traf-
fic may be found in [24], [32]. Workload asymptotics for GPS
queues with heavy-tailed traffic flows were obtained in [6], [19].
The latter results show a sharp dichotomy in qualitative behavior,
depending on the traffic intensities and the relative values of the
weight parameters. For certain weight combinations, an indi-
vidual flow with heavy-tailed traffic characteristics is effectively
served at a constant rate, which is only influenced by the aver-
age rates of the other flows. In particular, the flow is essentially
immune from excessive activity of flows with ‘heavier’-tailed
traffic characteristics. For other weight combinations however, a
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flow may be strongly affected by the activity of ‘heavier’-tailed
flows, and may inherit their traffic characteristics. The latter re-
sult in fact also applies for light-tailed flows when their traffic
intensity exceeds their GPS weight. In the present paper, we
derive the asymptotic workload behavior of the light-tailed class
for the more plausible situation where its GPS weight is larger
than its traffic intensity.

The remainder of the paper is organized as follows. In Sec-
tion II, we present a detailed model description and state some
important preliminary results. In Section III, we provide an
overview of the main results of the paper, which characterize
the exact asymptotic behavior of the workload distribution of the
light-tailed class. The subsequent sections give a sketch of the
proofs. We start in Section IV with deriving lower and upper
bounds for the workload distribution of the light-tailed class. In
Section V, we proceed to prove some auxiliary results for the
light-tailed class in isolation. Although the bounds seem quite
crude by themselves, we show in Section VI that they asymp-
totically coincide, yielding the exact asymptotic behavior. One
of the asymptotic terms involves the probability that the heavy-
tailed class is backlogged long enough for overflow to occur,
which is computed in Sections VII and VIII.

II. Model description

We now present a detailed model description. We consider
two traffic flows sharing a link of unit rate. Traffic from the
flows is served in accordance with the Generalized Processor
Sharing (GPS) discipline, which operates as follows. Flow i is
assigned a weight φi, i = 1, 2, with φ1 + φ2 = 1. As long as
both flows are backlogged, flow i is served at rate φi, i = 1, 2. If
one of the flows is not backlogged, however, then the capacity is
reallocated to the other flow, which is then served at the full link
rate (if backlogged). (It may occur that one of the flows is not
backlogged, while generating traffic at some rate ri < φi. In that
case, only the excess capacity, i.e., φi − ri, is reallocated to the
other flow.) Denote byAi(s, t) the amount of traffic generated by
flow i during the time interval (s, t]. We assume that the process
Ai(s, t) is reversible and has stationary increments. Denote by
Vi(t) the backlog (workload) of flow i at time t. Let Vi be a
random variable with as distribution the limiting distribution of
Vi(t) for t → ∞ (assuming it exists). Define Bi(s, t) as the
amount of service received by flow i during (s, t]. Then the
following identity relation holds, for all s ≤ t,

Vi(t) = Vi(s) +Ai(s, t) −Bi(s, t). (1)

For any c ≥ 0, denote byV c
i (t) := sups≤t{Ai(s, t)−c(t−s)}

the workload at time t in a queue of capacity c fed by flow i.
Denote by ρi the traffic intensity of flow i (as will be defined in
detail below). For c > ρi, let Vc

i be a random variable with as
distribution the limiting distribution of V c

i (t) for t → ∞. Then
a similar identity relation as above holds, for all s ≤ t,

V c
i (t) = V c

i (s) +Ai(s, t) −Bc
i (s, t). (2)

In the next two subsections we describe the traffic model that
we consider. We first introduce some additional notation. For
any two real functions g(·) and h(·), we use the notational con-
vention g(x) ∼ h(x) to denote limx→∞ g(x)/h(x) = 1, or

equivalently, g(x) = h(x)(1 + o(1)) as x → ∞. We use

f(x) <∼ g(x) to denote lim supx→∞ f(x)/g(x) ≤ 1. Also,

f(x) >∼ g(x) denotes lim infx→∞ f(x)/g(x) ≥ 1. For any two

random variables X and Y, we write X d= Y to denote that
they have the same distribution function. For any random vari-
able X with distribution function F (·), E{X} < ∞, denote by
F r(·) the distribution function of the residual lifetime of X, i.e.,
F r(x) = 1

E{X}
∫ x

0 (1 − F (y))dy, and by Xr a random variable
with that distribution. The classes of subexponential, regularly
varying, and intermediately regularly varying distributions are
denoted with the symbols S, R, and IR, respectively. The def-
initions of these classes may be found in [4].

A. Traffic model flow 1

We assume that flow 1 is light-tailed. Specifically, we make
the assumption that the input process A1(s, t) is a Markov-
modulated fluid. Such a process can be described as follows.
There is an irreducible Markov chain with a finite state space
{1, 2, . . . , d}. The corresponding transition rate matrix is de-
noted by Λ := (λij)i,j=1,...,d, where we follow the conven-
tion that λii := −∑

j �=i λij . Since the Markov chain is ir-
reducible, there is a unique stationary distribution, which we
denote by the vector π. When the flow is in state i, traffic is
generated (as fluid) at constant rate Ri < ∞. Let R be the di-
agonal matrix with the coefficients Ri on the diagonal. Denote
the mean rate by ρ1 :=

∑d
i=1 πiRi. Denote the peak rate by

RP := maxi=1,...,dRi. It is important to observe that the class
of Markov fluid input is closed under superposition, i.e., the su-
perposition of Markov fluid flows can again be modeled as a
Markov fluid flow.

Results from Kosten [20], Kesidis et al. [18], and Elwalid &
Mitra [14] yield the following standard properties.

Property II.1: Take ρ1 < c1 < RP . Then
• The moment generating function of traffic generated in an in-
terval of length t is given by, in matrix notation,

E{exp(sA1(0, t))} = π exp((Λ + sR)t)1,

with 1 the all one vector of dimension d.
• There exists a limiting moment generating function:

1
t

log E{exp(s(A1(0, t) − c1t))} → Mc1(s).

This function is continuous and differentiable. It also holds that
there is a finite C such that

E{exp(s(A1(0, t) − c1t))} ≤ CeMc1 (s)t.

• The large-buffer asymptotics of a queue with Markov fluid
input are given by

lim inf
x→∞

1
x

log P{Vc1
1 > x} = −s∗(c1).

Here s∗(c1) is the unique positive root ofMc1(s) = 0. Moreover,
M ′

c1(s
∗(c1)) > 0.

Although we restrict ourselves to Markov fluid input, we be-
lieve that our results are valid for a more general class of light-
tailed input. We will comment on this issue in Remark 5.1.
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B. Traffic model flow 2

We assume that flow 2 is heavy-tailed. We make the assump-
tion that the input processA2(s, t) is either instantaneous or On-
Off, with heavy-tailed burst sizes or On-periods, respectively.

B.1 Instantaneous input

Here, flow 2 generates instantaneous traffic bursts according
to a renewal process. The interarrival times between bursts have
distribution function U2(·) with mean 1/λ2. The burst sizes B2
have distribution function B2(·) with mean β2 < ∞. Thus, the
traffic intensity is ρ2 := λ2β2. We assume thatB2(·) is regularly
varying of index −ν2, i.e., B2(·) ∈ R−ν2 for some ν2 > 1. The
next result which is due to Pakes [25] then yields the tail behavior
of the workload distribution of flow 2 in isolation.

Theorem II.1: If Br
2(·) ∈ S, and ρ2 < c, then

P{Vc
2 > x} ∼ ρ2

c− ρ2
P{Br

2 > x}.

B.2 Fluid input

Here, flow 2 generates traffic according to an On-Off pro-
cess, alternating between On- and Off-periods. The Off-periods
U2 have distribution function U2(·) with mean 1/λ2. The On-
periods A2 have distribution functionA2(·) with mean α2 < ∞.
While On, flow i produces traffic at constant rate r2, so the mean
burst size is α2r2. The fraction of time that flow 2 is Off is
p2 = 1/(1 + λ2α2). The traffic intensity is ρ2 = (1 − p2)r2 =
(λ2α2r2)/(1 + λ2α2).

We assume that A2(·) is regularly varying of index −ν2, i.e.,
A2(·) ∈ R−ν2 for some ν2 > 1. The next result which is due
to Jelenković & Lazar [17] then yields the tail behavior of the
workload distribution of flow 2 in isolation.

Theorem II.2: If Ar
2(·) ∈ S, and ρ2 < c < r2, then

P{Vc
2 > x} ∼ p2

ρ2

c− ρ2
P{Ar

2 >
x

r2 − c
}.

III. Overview of the results

In this section we provide an overview of the main results
of the paper which characterize the exact asymptotic behavior
of P{V1 > x} as x → ∞. At the end of this section, we
present an example. Throughout, we assume ρi < φi, i = 1, 2,
which ensures stability of both flows. In addition, we make
the assumption that r2 > φ2 in case of fluid input of flow 2.
Otherwise, the workload of flow 2 would be zero, so the workload
of flow 1 would be equal to the total workload V. The tail
distribution of the latter quantity has been obtained in [9].

To put things in perspective, we first briefly review the case
that ρ1 > φ1, while ρ1 + ρ2 < 1. If either (i) Br

2(·) ∈ IR
(instantaneous input of flow 2), or (ii) Ar

2(·) ∈ IR, r2 > φ2
(fluid input), then from [6],

P{V1 > x} ∼ φ2 − ρ2

φ2

ρ2

1 − ρ1 − ρ2
P{Pr

2 >
x

ρ1 − φ1
},

with P2 a random variable with as distribution the busy-period
distribution in a queue of constant capacity φ2 fed by flow 2.

The above result suggests that the most likely way for flow 1
to build a large queue is that flow 2 generates a large burst, or
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Fig. 1. Overflow scenario - instantaneous input for flow 2.

experiences a long On-period, while flow 1 itself shows roughly
average behavior. Note that when flow 2 produces a large amount
of traffic, so it becomes backlogged for a long period of time,
it receives service at rate φ2. Thus it will experience a busy
period as if it were served at constant rate φ2. During that pe-
riod, flow 1 receives service at rate φ1, while it generates traffic
roughly at rate ρ1, so its queue will grow approximately at rate
ρ1 − φ1. When flow 2 is not backlogged, its queue will drain
approximately at rate 1 − ρ1.

Thus, the backlog of flow 2 behaves as that in a queue of
constant capacity 1 − ρ1 fed by an On-Off source with as On-
and Off-periods the busy and idle periods of flow 2 when served
at constant rate φ2, respectively. That is reflected in the above
result if we use Theorem II.2 to interpret the right-hand side.

We now focus on the case ρ1 < φ1. Before presenting the
main result, we first provide a heuristic derivation of the asymp-
totic behavior of P{V1 > x} based on large-deviations argu-
ments, see for instance Anantharam [1]. The overflow scenario
described above for the case ρ1 > φ1 cannot occur, and now
flow 1 too must deviate from its ‘normal’ behavior in order for
the queue to grow. Specifically, large-deviations results suggest
that flow 1 must behave as if its traffic intensity is temporarily
increased from ρ1 to some larger value ρ̂1 (as will be specified
below). During that period, flow 2 is continuously backlogged,
consuming capacityφ2, thus leaving capacityφ1 for flow 1. (No-
tice that if flow 2 were not permanently backlogged, then flow 1
would have to show even greater anomalous activity in order for
a given backlog level to occur.) Prior to that period, flow 1 shows
‘normal’ behavior, leaving an average service rate of 1 − ρ1 for
flow 2.

To summarize, the intuitive argument is as follows (see Fig-
ure 1): a large backlog of level x of flow 1 occurs as a conse-
quence of two rare events: (i) Flow 1 shows similar ‘abnormal’
behavior as is the typical cause of overflow when served in isola-
tion, thus behaving as if its traffic intensity is increased from ρ1
to ρ̂1 for a period of time x/(ρ̂1 − φ1). (ii) During that period,
flow 2 is constantly backlogged, demanding capacity φ2, with φ1
remaining for flow 1. As we will see later, the persistent back-
log is most likely caused by flow 2 generating a large burst or
initiating a long On-period prior to that period.

These considerations lead to the following characterization of
the asymptotic behavior of P{V1 > x}:

P{V1 > x} ∼ P{Vφ1
1 > x}P{T1−ρ1

2 >
x

ρ̂1 − φ1
}. (3)
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The second term represents the probability that flow 2 is contin-
uously backlogged during a period of time x/(ρ̂1 − φ1). Here
T1−ρ1

2 is a random variable with as distribution the limiting dis-
tribution of T 1−ρ1

2 (t) for t → ∞, with

T c
2 (t) := inf{u ≥ 0 : V c

2 (t) +A2(t, t+ u) − φ2u = 0}

representing the drain time in a queue of capacityφ2 fed by flow 2
with initial workload V c

2 (t).
Thus, the workload distribution is asymptotically equivalent

to that in an isolated system, multiplied with a certain pre-factor.
The isolated system consists of flow 1 served in isolation at con-
stant rateφ1. The pre-factor represents the probability that flow 2
is backlogged long enough for flow 1 to reach overflow. The
combination of light-tailed and heavy-tailed large deviations is
similar to that in the ‘reduced-peak equivalence’ result derived
in Borst & Zwart [9] as well as that for an M/G/2 queue with
heterogeneous servers studied in Boxma et al. [10].

Note that the general decompositional form of (3) holds irre-
spective of the detailed traffic characteristics of the two flows.
However, the specific form of the two individual terms in (3)
does depend on the detailed properties of the traffic processes.
In particular, we need to distinguish whether flow 2 generates
instantaneous or fluid input. In the latter case, it also depends on
whether the peak rate r2 exceeds 1 − ρ1 or not.

We now state the main theorem of the paper.

Theorem III.1: Suppose that the input process A1(s, t) sat-
isfies Property II.1 and that the input process A2(s, t) is either
instantaneous or On-Off, with regularly varying burst sizes or
On-periods, respectively. Assume that ρi < φi, i = 1, 2,
and r2 > φ2 in case of fluid input of flow 2. Then, with
ρ̂1 := M ′

φ1
(s∗(φ1)) + φ1,

P{V1 > x} ∼ P{Vφ1
1 > x}P{T1−ρ1

2 >
x

ρ̂1 − φ1
}.

Case I: If Br
2(·) ∈ R−ν2 (instantaneous input), then

P{T1−ρ1
2 > x} ∼ ρ2

1−ρ1−ρ2
P{Br

2 > x(φ2 − ρ2)}. (4)

Case II-A: If Ar
2(·) ∈ R−ν2 , r2 < 1 − ρ1 (fluid input), then

P{T1−ρ1
2 > x} ∼ (1 − p2)P{Ar

2 >
x(φ2 − ρ2)
r2 − ρ2

}. (5)

Case II-B: If Ar
2(·) ∈ R−ν2 , r2 > 1 − ρ1 (fluid input), then

P{T1−ρ1
2 >x} ∼ p2

ρ2

1−ρ1−ρ2
P{Ar

2 >
x(φ2−ρ2)
r2 − ρ2

}. (6)

Noting that p2ρ2 = (1 − p2)(r2 − ρ2), we can observe that in
the limiting regime r2 → 1 − ρ1, cases II-A and II-B coincide.
Also, case I can be seen as the limiting case of II-B if we use
r2A2 = B2 and let r2 → ∞ so that p2 ↓ 1. In [7] a qualitatively
similar result as in case I is derived for a system with two coupled
queues.

Before proceeding to the formal proof of Theorem III.1, we
first give an example. Assume flow 1 to behave according to

an On-Off process with exponentially distributed On- and Off-
periods with means 1/µ1 and 1/µ2, respectively. When the flow
is in the On-state, it generates traffic at rateR1. We assume flow 2
to generate instantaneous input with regularly varying burst sizes
of index −ν2, i.e., P{B2 > x} ∼ C2x

−ν2 l2(x), with l2(·) some
slowly varying function. First we determine the deviant traffic
intensity ρ̂1 using [23],

ρ̂1 =
R1φ

2
1

µ2

/(
φ2

1

µ2
+

(R1 − φ1)2

µ1

)
.

Using [13], we obtain for flow 1,

P{Vφ1
1 > x} ∼ R1

φ1

µ2

µ1 + µ2
exp(−(

µ1

R1 − φ1
+
µ2

φ1
)x).

For flow 2, from (4), P{T1−ρ1
2 > x} ∼

ρ2

1 − ρ1 − ρ2

C2

β2(ν2 − 1)
(x(φ2 − ρ2))1−ν2 l2(x(φ2 − ρ2)).

This provides all the ingredients for P{V1 > x} as required in
Theorem III.1.

The next sections are devoted to the formal proof of Theo-
rem III.1. We start in Section IV by deriving lower and upper
bounds for the workload distribution of flow 1. We then proceed
in Section V to prove some auxiliary results for flow 1 in isola-
tion. Although the bounds derived in Section IV seem quite crude
by themselves, we show in Section VI that they asymptotically
coincide, yielding the exact asymptotic behavior of P{V1 > x}.

In order to determine the drain time distribution of flow 2 as
specified in Theorem III.1, we first establish in Section VII some
preliminary results for flow 2 in isolation. Note that the specific
form of the drain time distribution depends on whether flow 2
generates instantaneous or fluid input. In the latter case, we
also need to distinguish whether the peak rate r2 exceeds 1 − ρ1
or not. We calculate the drain time distribution for the case of
an instantaneous input process in Section VIII. Due to space
constraints, we omit the corresponding analysis for fluid input
processes, see [8] for details.

IV. Bounds

In this section we derive lower and upper bounds for the work-
load distribution of flow 1. The bounds will be instrumental in
obtaining the asymptotic behavior of P{V1 > x} as given in
Theorem III.1. We refer to [8] for detailed proofs of the lemmas
in this section.

A. Lower bound

We start with a lower bound for the workload distribution of
flow 1. The main idea (see Figure 2) is that the following sce-
nario is sufficient for the event V1(t) > x to occur (in fact, is the
only plausible one, as we will see later). Flow 1 starts to build up
at some time s∗, and hence is constantly backlogged throughout
the time interval [s∗, t]. Flow 2 is also continuously backlogged
during [s∗, t]. Thus, during that time period, flows 1 and 2 both
receive service at rates φ1 and φ2, respectively. Flow 2 already

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 77 IEEE INFOCOM 2002



idle

capacity
usage

timets*r*
2

1

ρ1
1−

1ρ
1φρ

φρ2

Fig. 2. Intuitive idea lower bound.

becomes backlogged at time r∗ ≤ s∗, and receives service ap-
proximately at rate 1−ρ1 during [r∗, s∗], while flow 1 then shows
roughly average behavior.

Lemma IV.1: Suppose r∗ ≤ s∗ ≤ t and y exist such that

A1(s∗, t) − φ1(t− s∗) > x,

A1(r∗, s∗) − (ρ1 − ε)(s∗ − r∗) ≥ −y and

inf
s∗≤u≤t

{A2(r∗, u) − (1 − ρ1 + ε)(s∗ − r∗) − φ2(u− s∗)} ≥ y,

then V1(t) > x.

Proof By definition, B1(s, t) + B2(s, t) ≤ t − s. Using (1),
the GPS discipline implies that B2(s, t) ≥

min{φ2(t− s), V2(s) + inf
s≤u≤t

{A2(s, u) + φ2(t− u)}}.

Substituting, we have that V1(t) is bounded below by

A1(s, t) − φ1(t− s)+

min{0, V1(s) + V2(s) + inf
s≤u≤t

{A2(s, u) − φ2(u− s)}}.

By definition, B1(r, s) + B2(r, s) ≤ s − r. Thus, from (1),
for all r ≤ s,

V1(s) + V2(s) ≥ A1(r, s) +A2(r, s) − (s− r).

Substituting, we find that V1(t) is bounded below by

A1(s, t) − φ1(t− s) + min{0, A1(r, s) − (ρ1 − ε)(s− r)+

inf
s≤u≤t

{A2(r, u) − (1 − ρ1 + ε)(s− r) − φ2(u− s)}}

for all r ≤ s ≤ t. ✷

We now translate the above sample-path result into a proba-
bilistic lower bound. We first introduce some additional notation.
Define Vc

i (w) := sup0≤s≤w{Ai(−s, 0)− cs} for any c, w ≥ 0.

Note that Vc
i (∞) d= Vc

i for c > ρi, as defined earlier. For any c,
v ≥ 0, and y, define Tc

2(v, y) :=

inf{u ≥ 0 : sup
0≤r≤v

{A2(−r, 0) − cr} +A2(0, u) − φ2u ≤ y}.

Thus, Tc
2(v, y) represents the drain time in a queue of capacityφ2

fed by flow 2 with initial workload sup
0≤r≤v

{A2(−r, 0)− cr}− y.

Define, for c > ρ2, Tc
2(y) :=

Tc
2(∞, y) = inf{u ≥ 0 : V c

2 (0) +A2(0, u) − φ2u ≤ y},

and note that Tc
2(0) d= Tc

2 as defined earlier. Also, define

T2(y) := Tc
2(0, y) = inf{u ≥ 0 : A2(0, u) − φ2u ≤ y}.

(note that the latter quantity does not depend on the value of c),
and T2 := T2(0). Denote P ρ1−ε(s∗, v, x, y) :=

P{sup
s∗−v≤r≤s∗

{(ρ1−ε)(s∗−r)−A1(r, s∗)}≤ y|A1(s∗, 0)+φ1s
∗>x}.

Corollary IV.1: For any v ≥ 0 and y,

P{V1 > x}≥P{Vφ1
1 (

(1 + α)x
ρ̂1 − φ1

) > x}P ρ1−ε(s∗, v, x, y)

P{T1−ρ1+ε
2 (v, y) >

(1 + α)x
ρ̂1 − φ1

}.
Proof The proof follows using Lemma IV.1, the independence

of A1(s, t) and A2(s, t), and the fact that A1(s, t) and A2(s, t)
have stationary increments. ✷

B. Upper bound

We proceed to derive an upper bound for the workload distri-
bution of flow 1. The idea is that the lower-bound scenario de-
scribed above is basically also necessary for the event V1(t) > x
to occur, unless at least one of two other events happen both of
which however we will later show are significantly less likely.

Lemma IV.2: Suppose V1(t) > x. Then for all y there exist
r∗ ≤ s∗ ≤ t such that

A1(s∗, t) − φ1(t− s∗) > x, (7)

and at least one of the three following events occurs, either

A1(r∗, s∗) − (ρ1 + ε)(s∗ − r∗) > y, or (8)

V φ1
1 (t) > x+ y, or (9)

inf
s∗≤u≤t

{A2(r∗, u)−(1−ρ1−ε)(s∗−r∗)−φ2(u−s∗)}>−2y. (10)

Proof Because of the GPS discipline, (7) is implied byV1(t) >
x. Hence, there exists an s ≤ t such thatA1(s, t)−φ1(t−s) > x.
Define s∗ := inf{s : A1(u, t) − φ1(t − u) ≤ x ∀u > s}.
Note that flow 1 is continuously backlogged during [s∗, t]. It
can be shown that V1(t) > x implies that either (9) holds or
∀u ∈ [s∗, t] : B2(s∗, u) − φ2(u− s∗) > −y. It may be verified
that the latter event implies that either (8) or (10) holds. ✷

We now use the above sample-path relation to obtain a prob-
abilistic upper bound. Denote Qρ1+ε(s∗, x, y) :=

P{ sup
r≤s∗

{A1(r, s∗)− (ρ1 + ε)(s∗−r)}>y | A1(s∗, 0)+φ1s
∗>x}.

Corollary IV.2: For any y,

P{V1 > x} ≤ P{Vφ1
1 > x}Qρ1+ε(s∗, x, y)

+ P{Vφ1
1 > x}P{T1−ρ1−ε

2 (−2y) >
(1 − α)x
ρ̂1 − φ1

}

+ P{Vφ1
1 > x+ y} + P{Vφ1

1 (
(1 − α)x
ρ̂1 − φ1

) > x}.
Proof The proof follows using Lemma IV.2, the independence

of A1(s, t) and A2(s, t), and the fact that A1(s, t) and A2(s, t)
have stationary increments. ✷
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V. Preliminary results for flow 1

In this section we prove some auxiliary results for flow 1 in
isolation. The results will be crucial in obtaining the asymptotic
behavior of P{V1 > x} in the GPS model as given in Theo-
rem III.1. We refer to [8] for detailed proofs.

The following result is proven in [9], for a more general class
of input processes.

Proposition V.1: If Property II.1 holds with c1 = φ1, then, for
any α > 0, and with ρ̂1 := M ′

φ1
(s∗(φ1)) + φ1,

lim inf
x→∞

P{Vφ1
1 ( (1+α)x

ρ̂1−φ1
) > x}

P{Vφ1
1 > x} = 1. (11)

Lemma V.1: For any γ > 0, ε > 0, t∗ < 0,

lim
x→∞ P{sup

r≤t∗
{(ρ1 − ε)(t∗ − r) −A1(r, t∗)} ≤ γx |

A1(t∗, 0) + φ1t
∗ > x} = 1.

Proof Recall that flow 1 is a Markov fluid source. We condition
on the state of the underlying Markov chain at time t∗. Let
Ej(t∗) be the event that the state at time t∗ is j, j = 1, . . . , d,
and πj(t∗) := P{Ej(t∗) | A1(t∗, 0) + φ1t

∗ > x}. Then the
probability of interest equals

d∑
j=1

P{sup
r≤t∗

{(ρ1−ε)(t∗−r)−A1(r, t∗)}≤γx |Ej(t∗)}πj(t∗).

The stated then follows by observing that ∀j = 1, . . . , d,

lim
x→∞P{sup

r≤t∗
{(ρ1−ε)(t∗−r)−A1(r, t∗)}≤γx |Ej(t∗)} = 1,

since E{A1(−t, 0)} = ρ1t. ✷

Lemma V.2: For any γ > 0, ε > 0, µ > 0, t∗ < 0,

lim
x→∞xµP{sup

r≤t∗
{A1(r, t∗) − (ρ1 + ε)(t∗ − r)} > γx |

A1(t∗, 0) + φ1t
∗ > x} = 0.

Proof Again, condition on the state of the underlying Markov
chain at time t∗. Under this condition, the event {A1(t∗, 0) +
φ1t

∗ > x} does not provide any extra information. The fact
that there exist constants C, a (independent of j) such that [23,
Section 4]

P{sup
r≤t∗

{A1(r, t∗)− (ρ1 + ε)(t∗− r)}>γx|Ej(t∗)}≤Ce−ax

proves the stated. ✷

Lemma V.3: For any γ > 0, µ > 0,

lim sup
x→∞

xµP{Vφ1
1 > (1 + γ)x}

P{Vφ1
1 > x} = 0.

Proof The proof follows immediately from the fact that
P{Vφ1

1 > x} decays exponentially at rate s∗, where s∗ > 0
is the solution of Mφ1(s) = 0 [20]. ✷

Lemma V.4: For any α > 0, µ > 0,

lim sup
x→∞

xµP{Vφ1
1 ( (1−α)x

ρ̂1−φ1
) > x}

P{Vφ1
1 > x} = 0. (12)

Proof The proof consists of three steps.
(i) As shown in [8], for Tx(α) := �(1 − α)x/(ρ̂1 − φ1)�, the

probability in the numerator of (12) is bounded by

Tx(α)∑
t=0

P{A1(0, t)−φ1t>x−(RP −φ1)}.

This immediately leads to

lim sup
x→∞

1
x

log
Tx(α)∑
t=0

P{A1(0, t)−φ1t>x−(RP −φ1)} ≤

lim sup
x→∞

1
x

log sup
t∈[Sx,Tx(α)]

P{A1(0, t)−φ1t>x−(RP−φ1)} (13)

with Sx := (x − RP )/(RP − φ1). Notice that we can indeed
exclude all t smaller than Sx from the optimization, because in
that range no overflow is possible. Clearly, we have proven the
stated if we show that the latter decay rate is strictly smaller
than s∗ for all α > 0 since the denominator decays at rate s∗.

(ii) For x large enough, and all t between Sx and Tx(α), due
to Chebychev’s inequality, and Property II.1,

P{A1(0, t) − φ1t > x− (rP − φ1)} ≤ C inf
s>0

eMφ1 (s)t

es(x−(rP −φ1))
.

Now replace t in (13) by tx(β) = (1 − β)x/(ρ̂1 − φ1); then
the supremum is over β ∈ [α, 1]. The infimum over s > 0, call
the solution s∗(β), is calculated by differentiation. Using the
observations that Mφ1(s

∗) = 0 and M ′
φ1

(s∗) = ρ̂1 − φ1 > 0
(Property II.1), together with Taylor expansions around s∗ of
M ′

φ1
(s), Mφ1(s

∗(β)) and s∗(β), we obtain

lim
x→∞

1
x

log inf
s>0

etx(β)Mφ1 (s)

es(x−(rP −φ1))
= − ρ̂1 − φ1

M
′′
φ1

(s∗)
β2 − s∗.

Note that M
′′
φ1

(s∗) > 0 because of convexity.
(iii) Recall that we have to perform the optimization over β ∈

[α, 1]. The supremum over β is clearly attained at β = α > 0.
Since the supremum is strictly smaller than s∗, we have proved
the stated. ✷

Remark 5.1 The results of Glynn & Whitt [15] suggest that
the derived properties hold for a more general class of arrival
processes than just Markov fluid. Upon inspection of the proofs
in the present section, we see that only two properties were ex-
plicitly exploited: (1) the sources have bounded peak rates, and
(2) the ‘mild dependence’ between A1(r, t∗) and A1(t∗, 0).

VI. Asymptotic analysis

We now use the results from the previous section to show
that the lower and upper bounds for P{V1 > x} of Section IV
asymptotically coincide, resulting in the decompositional form
of (3). For the proof, we need to make certain assumptions on
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the behavior of the drain time distribution P{T1−ρ1
2 > x

ρ̂1−φ1
}.

In later sections, we will determine the specific form of the drain
time distribution, and find that flow 2 indeed satisfies these as-
sumptions. For notational convenience, we frequently switch to
a variable x̂, which should be thought of as playing the role of

x
ρ̂1−φ1

.

Lemma VI.1: Suppose that the input processA1(s, t) satisfies
Property II.1 with c1 = φ1 and that flow 2 satisfies Assump-
tions VI.1-VI.3 listed below with c = 1 − ρ1. Assume that
ρi < φi, i = 1, 2, and r2 > φ2 in case of fluid input of flow 2.
Then

P{V1 > x} ∼ P{Vφ1
1 > x}P{T1−ρ1

2 >
x

ρ̂1 − φ1
}.

Assumption VI.1: For any α, γ, ε > 0, either (a)

lim inf
x̂→∞

P{Tc+ε
2 (γx̂) > (1 + α)x̂}

P{Tc
2 > x̂} = F c(α, γ, ε),

with lim
α,γ,ε↓0

F c(α, γ, ε) = 1, or (b)

lim inf
x̂→∞

P{T2 > (1 + α)x̂}
P{Tc

2 > x̂} = F (α), with lim
α↓0

F (α) = 1.

Assumption VI.2: For any α > 0, γ > 0, ε > 0,

lim sup
x̂→∞

P{Tc−ε
2 (−γx̂) > (1 − α)x̂}

P{Tc
2 > x̂} = Gc(α, γ, ε),

with lim
α,γ,ε↓0

Gc(α, γ, ε) = 1.

Assumption VI.3: For some µ > 0,

lim inf
x→∞ x̂µP{Tc

2 > x̂} ≥ 1.

Proof of Lemma VI.1 The proof consists of a lower bound
and an upper bound which asymptotically coincide.

We start with the lower bound. We distinguish between two
cases: Assumption VI.1 (a); Assumption VI.1 (b).

(a) Using Corollary IV.1 with v = ∞, y = γx
ρ̂1−φ1

, Proposi-
tion V.1, and Lemma V.1,

lim inf
x→∞

P{V1 > x}
P{Vφ1

1 > x}P{T1−ρ1
2 > x

ρ̂1−φ1
} ≥ F 1−ρ1(α, γ, ε).

Letting α, γ, ε ↓ 0 completes the proof.
(b) Using Corollary IV.1 with v = 0, y = 0, and Proposi-

tion V.1, noting that P ρ1−ε(s∗, 0, x, 0) = 1,

lim inf
x→∞

P{V1 > x}
P{Vφ1

1 > x}P{T1−ρ1
2 > x

ρ̂1−φ1
} ≥ F (α).

Then let α ↓ 0.
We now turn to the upper bound. Using Corollary IV.2

with v = ∞, y = γx
2(ρ̂1−φ1)

, Lemmas V.2-V.4, and Assump-
tions VI.2, VI.3, for some µ > 0,

lim sup
x→∞

P{V1 > x}
P{Vφ1

1 > x}P{T1−ρ1
2 > x

ρ̂1−φ1
} ≤ G1−ρ1(α, γ, ε).

Letting α, γ, ε ↓ 0 completes the proof. ✷

In order to complete the proof of Theorem III.1, it remains
to be shown that flow 2 satisfies Assumptions VI.1-VI.3 above,
with P{T1−ρ1

2 > x
ρ̂1−φ1

} as in (4)-(6). This is done in the
following two sections. Due to space limitations, we focus on
the case of instantaneous input processes. We refer to [8] for the
corresponding analysis for fluid input processes.

VII. Preliminary results for flow 2

To determine the behavior of P{T1−ρ1
2 > x

ρ̂1−φ1
} as x →

∞, we will reduce the space of all relevant sample paths to a
single most-likely scenario, which occurs with overwhelming
probability. In this section, we establish some preliminary results
which we will use to neglect the contribution of all non-dominant
scenarios.

Large-deviations arguments for heavy-tailed distributions sug-
gest that a persistent backlog as associated with the event
T1−ρ1

2 > x
ρ̂1−φ1

, for large x, is most likely due to just a sin-
gle large burst. To formalize this idea, we first introduce some
additional notation. A burst is called large if the size exceeds κx̂,
with κ > 0 some small constant, independent of x̂. Denote by
Nκx̂[l, r] the number of large bursts of flow 2 arriving in the time
interval [l, r]. DefineN(t) := {n : Ur

20+
∑n

i=1 U2i ≤ t} as the
total number of bursts of flow 2 arriving in the time interval [0, t].

We now state a crucial lemma which will allow us to limit
the attention to large bursts, and replace all remaining traffic
activity by its average rate. The lemma is a minor modification
of Lemma 3 in [29].

Lemma VII.1: Let Sn = X1 + . . . + Xn be a random walk
with i.i.d. step sizes such that E{X1} < 0 and E{Xp

1} < ∞ for
some p > 1. Then, for any µ < ∞, there exists a κ∗ > 0 and a
function φ(·) ∈ R−µ such that for all κ ∈ (0, κ∗],

P{Sn > x̂|Xi ≤ κx̂, i = 1, . . . , n} ≤ φ(x̂)

for all n and x̂.

Note that if Xi can be represented as the difference of two
non-negative independent random variables X1

i and X2
i , then

the lemma remains valid if the Xi’s are replaced by the X1
i ’s.

We now use the above lemma to show that the workload of
flow 2 cannot significantly deviate from the normal drift over
intervals of the order x̂ when there are no large bursts.

Lemma VII.2: If B2(·) ∈ R−ν2 , then for any η > 0, θ > 0,
there exists a κ∗ > 0 such that for all κ ∈ (0, κ∗],

P{T2((θ − (φ2 − ρ2)η)x̂) > ηx̂,Nκx̂[0, ηx̂] = 0} =

o(P{Br
2 > x̂(φ2 − ρ2)}) as x̂ → ∞.

Proof It is not hard to prove that the event

T2((θ − (φ2 − ρ2) η)x̂) > ηx̂

implies that

sup
0≤u≤ηx̂

{A2(0, u) − (ρ2 + θ/2η)u} > θx̂/2.
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Now let Sn := X1+. . .+Xn be a random walk with step sizes
Xi := B2i − (ρ2 + θ/2η)U2i, with U2i and B2i i.i.d. random
variables representing the interarrival times and burst sizes of
flow 2, respectively. Note that Xi represents the net increase
in the workload in a queue of capacity ρ2 + θ/2η between two
consecutive bursts, and that E{Xi} < 0. Because of the saw-
tooth nature of the process {A2(0, u)− (ρ2 + θ/2η)u}, we have

sup
0≤u≤t

{A2(0, u) − (ρ2 + θ/2η)u} ≤ B20 + sup
1≤n≤N(t)

Sn.

Thus,

P{T2((θ − (φ2 − ρ2)η)x̂) > ηx̂,Nκx̂[0, ηx̂] = 0}
≤ P{B20 + sup

1≤n≤N(ηx̂)
Sn ≥ θx̂/2,Nκx̂[0, ηx̂] = 0}

≤ P{B20 + sup
1≤n≤N(ηx̂)

Sn ≥ θx̂/2 | Nκx̂[0, ηx̂] = 0}

≤ P{B20 + sup
1≤n≤N(ηx̂)

Sn ≥ θx̂/2 | B2i ≤ κx̂, i ≥ 0}

≤ P{ sup
1≤n≤N(ηx̂)

Sn ≥ (θ/2 − κ)x̂ | B2i ≤ κx̂, i ≥ 1}

≤ P{ sup
1≤n≤(λ2+ε)ηx̂

Sn ≥ (θ/2 − κ)x̂ | B2i ≤ κx̂, i ≥ 1}

+P{N(ηx̂) > (λ2 + ε)ηx̂}

≤
(λ2+ε)ηx̂∑

i=1

P{Sn ≥ (θ/2 − κ)x̂ | B2i ≤ κx̂, i = 1, . . . , n}

+P{N(ηx̂) > (λ2 + ε)ηx̂}.
The second term decays exponentially fast as x̂ → ∞. Ac-

cording to Lemma VII.1, there exists a κ∗ > 0 and a function
φ(·) ∈ R−µ, µ > ν2, such that for all κ ∈ (0, κ∗], each of the
probabilities in the first term is upper bounded by φ(x̂). The
statement then follows. ✷

The following two lemmas show that it is relatively unlikely
for flow 2 to cause two rare events to happen. LemmaVII.3 states
that flow 2 is not likely to generate two large bursts in an interval
of order x̂. Lemma VII.4 shows that it is not likely for flow 2 to
have a workload of at least order x̂ at time 0 and to generate at
the same time at least one large burst in an interval of order x̂.
The proofs can be found in [8].

Lemma VII.3: If B2(·) ∈ R−ν2 , then for any α < 1, κ > 0,

P{Nκx̂[0, (1 − α)x̂] ≥ 2} = o(P{Br
2 > x̂(φ2 − ρ2)})

as x̂ → ∞.

Lemma VII.4: If B2(·) ∈ R−ν2 , then for any 0 < ξ < 1 − α,
ζ > 0, κ > 0,

P{Nκx̂[ξx̂, (1 − α)x̂] ≥ 1, V c
2 (0) > ζx̂} =

o(P{Br
2 > x̂(φ2 − ρ2)}) as x̂ → ∞.

VIII. Backlog period for instantaneous input

In this section we consider the case where flow 2 generates
instantaneous traffic bursts of regularly varying size. The next
theorem shows that flow 2 then satisfies Assumptions VI.1-VI.3
and that (4) holds.

Theorem VIII.1: If B2(·) ∈ R−ν2 , then for any c > ρ2, α >
0, γ > 0,

P{Tc
2(γx̂) > (1 + α)x̂}

>∼ ρ2

c− ρ2
P{Br

2 > ((φ2 − ρ2)(1 + α) + γ)x̂}, (14)

P{Tc
2(−γx̂) > (1 − α)x̂} <∼

ρ2

c−ρ2
P{Br

2 > ((φ2 −ρ2)(1− α) − γ
c+ φ2 −2ρ2

φ2 − ρ2
)x̂}, (15)

and
P{Tc

2 > x̂} ∼ ρ2

c− ρ2
P{Br

2 > x̂(φ2 − ρ2)}. (16)

Before giving the formal proof of the above theorem, we first
provide an intuitive argument. Consider a queue of capacity φ2
fed by the arrival process of flow 2. In order for the event Tc

2 >
x̂ to occur, the workload must remain positive throughout the
interval [0, x̂], given that the initial workload is V c

2 (0). Note that
the normal drift in the workload is ρ2 − φ2 < 0. Thus, there
is a ‘deficit’ (φ2 − ρ2)x̂, which must be compensated for by
the initial workload V c

2 (0) plus possibly flow 2 showing above-
average activity during the interval [0, x̂].

We claim that the most likely way for the gap to be filled is by
a large initial workload only, i.e., V c

2 (0) > (φ2 − ρ2)x̂. This in
turn is most probably due to an extremely large burst of flow 2
somewhere before time 0, which is consistent with the usual
situation for heavy-tailed distributions that a large deviation is
caused by just a single exceptional event. Using Theorem II.1,
we see that the probability of this event is indeed exactly the
right-hand side of (16).

Note that it is unlikely for the gap to be filled by flow 2 pro-
ducing extra traffic during the interval [0, x̂], because this would
require a large burst arriving almost immediately after time 0.
The probability of this event is negligibly small compared to
that of V c

2 (0) > (φ2 − ρ2)x̂. A combination of both is even
less likely, since this would amount to two rare events occurring
simultaneously.

The above arguments will be formalized in the proof below.
We first prove that the event V c

2 (0) > (φ2 −ρ2)x̂ indeed implies
that Tc

2 > x̂ for large x̂, thus obtaining a lower bound for the
probability of the latter event. Next we show that for large x̂ the
event V c

2 (0) > (φ2−ρ2)x̂ is also necessary for Tc
2 > x̂ to occur,

by proving that the probability of all other possible scenarios is
negligibly small.

Proof of Theorem VIII.1 We start with the proof of (14). It
is not difficult to show that for any α > 0, γ > 0, δ > 0, θ > 0,
the event Tc

2(γx̂) > (1 + α)x̂ is implied by the events V c
2 (0) >

((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂ and sup0≤u≤(1+α)x̂{(ρ2 −
δ)u−A2(0, u)} ≤ θx̂.

Hence, using independence of V c
2 (0) and A2(0, u),

P{Tc
2(γx̂)> (1 + α)x̂}≥P{ sup

0≤u≤(1+α)x̂
{(ρ2 − δ)u−A2(0, u)}≤θx̂}

P{V c
2 (0) > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂}.

Using Theorem II.1,

P{V c
2 (0) > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂} ∼
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ρ2

c− ρ2
P{Br

2 > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂)}.

Also, for all α > 0, δ > 0, θ > 0,

P{ sup
0≤u≤(1+α)x̂

{(ρ2 − δ)u−A2(0, u)} ≤ θx̂} ≥

P{sup
u≥0

{(ρ2 − δ)u−A2(0, u)} ≤ θx̂} → 1,

as x̂ → ∞, since E{A2(0, u)} = ρ2u.

Thus, for all α, γ, δ, θ > 0, P{Tc
2(γx̂) > (1 + α)x̂} >∼

ρ2

c− ρ2
P{Br

2 > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂}.

Letting δ, θ ↓ 0 and using Br
2(·) ∈ R−ν2 , (14) follows.

We now turn to the proof of (15). By partitioning, we obtain
for any α, γ, ζ, θ, κ > 0, w ≥ 0,

P{Tc
2(−γx̂) > (1 − α)x̂}

≤ P{V c
2 (w) > ((φ2 − ρ2)(1 − α) − γ − θ)x̂− cw}

+ P{Tc
2(−γx̂) > (1 − α)x̂,Nκx̂[w, (1 − α)x̂] = 0,
V c

2 (w) ≤ ((φ2 − ρ2)(1 − α) − γ − θ)x̂− cw}
+ P{Tc

2(−γx̂) > (1 − α)x̂,Nκx̂[0, w] = 0, V c
2 (0) ≤ ζx̂}

+ P{Nκx̂[w, (1 − α)x̂] ≤ 1, V c
2 (0) > ζx̂}

+ P{Nκx̂[0, (1 − α)x̂] ≥ 2}
= (A) + (B) + (C) + (D) + (E).

Take w = ξx̂, with ξ := γ+ζ+θ
φ2−ρ2

< 1 − α.
Now consider term (A). Using Theorem II.1, (A) ∼

ρ2

c−ρ2
P{Br

2 > ((φ2 −ρ2)(1−α)−γ−θ− (c−ρ2)(γ+ζ+θ)
φ2−ρ2

)x̂}.

Next, it may be shown that term (B) is bounded above by

P{T2(θ − (φ2 − ρ2)(1 − α− ξ))x̂) > (1 − α− ξ)x̂,

Nκx̂[0, (1 − α− ξ)x̂] = 0}.
Finally, term (C) is bounded above by

P{T2((θ − (φ2 − ρ2)ξ)x̂) > ξx̂,Nκx̂[0, ξx̂] = 0}.

Thus, taking η = ξ and η = 1 − α − ξ in Lemma VII.2, and
using Lemma VII.3, we obtain

P{Tc
2(−γx̂) > (1 − α)x̂} <∼

ρ2

c− ρ2
P{Br

2 > ((φ2−ρ2)(1−α)−γ−θ− (c− ρ2)(γ + ζ + θ)
φ2 − ρ2

)x̂}.

Letting ζ, θ ↓ 0 and using Br
2(·) ∈ R−ν2 , (15) follows.

Finally, note that (16) follows from (14) and (15) by letting
α ↓ 0, γ ↓ 0, and using the fact that Br

2(·) ∈ R−ν2 . ✷

IX. Conclusion

We analyzed a GPS queue with two flows, one having light-
tailed characteristics, the other one exhibiting heavy-tailed prop-
erties. We showed that the workload distribution of the light-
tailed flow is asymptotically equivalent to that when served in
isolation at its minimum guaranteed rate, multiplied with a cer-
tain pre-factor. The pre-factor may be interpreted as the proba-
bility that the heavy-tailed flow is backlogged long enough for
the light-tailed flow to reach overflow. We did not consider the
case where the traffic intensity of the heavy-tailed flow exceeds
its minimum guaranteed rate. In this case, the pre-factor – repre-
senting again the probability that the heavy-tailed flow is continu-
ously backlogged during the period to overflow of the light-tailed
flow – is likely to be some constant. Determining the exact value
of the constant seems however a rather challenging task.

In the present paper we have focused on a scenario with two
flows. Observe however that the light-tailed flow may be thought
of as an aggregate flow, given that the class of Markov-modulated
fluid input is closed under superposition of independent pro-
cesses. In case of instantaneous input, the heavy-tailed flow
too may actually represent an aggregate flow, since the super-
position of independent Poisson streams with regularly varying
bursts produces again a Poisson stream with regularly varying
bursts. Unfortunately, the class of On-Off sources is clearly not
closed under superposition. In fact, the superposition exhibits
a fundamentally more complex structure than a single On-Off-
source, which drastically complicates the analysis of the queue-
ing behavior.
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