
0-7803-7016-3/01/$10.00 ©2001 IEEE

Generalised Processor Sharing networks
fed by heavy-tailed traffic flows

Miranda van Uitert�;1, Sem Borst�;y;z,

�CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

yDepartment of Mathematics & Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

zBell Laboratories, Lucent Technologies
P.O. Box 636, Murray Hill, NJ 07974, USA

Abstract—We consider networks where traffic is served according to the
Generalised Processor Sharing (GPS) principle. GPS-based scheduling al-
gorithms are considered important for providing differentiated quality of
service in integrated-services networks.

We are interested in the workload of a particular flow i at the bottleneck
node on its path. Flowi is assumed to have long-tailed traffic characteris-
tics. We distinguish between two traffic scenarios, (i) flowi generates in-
stantaneous traffic bursts and (ii) flow i generates traffic according to an
on/off process. In addition, we consider two configurations of feed-forward
networks. First we focus on the situation where other flows join the path of
flow i. Then we extend the model by adding flows which may branch off at
any node, with cross traffic as a special case. We prove that under certain
conditions the tail behaviour of the workload distribution of flow i is equiva-
lent to that in a two-node tandem network where flowi is served in isolation
at constant rates. These rates only depend on the traffic characteristics of
the other flows through their average rates. This means that the results
do not rely on any specific assumptions regarding the traffic processes of
the other flows. In particular, flow i is not affected by excessive activity of
flows with ‘heavier-tailed’ traffic characteristics. This confirms that GPS
has the potential to protect individual flows against extreme behaviour of
other flows, while obtaining substantial multiplexing gains.

Keywords— Generalised Processor Sharing (GPS), heavy-tailed traffic,
regular variation, Weighted Fair Queueing (WFQ)

I. INTRODUCTION

Integrated-services networks carry a large amount of different
services. Each of these services has its own traffic characteris-
tics and requires its own quality of service (QoS) guarantees.
This heterogeneity in traffic characteristics and QoS guarantees
creates the need for traffic control mechanisms to regulate the
usage of network resources. In particular, scheduling mecha-
nisms play an important role in achieving differentiated QoS.
One of the most important scheduling algorithms is the Gen-
eralised Processor Sharing (GPS) mechanism, which was first
studied by Parekh and Gallager [11], [12]. GPS is characterised
by two attractive properties, (i) each backlogged flow is guaran-
teed a minimum service rate and (ii) the excess service rate is
redistributed among the backlogged flows in proportion to their
minimum service rates. Because of the second property GPS

1Also with KPN Research, P.O. Box 421, 2260 AK Leidschendam, The
Netherlands.

is work-conserving. Commonly-used scheduling mechanisms
in packet-switched networks, such as Weighted Fair Queueing
(WFQ) and other algorithms [14], are based on GPS.

Achieving differentiated QoS is a challenging task due to the
highly bursty traffic characteristics in high-speed communica-
tion networks. In contrast to traditional assumptions, the bursti-
ness extends over a wide range of time scales. Statistical data
analysis [13], [16] has in fact shown that traffic patterns may
look similar when observed on various time scales. This be-
haviour is usually referred to as self-similarity. Several studies,
e.g. [9], further offered evidence of a closely related property
called long-range dependence, which means that correlations
in the traffic activity decay slowly over time. These findings
caused a fundamental shift in modelling traffic behaviour. Clas-
sical models mostly assume traffic processes with a Markovian
structure, which are inherently short-range dependent. Recently
though, the focus has shifted to traffic processes with long-tailed
characteristics, which provide a useful paradigm for modelling
long-range dependence and self-similarity. An example of such
a model is an on/off process where the on periods are regularly
varying with index ��; � 2 (1; 2).

It is not clear to what extent long-tailed traffic may impact the
potential for scheduling mechanisms to help achieve differenti-
ated QoS. To be able to guarantee end-to-end QoS, it is particu-
larly relevant to understand to what degree traffic flows may be
negatively affected as they traverse the network. Anantharam [1]
was one of the first to study the influence of scheduling strategies
on the extent to which long-tailed traffic affects network perfor-
mance. He showed the influence can be significant, depending
on whether or not preemption is admissible.

In this study we investigate the impact of long-tailed traffic on
performance in GPS networks. Existing work on GPS networks
is largely restricted to a deterministic setting. In [12] Parekh and
Gallager show that the first GPS property, minimum guaranteed
rates, translates into worst-case bounds on delay and workload
for leaky bucket controlled traffic flows. It is clear that the sec-
ond GPS property, work conservation, yields statistical multi-
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plexing gains. In order to quantify these gains however, and to
examine how they are possibly influenced by the occurrence of
long-tailed traffic, a stochastic analysis of GPS networks is re-
quired.

Networks of fluid flows seem to defy exact analysis for all
but a few specific cases, and in particular we are not familiar
with any stochastic analysis of GPS networks. In the present pa-
per we specifically focus on GPS networks fed by several traffic
flows, of which at least one has long-tailed traffic characteris-
tics. Under certain conditions we show that the tail distribution
of the workload of the long-tailed flow at the bottleneck node
on its path is equivalent to that in a two-node tandem network
where it is served in isolation at constant rates. These rates are
the service rates of the two bottleneck nodes for the long-tailed
flow in the original network, reduced by the average traffic in-
tensities of the other flows. Hence, the long-tailed flow is only
affected by the traffic characteristics of the other flows through
their average rates and is not influenced by excessive behaviour
of any of the other flows. This result extends the results in Borst,
Boxma and Jelenković [?], [4] for a single GPS node fed by
traffic with long-tailed characteristics. Agrawal, Makowski and
Nain [2] establish a similar reduced-load equivalence result for
a fluid queue fed by a flow with subexponentially distributed on
periods and a general light-tailed flow.

The remainder of this paper is organised as follows. In the
next section we consider a simple two-node tandem network,
which is fed by a single flow. As alluded to above, this model
will play a key role in analysing more complex network config-
urations. We relate the tail behaviour of the busy-period distri-
bution at node 1 to the arrival process. Then we determine the
tail behaviour of the workload distribution at node 2 in terms of
the residual busy-period distribution at node 1. Two traffic pro-
cesses are considered, (i) a traffic flow generating instantaneous
bursts and (ii) a traffic flow behaving according to an on/off pro-
cess. We describe the GPS mechanism in more detail in Section
III. In Sections IV and VI we extend the model of Section II to
a GPS tandem network that is fed by multiple flows. We con-
sider two network configurations: in Section IV we assume that
all flows which are served at node 1 proceed to node 2, while in
Section VI we allow for flows which are only served at node 1.
In both sections we determine an upper and a lower bound for
the workload distribution of the long-tailed flow at node 2. In
Section V we prove a general lemma which shows that the lower
and upper bounds for the workload distribution asymptotically
coincide. We use this lemma to derive the asymptotics for the
other models in this paper as well. In the subsequent sections
we extend the analysis to more general GPS networks with the
long-tailed flow traversing more than two nodes.

II. TWO-NODE NETWORK FED BY A SINGLE FLOW

In this section we consider a simple tandem network, which
is fed by a single flow. We analyse the tail behaviour of the
workload distribution at the first and second node. Admittedly,
this model represents the simplest possible network scenario,
but it plays a central role in the further analysis. We need the re-
sults concerning the tail behaviour of the workload distribution
in this tandem network to analyse more general networks, where
multiple flows share the capacity according to the GPS princi-

ple. Surprisingly, it turns out that in the GPS networks that we
consider, the tail behaviour of the workload distribution of an
individual flow is equivalent to that in a tandem network where
the flow is served in isolation at constant rates.

First we introduce some notation. Denote by d1 and d2 the
constant service rates at node 1 and node 2, respectively. We
assume d1 > d2 to exclude the trivial case where the workload
at node 2 is always zero. We define � to be the traffic intensity,
i.e., the mean amount of traffic offered to the network per unit
of time. For stability we assume � < d2. Denote by A(s; t) the
amount of traffic generated during the time interval (s; t]. We
define W c(t) to be the workload at time t if the flow were fed
into a queue of rate c,

W c(t) := sup
0�s�t

fA(s; t)� c(t� s)g;

assuming W c(0) = 0. For c > �, W c is a stochastic variable
with the limiting distribution of W c(t) for t ! 1. We define
P to be the busy period in this queue. Observe that the total
workload in the tandem network at time t is W d2(t), while the
workload at node 1 is W d1(t). Thus the workload at node 2 at
time t is

W d1;d2(t) := W d2(t)�W d1(t); (1)

assuming the system is empty at time 0. For d2 > �, let
W d1;d2 be a stochastic variable with the limiting distribution of
W d1;d2(t) for t!1.

For any two real functions f(�) and g(�), we use the notational
convention f(x) � g(x) to denote limx!1 f(x)=g(x) = 1,
or equivalently, f(x) = g(x)(1 + o(1)) as x ! 1. For
any stochastic variable X with distribution function F (�) and
IEX < 1, denote by F r(�) the distribution function of the
residual lifetime of X , i.e., F r(x) = 1

IEX

R x
0
(1� F (y))dy, and

by Xr a stochastic variable with that distribution.
The classes of long-tailed, subexponential, regularly varying,

and intermediately regularly varying distributions are denoted
with the symbols L;S;R and IR, respectively. See [15] for
the detailed definitions of these classes and [6] for general back-
ground on heavy-tailed distributions.

We now state some results for the distribution of the workload
and the busy period at a single node. We need these results to
determine the asymptotic behaviour of W d1;d2 , and later that of
the workload in more general networks.

A. Instantaneous arrivals

Suppose the flow generates instantaneous traffic bursts ac-
cording to a Poisson process with rate �. Let K be the stochas-
tic variable representing the burst size. We assume that the burst
size distribution K(�) is intermediately regularly varying with
mean �. The traffic intensity is � = ��. The following three
results play a crucial role in the analysis in subsequent sections.

Theorem II.1 (Pakes [10]) If Kr(�) 2 S and � < c, then

IP(W c > x) �
�

c� �
IP(Kr > x):

Theorem II.2 (Zwart [17]) If K(�) 2 IR and � < c, then

IP(P > x) �
c

c� �
IP(K > x(c � �)):
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The above theorem immediately gives the tail distribution of
the residual busy period.

Theorem II.3 (residual busy period) If K(�) 2 IR and � <
c, then

IP(P r > x) �
c

c� �
IP(Kr > x(c� �)):

B. On/off processes

Suppose the flow generates traffic according to an on/off pro-
cess. We assume the off periods to be exponentially distributed
with mean 1=�. While on, the flow produces traffic at a con-
stant rate r. Assume the stochastic variable representing the on
period K to have an intermediately regularly varying distribu-
tion with mean �. Because the fraction of off time is equal to
p = 1

1+�� , the traffic intensity is equal to � = ��r
1+�� . The fol-

lowing three results are the analogues of Theorems II.1, II.2 and
II.3, respectively.

Theorem II.4 (Jelenković and Lazar [7]) If Kr(�) 2 S and
� < c < r, then

IP(W c > x) � p
�

c� �
IP(Kr >

x

r � c
):

Theorem II.5 (Boxma and Dumas [5], [17]) If K(�) 2 IR
and � < c < r, then

IP(P > x) � p
c

c� �
IP(K >

x(c � �)

r � c
):

The following theorem immediately follows from Theorem
II.5.

Theorem II.6 (residual busy period) If K(�) 2 IR and � <
c < r, then

IP(P r > x) � p
c

c� �
IP(Kr >

x(c� �)

r � c
):

C. Workload distribution

The above results completely specify the tail behaviour of the
workload distribution at node 1. Moreover, we can use them to
analyse the workload distribution at node 2. Observe that the
input process at node 2 is an on/off process with as on periods
the busy periods at node 1. The on rate is equal to the service
rate at node 1, d1. The off periods correspond to the idle periods
at node 1, which are exponentially distributed. In addition, the
on and off periods at node 2 are independent.

For both traffic scenarios the tail distribution of the resid-
ual busy period at node 1 is intermediately regularly varying.
Hence, we can apply Theorem II.4 to determine the tail be-
haviour of the workload distribution at node 2, which is given
in the following lemma.

Lemma II.1 (workload second node) If K(�) 2 IR, then

IP(W d1;d2 > x) � p0
�

d2 � �
IP(P r >

x

d1 � d2
);

with the fraction of off time p0 = d1��
d1

.

In order to derive the workload distribution of flow i in more
general networks, we will need three properties of IP (W d1;d2 >
x). These properties are given in the following lemma.

Lemma II.2: For the traffic scenarios described in Subsec-
tions II-A and II-B the following three properties hold: (i) for
�; � sufficiently small,

lim
x!1

IP(W d1+�;d2+� > x)

IP (W d1;d2 > x)
= G(�; �); (2)

with lim�;�!0G(�; �) = 1;
(ii) for any real y,

lim
x!1

IP(W d1;d2 > x� y)

IP (W d1;d2 > x)
= 1; (3)

(iii) for any c > � there exists a finite constant C such that,

lim sup
x!1

IP(W c > x)

IP(W d1;d2 > x)
= C <1: (4)

Proof: Theorems II.3, II.6 and Lemma II.1 have to be used
for all properties. In addition, we use for (ii) that P r(�) 2 IR �
L for both traffic scenarios. Finally, for (iii) we use Theorems
II.1, II.4 and Lemma II.1, and the fact that Kr(�) 2 IR.

III. PRELIMINARIES

In the next sections we extend the model which we described
in the previous section. We consider again a two-node tandem
network, but now fed by multiple flows, where traffic is sched-
uled according to the GPS mechanism. We focus on the work-
load distribution of a particular flow iwhich passes through both
nodes. In this section we introduce the notation which we use
throughout the paper and we explain how the GPS mechanism
operates. Although the network that we consider in Sections IV
and VI has only two nodes, we introduce notation for networks
where flow i traverses N nodes.

At each node of the network, traffic is served according to the
GPS mechanism which operates as follows. Define cn to be the
service rate of node n and S(n) to be the set of all flows that
receive service at node n, n = 1; : : : ; N . Each flow q 2 S(n) is
assigned a weight �̂q;n. If every flow at node n is backlogged at
time t, then flow q 2 S(n) is served at node n at rate

�q;n :=
�̂q;nP

q2S(n) �̂q;n
cn:

If some of the flows that are served at node n are not back-
logged at time t, then the excess service rate is redistributed
among the backlogged flows at node n in proportion to their
respective weights. This means that the server always operates
at the full service rate when there is work, and thus GPS is work-
conserving.

Denote by AQ(s; t) :=
P

q2Q Aq(s; t) the amount of traffic
generated by flows q 2 Q in the time interval (s; t], and denote
byAq;n(s; t) the amount of traffic that arrives at node n originat-
ing from flow q during (s; t]. In particular,Aq;n(s; t) = Aq(s; t)
if node n is the first node that flow q feeds into and we define
AQ;n(s; t) :=

P
q2Q Aq;n(s; t). Let Bq;n(s; t) be the amount

of service that flow q receives at node n during the time inter-
val (s; t]. Define Vq;n(t) as the workload of flow q at node n
at time t, and Vq;n as a stochastic variable with the limiting
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distribution of Vq;n(t) for t ! 1 (assuming it exists). Sim-
ilarly, we define VQ;n(t) :=

P
q2Q Vq;n(t) and we denote by

Vn(t) :=
P

q2S(n) Vq;n(t) the total workload at node n at time t.
Using the above definitions, the following identity relation

holds for 0 � s � t,

Vq;n(t) = Aq;n(s; t) + Vq;n(s)�Bq;n(s; t): (5)

Using (5), the following relation exists between the arrival
processes at two successive nodes,

Aq;n+1(s; t) = Bq;n(s; t) = Aq;n(s; t) + Vq;n(s)� Vq;n(t):
(6)

The total workload at node n at time t is given by,

Vn(t) = sup
0�s�t

fAS(n);n(s; t)� cn(t� s)g; (7)

assuming that Vn(0) = 0.
We define �q to be the average rate of flow q and �Q :=P
q2Q �q to be the aggregate average rate of all flows q 2 Q.

Let W c
Q(t) be the workload at time t in a queue with service rate

c � 0 which is fed by the flows q 2 Q. Then, for c > �Q, W c
Q

is a stochastic variable with the limiting distribution of W c
Q(t)

for t!1. Analogously we denote by W d1;d2
Q (t) the workload

at time t at node 2 of a tandem network fed by the flows q 2 Q.
For d2 > �Q, W d1;d2

Q is a stochastic variable with the limiting

distribution of W d1;d2
Q (t) for t!1.

We make the following two crucial assumptions throughout
the remainder of this paper.

Assumption 3.1: We assume for each flow q, �q;n > �q for
all n = 1; : : : ; N .

This assumption implies that each flow is guaranteed a higher
rate than its average rate, which ensures stability. Define ~cn :=
cn � �S(n)nfig as the average service rate available at node n
for flow i, i.e., the service rate at node n minus the aggregate
average rate of all flows 2 S(n) other than i.

Assumption 3.2: We assume ~cN < ~cn for all n =
1; : : : ; N � 1.

The above assumption implies that node N can be viewed as
the bottleneck node for flow i. The next lemma gives an upper
bound for Vq;n(t) which follows immediately from the GPS dis-
cipline. Since this lemma is a special case of Lemma VII.3, we
omit the proof.

Lemma III.1 (GPS upper bound workload) For n 2 f1; 2g,

Vq;n(t) �W
~�q
q (t);

with ~�q = �q;1 if n = 1 and ~�q = minf�q;1; �q;2g if n = 2.

IV. MERGING FLOWS

We distinguish between the following two scenarios. In this
section we assume the other flows which feed into the network
to join the path of flow i, i.e., they are not allowed to leave this
path (see Fig. 1). In Section VI flows are allowed to leave the
path of flow i. The latter model includes cross traffic as a special
case.

In particular, we consider the following scenario in this sec-
tion. We assume the GPS network to be fed by flow i and by two

S1S1

S1

i
S2

S1

i
S2

i 1 2

Fig. 1. Two-node network with merging.

additional sets of flows. The set S1 and flow i feed into node 1
and are served both at nodes 1 and 2, while the set of flows S2
feed into node 2 and receive only service at this node. We are
interested in the distribution of the workload of flow i at node 2,
Vi;2.

In this section we derive both a lower and an upper bound for
IP(Vi;2 > x). The idea can be described as follows. If the flows
other than i always showed exactly average behaviour, then Vi;2
would in distribution be equal to W ~c1;~c2

i . In reality, stochastic
fluctuations in the activity of the other flows will cause Vi;2 to
deviate somewhat from W ~c1;~c2

i . Accordingly, the bounds will
relate Vi;2 to W ~c1;~c2

i with some additional correction terms. In
the subsequent section, we show that these terms can be ne-
glected asymptotically, resulting in the exact workload asymp-
totics.

In both the upper and lower bound for Vi;2(t) we need a man-
ageable expression for the total workload at node 2. The follow-
ing lemma, which follows immediately from (6) and (7), pro-
vides such an expression.

Lemma IV.1 (alternative expression V2(t))

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t)

+V1(s)� c2(t� s)g

� sup
0�s�t

fAi(s; t) +AS1(s; t)� c1(t� s)g:

Before presenting the lower and upper bound, we introduce an
additional variable. For c < �Q, U c

Q is defined to be a stochastic
variable with the limiting distribution of U c

Q(t) for t!1, with

Uc
Q(t) = sup

0�s�t
fc(t� s)�AQ(s; t)g: (8)

Throughout the analysis, we use the following properties of
the sup operator,

sup
t
ff(t) + g(t)g � sup

t
ff(t)g+ sup

t
fg(t)g; (9)

which also implies

sup
t
ff(t) + g(t)g � sup

t
ff(t)g � sup

t
f�g(t)g: (10)

Lemma IV.2 (lower bound IP (Vi;2 > x)) For any � > 0, � >
0 sufficiently small and any y,

IP(Vi;2 > x) � IP(W ~c1��;~c2+2�
i > x+ y)IP(Y �;� � y);

with Y �;� a stochastic variable with the limiting distribution of
Y �;�(t) for t!1, where

Y �;�(t) := U
�S1��

S1
(t) + U

�S2��

S2
(t) +W

�S1+�

S1
(t)
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workload

-

Vi,1(t)
Vi,1

V
(t)

2(t)
~c2i

i,

(t)2

ρ−

c~

+

1
~c2

time

V

~ciρ− 1

i,

Fig. 2. Overflow scenario instantaneous traffic bursts.

+
X

q2S1

W
~�q
q (t) +

X

q2S2

W
~�q
q (t):

The stochastic variable Y �;� can be seen as the ‘correction
term’ mentioned earlier, accounting for scenarios where Vi;2(t)
is smaller than W ~c1��;~c2+2�

i (t).

Proof: The proof follows by writing Vi;2(t) = V2(t) �
VS1;2(t) � VS2;2(t) and then using Lemmas III.1, IV.1 and (9),
(10) to obtain Vi;2(t) � W ~c1��;~c2+2�

i (t) � Y �;�(t). Then use
independence of Y �;� and the traffic process of flow i.

Lemma IV.3 (upper bound IP(Vi;2 > x)) For any � > 0, � >
0 sufficiently small and any y,

IP(Vi;2 > x) � IP(W ~c1+�;~c2�2�
i > x� y)

+ IP(W
~�i
i > x)IP(Z�;� > y);

with Z�;� a stochastic variable with the limiting distribution of
Z�;�(t) for t!1, where

Z�;�(t) := U
�S1��

S1
(t) +W

�S1+�

S1
(t) +W

�S2+�

S2
(t):

Analogously to Y �;� in the lower bound, the stochastic vari-
able Z�;� can be seen as the correction term, corresponding to
situations where Vi;2(t) is larger than W ~c1+�;~c2�2�

i (t).

Proof: The proof follows by observing Vi;2(t) � V2(t)
and then using Assumption 3.2, Lemmas III.1, IV.1 and (9), (10)
to find

Vi;2(t) � minfW
~�i
i (t);W ~c1+�;~c2�2�

i (t) + Z�;�(t)g:

Then use independence of Z�;� and the traffic process of flow i.

V. TAIL BEHAVIOUR WORKLOAD DISTRIBUTION

We now state our key theorem concerning the tail behaviour
of the workload distribution.

Theorem V.1 (asymptotic equivalence) For the traffic scenar-
ios described in Subsections II-A and II-B, under Assumptions
3.1 and 3.2,

IP(Vi;2 > x) � IP(W ~c1;~c2
i > x);

where ~c1 and ~c2 represent the total service rate minus the aggre-
gate average rate of all flows other than flow i at nodes 1 and 2
respectively, as defined in Section III.

workload

-

-

i,2(t)Vi,1

Vi,1

V

(t)
(t)
(t)

~c2iρ−
i,

V

2 2
r

c~

+

i

ri

1
~c2

c~1

-

time

~
~ciρ− 1

c

Fig. 3. Overflow scenario on/off process.

According to this theorem, the workload distribution of flow i
at node 2 is asymptotically equivalent to that in a tandem net-
work where flow i is served in isolation at rates ~c1 and ~c2.
Hence, the workload of flow i at node 2 is only affected by
the characteristics of the other flows through their average rates,
even when the other flows are ‘heavier tailed’. This suggests
that an extremely large workload of flow i is most likely due
to either a long on period or a large burst size of flow i itself.
During the subsequent congestion period, the other flows con-
tinue to receive service at approximately their average rates. In
the theorem this is represented by the constant rates ~c1 and ~c2.
This result extends the result of [?] for the single-node case and
shows that GPS is capable of isolating flows in networks as well.

The typical overflow scenario is schematically depicted in
Fig. 2. At some point, flow i generates a large burst, causing
Vi;1(t) to reach some large value. After that, flow i returns to its
average behaviour, producing traffic at rate �i. Consequently,
Vi;1(t) will start to decrease at roughly rate �i � ~c1, and Vi;2(t)
will start to increase approximately at rate ~c1 � ~c2, until Vi;1(t)
reduces to zero at some point. From then on, Vi;1(t) will remain
relatively small, and Vi;2(t) will also start to decrease, roughly
at rate �i � ~c2, until Vi;2(t) becomes zero as well. The corre-
sponding behaviour for an on/off process is illustrated in Fig. 3.

A similar reduced-load equivalence result is obtained in [2]
for a flow with subexponential on periods and a general light-
tailed flow. In our situation, the other flows need not be light-
tailed because of the GPS properties. Note however that As-
sumption 3.1 is crucial. If �q > �q;n for some flows q other
than flow i, then these flows may not receive service at a sta-
ble rate when other flow i generates a large amount of traffic.
These flows can take away less capacity than �q . Alternatively,
if �i > �i, then flow i may not receive service at a stable rate
when other flows generate a large amount of traffic. In the latter
case, flows with an on period distribution or a burst size distri-
bution which is heavier tailed than that of flow i will potentially
affect the workload of flow i, see [3].

The above theorem follows from a general lemma which
shows that the bounds of Lemmas IV.2 and IV.3 asymptotically
coincide. Before giving this lemma, we first introduce some ad-
ditional notation. For a > 0, a1 > a2 > 0, let Ri be some
stochastic variable. For �; �; � and � > 0 let C�;�

�i and D�;�
�i also

be stochastic variables.

Lemma V.1: If for �; �; � and � > 0 sufficiently small and
any y,

IP(Ri > x) � IP(W a1��;a2+�
i > x+ y)IP(C�;�

�i � y); (11)
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Fig. 4. Two-node network with splitting.

IP(Ri > x) � IP(W a1+�;a2��
i > x� y)

+ IP(W a
i > x)IP(D�;�

�i > y); (12)

and IP (W a
i > x) and IP(W a1;a2

i > x) satisfy Properties (2), (3)
and (4), then

IP (Ri > x) � IP(W a1;a2
i > x):

Proof: Using the lower bound (11) and Properties (2) and
(3), we obtain for any �; � > 0 sufficiently small and y,

lim inf
x!1

IP (Ri > x)

IP(W a1;a2
i > x)

� Gi(��; �)IP(C
�;�
�i � y);

which tends to 1 when we let y ! 1 and then �; � # 0. Anal-
ogously, using the upper bound (12) and Properties (2), (3) and
(4), we have for any �, � > 0 sufficiently small and y,

lim sup
x!1

IP (Ri > x)

IP (W a1;a2
i > x)

� Gi(�;��) + CIP(D�;�
�i > y);

with C < 1. The first term tends to 1 and the second term
vanishes when we let y !1 and �; � # 0.

VI. SPLITTING FLOWS

Consider again a tandem network in which the following
flows are served according to the GPS principle (see Fig. 4).
As in Section IV, flow i and the set of flows S1 feed into node 1
and are served both at nodes 1 and 2, and the set of flows S2
feed into node 2. In addition, we consider in this section the set
of flows S3 which feed into node 1 but do not move on to node 2
after receiving service at node 1.

In the following lemma we give an alternative expression for
V2(t) which follows directly from (6) and (7).

Lemma VI.1 (alternative expression V2(t))

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t) +

Vi;1(s) + VS1;1(s)� c2(t� s)g+ VS3;1(t)

� sup
0�s�t

fAi(s; t) +AS1(s; t) +AS3(s; t)� c1(t� s)g:

Now we derive both an upper and a lower bound for IP (Vi;2 >
x). These bounds are similar to the bounds in Lemmas IV.2 and
IV.3, except that the structure of the correction terms Y �;� and
Z�;� is more complicated due to the presence of the additional
set of flows S3.

For �; � > 0, redefine Y �;� to be a stochastic variable with the
limiting distribution of Y �;�(t) for t!1, with

Y �;�(t) := U
�S1��

S1
(t) + U

�S2��

S2
(t) +W

�S1+�

S1
(t)

+ W
�S3+�

S3
(t) +

X

q2S1

W
~�q
q (t) +

X

q2S2

W
~�q
q (t):

For �; � > 0, redefine Z�;� to be a stochastic variable with
the limiting distribution of Z�;�(t) for t!1, with

Z�;�(t) := U
�S1��

S1
(t) + U

�S3��

S3
(t) + U

�S3��

S3
(t)

+

3X

j=1

W
�Sj+�

Sj
(t) +

X

q2S3

W
~�q
q (t):

Lemma VI.2 (lower bound IP(Vi;2 > x)) For any � > 0, � >
0 sufficiently small and any y,

IP(Vi;2 > x) � IP(W ~c1�2�;~c2+2�
i > x+ y)IP (Y �;� � y):

Proof: The proof follows by observing that Vi;2(t) =
V2(t) � VS1;2(t) � VS2;2(t) and then using Assumption
3.2, Lemmas III.1, VI.1 and (9), (10) to obtain Vi;2(t) �

W ~c1�2�;~c2+2�
i (t)� Y �;�(t). Then use independence.

Lemma VI.3 (upper bound IP(Vi;2 > x)) For any � > 0, � >
0 sufficiently small and any y,

IP(Vi;2 > x) � IP(W ~c1+2�;~c2�4�
i > x� y)

+ IP(W
~�i
i > x)IP(Z�;� > y):

Proof: The proof follows by observing that Vi;2(t) �
V2(t) and then using Lemmas III.1, VI.1 and (9), (10). Writ-
ing AS3(r; s) = AS3(r; t)�AS3(s; t) and splitting some corre-
sponding terms, we then find

Vi;2(t) � minfW
~�i
i (t);W ~c1+2�;~c2�4�

i (t) + Z�;�(t)g:

Then use independence.

Now we have all the ingredients to use Lemma V.1, which
gives the main result of this section.

Theorem VI.1 (asymptotic equivalence) For the traffic sce-
narios described in Subsections II-A and II-B, under Assump-
tions 3.1 and 3.2,

IP (Vi;2 > x) � IP(W ~c1;~c2
i > x);

where ~c1 and ~c2 represent the total service rate minus the aggre-
gate average rate of all flows other than flow i at nodes 1 and 2
respectively, as defined in Section III.

VII. PRELIMINARIES GENERAL NETWORKS

In the next two sections we extend the model of Section VI
and focus on theN th node on the path of flow i. We assume this
node to be the bottleneck node for flow i. Again we assume the
flows to be served at each node according to the GPS mecha-
nism. First we introduce some additional notation and present a
number of lemmas which we use in the next sections. Then we
analyse the behaviour of the workload of flow i at the bottleneck
node on its path, if no other flows feed into any of the nodes on
this path. Although this model is quite simple, it provides some
useful intuition for the results in Sections VIII and IX.

We define Sj to be the set of flows that feed into node j and
Spm to be the set of flows that feed into nodem and leave the path
of flow i at node p (so flows in Spm receive service at node p).
For q 2 Spm we define ~�q := minf�q;m; : : : ; �q;pg, which is the
minimum rate guaranteed to flow q on its path along node m up
to and until p.
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We now present some lemmas which we use in the next sec-
tions. For lack of space, we omit most of the proofs. For details
we refer to [15]. The following lemma, which can be proven
using induction on n �m, gives a lower bound for the amount
of service that flow q receives at node n during the time interval
(s; t].

Lemma VII.1 (lower bound Bq;n(s; t)) For q 2 Spm, 1 �

m � n � p and q � ~�q ,

Bq;n(s; t) � q(t� s)� sup
s�sm�t

fq(sm � s)�Aq(s; sm)g:

Using this lemma, we can derive an upper bound for the total
workload of flow q 2 Spm at nodes m; : : : ; n. This upper bound
is presented in the next lemma.

Lemma VII.2 (upper bound total workload flow q) For q 2
Spm, 1 � m � n � p and q � ~�q ,

nX

j=m

Vq;j(t) �W q
q (t):

The above lemma immediately implies the following lemma,
which includes Lemma III.1 as a special case.

Lemma VII.3 (GPS upper bound workload) For q 2 Spm, 1 �
m � n � p,

Vq;n(t) �W
~�q
q (t):

From Lemma VII.2 we can derive an upper bound for the
amount of service that flow q receives during the interval (s; t]
as well. This upper bound is given in the following lemma.

Lemma VII.4 (upper bound Bq;n(s; t)) For q 2 Spm, 1 �

m � n � p and q � ~�q ,

Bq;n(s; t) � q(t� s) + sup
0�sm�t

fAq(sm; t)� q(t� sm)g:

We now briefly discuss the workload behaviour at the N th
node of a network which is fed only by flow i. Take
m� 2 argminn=1;:::;N�1f~cng. In Section III we assumed that
~cn > ~cN (Assumption 3.2) for all n = 1; : : : ; N � 1, so that
~cm� > ~cN .

Theorem VII.1 (workload node N )

IP(Vi;N > x) = IP (W cm� ;cN
i > x):

Proof: Observe that, because of the definition of m�, the
total workload at nodes 1; : : : ;m� is equal to that at a node with
service rate cm� which is fed by the original traffic process of
flow i. Hence,

Pm�

j=1 Vi;j(t) = W cm�

i (t). Since cN < cm�

(Assumption 3.2) we can apply the same reasoning to the to-
tal workload at nodes 1; : : : ; N and we have

PN

j=1 Vi;j(t) =
W cN

i (t). In [8] the following observation is made. If ck > cj
for k > j then the backlog at node k will always be zero in
stationarity and this node can be removed from the tandem net-
work. Because the nodes succeeding node m� (except N ) have
a service rate which is larger than cm� ,

N�1X

j=m�+1

Vi;j(t) = 0

and we have, using (1),

Vi;N (t) =

NX

j=1

Vi;j(t)�
m�X

j=1

Vi;j(t) = W cm� ;cN
i (t):

S3
S2

S1

1 2 3 4i

S4

Fig. 5. General network with merging.

The workload at node N in this network is equal to that at
node 2 in a two-node tandem network serving flow i at rates
cm� and cN . Thus the distribution of the workload is entirely
determined by the bottleneck nodes. Intuitively, this can be ex-
plained as follows. The workload at a particular node depends
on two rates, the rate at which traffic is sent into the node and
the rate at which traffic is served by the node. The first rate is the
rate at which traffic is served by the bottleneck node on the path
to the relevant node, i.e., cm� . The other rate is the service rate
for flow i, which is cN . Asymptotically, this is still true for the
more general networks which we discuss in the next sections.

VIII. GENERAL NETWORK WITH MERGING

Analogously to Sections IV and VI we distinguish between
two network scenarios. In this section we consider an extension
of the network described in Section IV and assume that each
node on the path of flow i in the GPS network is fed by an addi-
tional set of flows (see Fig. 5 for the case where flow i traverses
4 nodes). These sets follow the path of flow i and do not leave
before node N , the bottleneck node. In Section IX we consider
an extension of this network and the network described in Sec-
tion VI and allow the flows feeding into a node on the path of
flow i to leave this path before the bottleneck node.

We first derive bounds for IP(Vi;N > x). The idea is similar
to that in Section IV. If the flows other than i always showed
exactly average behaviour, then Vi;n would in distribution be
equal to W ~c1;:::;~cN

i;N . In Section VII we showed that W ~c1;:::;~cN
i;N

has the same distribution as W ~cm� ;~cN
i . In addition to W ~cm� ;~cN

i ,
the bounds contain some correction terms accounting for the
stochastic fluctuations of the flows other than flow i, which we
later show can be asymptotically neglected.

Recall that in the two-node model the upper and lower bounds
for Vi;2(t) were derived from bounds for V1(t) and V2(t). Sim-
ilarly, in the N -node case, the lower and upper bounds for
Vi;N (t) rely on bounds for the total workload at each node
n 2 f1; : : : ; Ng. Define Xn(t) :=

sup
0�s1�:::�sn+1=t

fAi(s1; t) +
nX

j=1

[ASj (sj ; t)� cj(sj+1 � sj)]g:

In the next lemma, which can be proven using induction, we
give an expression for Vn(t) in terms of Xn(t). This expression
will be used in deriving the upper and lower bounds for Vi;N (t).

Lemma VIII.1 (workload node n) For n � 2,

Vn(t) = Xn(t)�Xn�1(t):

In order to determine a lower and an upper bound for Vn(t)
we have to find a lower and an upper bound for Xn(t).
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Lemma VIII.2 (lower bound) For any �1; : : : ; �n,

Xn(t) �W e
i (t)�

nX

j=1

U
�j
Sj
(t);

with e := minm=1;:::;nfcm �
Pm

j=1 �jg.
Proof: Exploit the fact that

Pn

j=1 �j(t � sj) =
Pn

j=1 �
j(sj+1 � sj) with �j :=

Pj

m=1 �m, to rewrite Xn(t)
and then use (8) and (10).

Lemma VIII.3 (upper bound) For any �1; : : : ; �n,

Xn(t) �W d
i (t) +

nX

j=1

W
�j
Sj
(t);

with d := minm=1;:::;nfcm �
Pm

j=1 �jg.
Proof: Similar to that of the lower bound.

We now use the bounds for Xn(t) to construct a lower and an
upper bound for IP (Vi;N > x). We first introduce some addi-
tional notation similar to Section IV. For �; � > 0, define Y �;�

as a stochastic variable with the limiting distribution of Y �;�(t)
for t!1, with Y �;�(t) :=

NX

j=1

U
�Sj��

Sj
(t) +

N�1X

j=1

W
�Sj+�

Sj
(t) +

NX

j=1

X

q2Sj

W
~�q
q (t):

For �; � > 0, define Z�;� as a stochastic variable with the
limiting distribution of Z�;�(t) for t!1, with

Z�;�(t) :=
NX

j=1

W
�Sj+�

Sj
(t) +

N�1X

j=1

U
�Sj��

Sj
(t):

Lemma VIII.4 (lower bound IP(Vi;N > x)) For any � > 0,
� > 0 sufficiently small and any y,

IP(Vi;N > x) � IP (W ~cm��m��;~cN+N�
i > x+ y)IP(Y �;� � y):

Proof: By definition, Vi;N (t) = VN (t) �PN
j=1

P
q2Sj

Vq;N (t). This is lower bounded by XN (t) �

XN�1(t) �
PN

j=1

P
q2Sj

W
~�q
q (t) using Lemmas VII.3 and

VIII.1. Now use the lower bound in Lemma VIII.2 for XN (t)
with �j = �Sj � � and the upper bound in Lemma VIII.3 for
XN�1(t) with �j = �Sj + �. Then use independence.

Note that the lower bound for Vi;2(t) in Lemma IV.2 is indeed
a special case of the lower bound for Vi;N (t).

Lemma VIII.5 (upper bound IP(Vi;N > x)) For any � > 0,
� > 0 sufficiently small and any y,

IP(Vi;N > x) � IP(W ~cm�+m��;~cN�N�
i > x� y)

+ IP(W
~�i
i > x)IP(Z�;� > y): (13)

Proof: By definition, Vi;N (t) � VN (t). Thus, because
of Lemma VIII.1, Vi;N (t) � XN(t) � XN�1(t). Analogously
to the proof of the lower bound use the upper bound in Lemma
VIII.3 for XN(t) with �j = �Sj + � and the lower bound in
Lemma VIII.2 for XN�1(t) with �j = �Sj � �. Then use inde-
pendence.

S2
4

S1
1

S1
2

S2
2

S1
3 S2

3
S3

3

S4
4

1 2 3 4i

S4
1

S4
3

Fig. 6. General network with splitting.

Note that the upper bound for Vi;2(t) in Lemma IV.3 is a spe-
cial case of the upper bound for Vi;N (t).

We are now able to characterise the tail behaviour of
IP(Vi;N > x). It follows immediately from Lemma V.1 and
the lower and upper bound given in Lemmas VIII.4 and VIII.5.

Theorem VIII.1 (asymptotic equivalence) For the traffic sce-
narios described in Subsections II-A and II-B, under Assump-
tions 3.1 and 3.2,

IP (Vi;N > x) � IP(W ~cm� ;~cN
i > x);

where ~cm� and ~cN represent the total service rate minus the ag-
gregate average rate of all flows other than flow i at nodes m�

and N , respectively, as defined in Section III.

Remarkably, the workload distribution of flow i at the bot-
tleneck node is asymptotically equivalent to that in a two-node
tandem network where flow i is served in isolation at constant
rates. In Sections V and VI these rates are simply ~c1 and ~c2. For
the N -node network we have to take the two smallest service
rates for flow i when reduced by the aggregate average rates of
the other flows, ~cm� and ~cN . Hence, for the network described in
this section as well, the workload of flow i at the bottleneck node
is only affected by the characteristics of the other flows through
their average rates. This suggests that an extremely large work-
load of flow i at its bottleneck node is most likely due to either
a long on period or a large burst of the flow itself and the other
flows showing roughly their average behaviour. Consequently,
we can consider flow i to be served in isolation at constant rates
~c1; : : : ; ~cN . Following the reasoning of [8] as in the proof of
Theorem VII.1 we can remove all nodes with capacity ~cn > ~cm�

after which we are left with a two-node tandem network.

IX. GENERAL NETWORK WITH SPLITTING

In this section we extend the model of the previous section
and assume that each node on the path of flow i is fed by an
additional set of flows, which may leave this path before nodeN
(see Fig. 6 for the case where flow i traverses 4 nodes). We omit
most of the proofs and refer to [15] for details.

We first introduce some additional notation. Define Âp
k(s; t)

to be the amount of work arriving at node k during the interval
(s; t] associated with flows entering the path of flow i at node k
and passing through node p � k, i.e.,

Âp
k(s; t) :=

NX

m=p

ASm
k
(s; t):

Similarly we define V p
k (t) to be the workload at node k at

time t associated with flows passing through node p � k (in-

276 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

cluding flow i), i.e.,

V p
k (t) :=

kX

j=1

NX

m=p

VSm
j
;k(t) + Vi;k(t):

Finally we define cpk(s; t) to be the amount of service avail-
able in node k during the interval (s; t] for flows passing through
node p � k, i.e.,

cpk(s; t) := ck(t� s)�
kX

j=1

p�1X

m=k

BSm
j
;k(s; t):

The following lemma expresses the workload at node n at
time t associated with the flows passing through node p, in terms
of Xp

n(t), with Xp
n(t) :=

sup
0�s1�:::�sn+1=t

fAi(s1; t) +
nX

k=1

[Âp
k(sk; t)� cpk(sk; sk+1)]g:

Lemma IX.1 (workload node n) For 2 � n � p,

V p
n (t) = Xp

n(t)�Xp
n�1(t): (14)

Proof: Similar to that of Lemma VIII.1.

If
Pk

j=1

PN�1
m=k BSm

j
;k(s; t) = 0 and we take p equal to N in

(14) so that cpk(sk; sk+1) = ck(sk+1�sk) for k = 1; : : : ; N�1,
then we see that it reduces to the result in Lemma VIII.1 where
we assumed that flows cannot leave the path of flow i before
node N .

As before, we can derive lower and upper bounds for Xp
n(t),

using Lemmas VII.1 and VII.4 to obtain bounds for the terms
BSm

j
;k(sk; sk+1) occurring in cpk(sk; sk+1) in Xp

n(t). These
bounds are similar to those in Lemmas VIII.2 and VIII.3. We
can then use these bounds to obtain lower and upper bounds for
IP(Vi;N > x). Define

�k :=

kX

j=1

NX

m=k

jSmj j+ 2

k�1X

f=1

fX

j=1

N�1X

m=f

jSmj j:

Lemma IX.2 (lower bound IP(Vi;N > x)) For any �; � > 0
sufficiently small and any y,

IP(Vi;N > x)�IP(W ~cm����m� ;~cN+��N
i > x+ y)IP(Y �;� � y);

with Y �;� some random variable independent of the traffic pro-
cess of flow i.

Proof: Vi;N (t) = VN (t) �
PN

j=1

P
q2SN

j
Vq;N (t), by

definition. This is lower bounded by XN
N (t) � XN

N�1(t) �PN
j=1

P
q2SN

j
W

~�q
q (t) using Lemmas VII.3 and IX.1. Now

we can use a lower bound for XN
N (t) and an upper bound for

XN
N�1(t).

Lemma IX.3 (upper bound IP(Vi;N > x)) For any �; � > 0
sufficiently small and any y,

IP (Vi;N > x) � IP(W ~cm�+��m� ;~cN���N
i > x� y)

+ IP(W
~�i
i > x)IP(Z�;� > y);

with Z�;� some random variable independent of the traffic pro-
cess of flow i.

Proof: By definition, Vi;N (t) � VN (t) = V N
N (t). Using

Lemma IX.1, Vi;N (t) � XN
N (t)�XN

N�1(t). Analogously to the
proof of Lemma IX.2 we then use an upper bound for XN

N (t)
and a lower bound for XN

N�1(t).

The lower and upper bound for Vi;N (t) in Lemmas IX.2 and
IX.3 reduce to the lower and upper bound in Lemmas VIII.4 and
VIII.5, in case we assume that no flows leave the path of flow i,
i.e., Smj = ; for m < N .

We now have gathered all the elements to characterise the tail
behaviour of the workload distribution in the most general class
of networks that we consider.

Theorem IX.1 (asymptotic equivalence) For the traffic sce-
narios described in Subsections II-A and II-B, under Assump-
tions 3.1 and 3.2,

IP (Vi;N > x) � IP(W ~cm� ;~cN
i > x);

where ~cm� and ~cN represent the total service rate minus the ag-
gregate average rate of all flows other than i at nodesm� and N ,
respectively, as defined in Section III.

Again the workload distribution of flow i at the bottleneck
node is asymptotically equivalent to that in a two-node tandem
network where flow i is served in isolation at constant rates.

X. CONCLUDING REMARKS

In this paper we analysed the workload behaviour under the
GPS mechanism in networks fed by multiple flows. Specifi-
cally, we considered a particular flow i traversing the network
and assumed it to have heavy-tailed traffic characteristics. We
showed that the tail behaviour of the workload distribution of
flow i at its bottleneck node is equivalent to that in a two-node
tandem network where flow i is served in isolation at constant
rates. In case flow i traverses only two nodes and the second
node is the bottleneck node, these rates are the service rates in
the original network reduced by the average rates of the other
flows. However, when flow i traverses more than two nodes,
we have to take the rates from the nodes which are bottleneck
when the service rate is reduced by the average rates of the other
flows. Hence, flow i is only affected by the characteristics of the
other flows through their average rates. This suggests that the
GPS mechanism is capable of isolating individual flows in net-
works, even when they have heavy-tailed traffic characteristics,
while achieving significant multiplexing gains.

The results in this paper may be extended in several direc-
tions. We assumed for each flow the minimal rate guaranteed by
the GPS mechanism to be larger than the average input rate. It
may be possible to relax this assumption for a certain class of
flows as in [4]. In this paper we only considered the workload
distribution at nodes with the minimum average service rate for
flow i on its path. The tail behaviour of the workload distri-
bution of flow i at a node following the node with the minimal
average service rate is an interesting topic for further research.
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