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Abstract— The relative delay tolerance of data applications, together
with the bursty traffic characteristics, opens up the possibility for schedul-
ing transmissions so as to optimize throughput. A particularly attractive
approach, in fading environments, is to exploit the variations in the channel
conditions, and transmit to the user with the currently ‘best’ channel. We
show that the ‘best’ user may be identified as the maximum-rate user when
the feasible rates are weighed with some appropriately determined coeffi-
cients. Interpreting the coefficients as shadow prices, or reward values, the
optimal strategy may thus be viewed as a revenue-based policy.

Calculating the optimal revenue vector directly is a formidable task, re-
quiring detailed information on the channel statistics. Instead, we present
adaptive algorithms for determining the optimal revenue vector on-line in
an iterative fashion, without the need for explicit knowledge of the chan-
nel behavior. Starting from an arbitrary initial vector, the algorithms it-
eratively adjust the reward values to compensate for observed deviations
from the target throughput ratios. The algorithms are validated through
extensive numerical experiments. Besides verifying long-run convergence,
we also examine the transient performance, in particular the rate of con-
vergence to the optimal revenue vector. The results show that the target
throughput ratios are tightly maintained, and that the algorithms are well
able to track changes in the channel conditions or throughput targets.

Keywords— Dynamic rate control, fading channels, Quality-of-Service,
target throughput ratios, throughput optimization, varying channel condi-
tions.

I. I NTRODUCTION

Next-generation wireless networks are expected to support a
wide range of services, including high-rate data applications.
In contrast to voice users, data applications can usually sustain
some amount of packet delay, as long as the throughput over
somewhat longer intervals is sufficient. The relative delay toler-
ance of data applications, together with the bursty traffic charac-
teristics, opens up the potential for scheduling transmissions so
as to optimize throughput. A coordinated approach along these
lines is proposed in [3].

A related approach may be advocated for low-mobility sce-
narios such as indoor networks. In such environments, Rayleigh
fading frequencies can be quite low, and the fading levels can
even be anticipated to some extent. For example, fading can be
measured by having the base station provide a pilot signal which
can be measured by all the users. These measurements can be
fed back to the base station, and used to estimate fading levels
and hence user rates in subsequent slots. This is the approach
proposed in Qualcomm’s High Data Rate (HDR) scheme [4].
Clearly, it is then advantageous to exploit the variations in the
feasible rates, and transmit to the currently ‘best’ user.

With a little simplification, let us suppose that at the start of
each slot the base station has perfect knowledge of the maxi-
mum feasible rate at which each user can receive and decode
a signal with some acceptably low error probability. The ques-
tion then arises what the ‘best’ user is to be selected for trans-
mission. We show that the ‘best’ user may be identified as the

maximum-rate user when the feasible rates are weighed with
some appropriately determined coefficients. Interpreting the co-
efficients as shadow prices, or reward values, the optimal strat-
egy may thus be viewed as a revenue-based policy. We prove
that revenue-based policies optimize throughput relative to pre-
specified target ratios. These target values may be set arbitrarily,
taking into account the Quality-of-Service requirements of the
users, or possibly their current activity levels or locations.

Unfortunately, calculating the optimal revenue vector directly
is a complicated problem, requiring detailed information on the
channel statistics. Although the feasible rates of the users are
assumed known slot by slot, the underlying probability distri-
bution which is producing these rates is unknown. Even if it
were known, it would not be easy to use, since the feasible rates
might be dependent, so that the computations would be signifi-
cantly hampered by the curse of dimensionality. To avoid these
obstacles, we develop adaptive algorithms for determining the
optimal revenue vector on-line in an iterative fashion, without
the need for explicit knowledge of the channel behavior.

The application of these algorithms opens up two important
possibilities to improve network performance. The first is that
admission control can be applied by using aprobing technique,
an approach proposed in [2]. The second possibility is coordi-
nated operation of the base stations in the network, which allows
for load sharing and higher throughput for edge users.

The remainder of the paper is organized as follows. In Sec-
tion II we present a detailed model description, and introduce a
class of revenue-based scheduling strategies. We subsequently
prove that revenue-based policies optimize throughput relative
to pre-specified target ratios, for discrete rate distributions as
well as for continuous rates in Sections III and IV, respectively.
In Sections V, VI, and VII, we develop adaptive on-line algo-
rithms for determining the optimal revenue vector in an iterative
fashion. In Section VIII we describe some numerical experi-
ments which we performed to examine the convergence prop-
erties of the proposed control algorithms. We make some con-
cluding remarks in Section IX.

II. M ODEL DESCRIPTION

We consider a base station servingM data users. The base
station transmits in slots of some fixed duration. In each slot,
the base station transmits to exactly one of the users.

We assume that the feasible rates for the various users vary
over time according to some stationary discrete-time stochastic
process{(R1(n), . . . , RM (n)), n = 1, 2, . . .}, withRm(n) rep-
resenting the feasible rate for userm in then-th slot. We assume
that the base station has perfect knowledge of the maximum fea-
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sible rateRm(n) for userm at the start of then-th slot, see also
Remark II.1 below. Let(R1, . . . , RM ) be a random vector with
distribution the joint stationary distribution of the feasible rates.

We assume that the slot duration (1.67 ms in the HDR
scheme) is relatively short compared to the relevant time scales
in the traffic patterns and delay requirements of the data users.
This opens up the possibility for scheduling the data transmis-
sions so as to enhance performance. In particular, scheduling
provides a potential mechanism for exploiting variations in the
feasible rates so as to optimize throughput.

TheM data users may actually be thought of as the subset
of active (backlogged) users among a greater population, which
may change over time. For scheduling purposes, however, the
separation of time scales allows us to think of the subset of active
users as nearly static and continuously backlogged. (In practice,
flow control algorithms such as TCP will typically be used to
feed the data into the base station buffer at a relatively slow rate,
comparable to the actual throughput provided to the user over
the wireless link. Thus, the bulk of the backlogs will usually
reside at the sender rather than the base station buffer.)

One of the most common performance objectives is through-
put maximization. This can simply be achieved by assigning
each slot to the user with the currently highest feasible rate. The
disadvantage is that typically only a few strong users will ever
be selected for transmission, causing starvation of all others.

To alleviate that problem, an alternative option is to equalize
the (expected) throughput of the various users. This can easily
be achieved by assigning each slot to the user with the currently
smallest cumulative throughput. The downside is that this strat-
egy does not exploit the variations in the feasible rates. More-
over, by insisting on equal throughput, a few weak users may
cause the throughput of all others to be dramatically reduced.

In the present paper we assume there are throughput targets
�1, . . . , �M defined for the various users. These target values
may be set arbitrarily, taking into account the Quality-of-Service
requirements of the users, or possibly their current activity levels
or locations.

DenoteYm(n) := Xm(n)Rm(n), withXm(n) a 0–1 variable
indicating whether or not then-th slot is assigned to userm.

Define ym(N) := E[
N∑
n=1

Ym(n)/N ] as the expected average

throughput received by userm afterN slots.
We consider the problem of maximizing the minimum

long-run expected average normalized throughputz :=
min

m=1,...,M
ym/�m, with ym := lim infN→∞ ym(N). The above

problem may equivalently be formulated as maximizingz sub-
ject to the constraintz ≤ ym/�m for all m = 1, . . . ,M . The
constraints may in fact be sharpened toz = ym/�m, since one
can always reduce the throughput for the users with a surplus.
With the equality constraints in place, the objective function

may then be generalized to
M∑
m=1

wmym/�m for any positive vec-

torw ∈ RM+ .
In conclusion, the above-stated problem is equivalent to max-

imizing an arbitrary weighted sum of the throughputs, subject
to the normalized throughputs being equal. Thus, the crucial
observation is that any strategy which maximizes an arbitrary

weighted combination of the throughputs, while equalizing the
normalized throughputs, is optimal.

To formalize the above insight, we now introduce a class of
revenue-based scheduling strategies. Suppose there were re-
wardsw1, . . . , wM per bit transmitted to the various users. A
revenue-based strategy assigns then-th transmission slot to the
userm∗(n) with the current maximum rate-reward product, i.e.,

m∗(n) = arg max
m=1,...,M

wmRm(n).

Clearly, the above principle maximizes the revenue earned in
each individual slot, and thus the total cumulative revenue, as
well as the average revenue, hence the term revenue-based strat-
egy. (It usually also matters exactly how ties are being broken.
Regardless of the tie breaking rule, however, a revenue-based
strategy will definitelynot assign then-th slot to any userk
with wkRk(n) < max

m=1,...,M
wmRm(n).) Now observe that rev-

enue is simply a weighted combination of the throughputs. From
our earlier observation, we thus conclude that any revenue-based
policy which balances the throughputs, is in fact optimal, which
provides the key principle underlying our further approach.

Finally, observe that setting throughput targets is equiva-
lent to normalizing the feasible rates by the corresponding val-
ues. In the subsequent analysis, we therefore assume that the
throughput targets are discounted for in the rates, and take
(�1, . . . , �M ) = (1, . . . , 1).

Remark II.1: In practice, there is always a small probability
that a transmission fails because the signal cannot be success-
fully decoded. The results of the present paper then remain valid
if Rm(n) is redefined to represent theexpectedfeasible rate, and
the 0–1 variableXm(n) is amended to indicate both which user
is selected and whether or not the transmission is successful.2

III. D ISCRETE RATE DISTRIBUTION

In this section we consider the case where the feasible rates
(R1, . . . , RM ) have a discrete distribution on some bounded
setJ ⊆ RM . Since the feasible rates are assumed stationary,
we restrict the attention to the class of stationary policies in or-
der not to blur the presentation with technicalities. The analysis
may readily be extended however to deal with non-stationary
policies. We first introduce some notation. Letpj be the sta-
tionary probability that the feasible rate vector isj ∈ J . We
write Rij = ji for j = (j1, . . . , jM ) ∈ J . Let xπij be the
probability that policy� selects useri for transmission when
the feasible rate vector isj ∈ J . Then the minimum average
throughput achieved under policy� is zπ = min

i=1,...,M
T πi with

T πi =
∑
j∈J

pjRijx
π
ij . Let �w be the revenue-based strategy cor-

responding to the vectorw = (w1, . . . , wM ). Without loss of

generality, we assume that
M∑
i=1

wi = 1, since only the relative

values of the revenues matter.
Lemma III.1: Policy � is optimal iff xπij , z

π are an optimal
solution to the following linear program:

max z (1)

sub z ≤
∑
j∈J

pjRijxij i = 1, . . . ,M
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M∑
i=1

xij ≤ 1 j ∈ J

xij ≥ 0 i = 1, . . . ,M, j ∈ J.
Proof
Let x∗ij , z

∗ be an optimal solution to the above linear pro-
gram. Now consider the policy which assigns the slot to useri
with probability x∗ij when the feasible rate vector isj ∈ J .
The minimum average throughput achieved under this policy
is min
i=1,...,M

∑
j∈J

pjRijx
∗
ij ≥ z∗. Thus, the optimal achievable

throughput is at leastz∗.
Conversely, for any policy�, xπij , z

π are a feasible solution to
the above linear program. Thus, the optimal achievable through-
put is at mostz∗, and hence exactlyz∗. The statement then eas-
ily follows. 2

The above lemma implies that for an optimal policy� at most
|J |+M−1 of the variablesxπij are non-zero, which forces most
of the variables to be one. Thus, only for a limited number of
rate combinations the slots are shared among several users.

In Section II, we observed that a revenue-based policy which
balances the throughputs is optimal. The next theorem shows
that the revenue criterion is in fact a necessary optimality con-
dition, in the sense that there exists a revenue vectorw∗ such
that when useri doesnot have the maximum rate-reward prod-
uct i.e.,w∗iRij < max

m=1,...,M
w∗mRmj , thenxπij = 0, i.e., useri

shouldnotbe selected for transmission. Thus, any optimal strat-
egymustbe a revenue-based policy associated withw∗, see [1]
for a related stability result.

Theorem III.1: If policy � is optimal, then there exists a vec-
torw∗ ≥ 0 such that for alli = 1, . . . ,M , j ∈ J ,

xπij

[
w∗iRij − max

m=1,...,M
w∗mRmj

]
= 0. (2)

Proof
By Lemma III.1, thexπij are an optimal solution to the linear

program (1). Now letw∗i , y∗j be an optimal solution to the dual
problem of (1):

min
∑
j∈J

yj (3)

sub
M∑
i=1

wi ≥ 1

yj ≥ pjRijwi i = 1, . . . ,M, j ∈ J
wi ≥ 0 i = 1, . . . ,M
yj ≥ 0 j ∈ J.

Then the complementary slackness conditions implyxπij [y
∗
j −

pjRijw
∗
i ] = 0, while optimality forcesy∗j = pj max

m=1,...,M
w∗mRmj ,

yielding (2). 2

The dual problem (3) may be interpreted as follows. The vari-
abley∗j = pj maxw∗mRmj represents the revenue generated in
statej, so that the objective function measures the total expected

earned revenue. Also, optimality implies
M∑
i=1

w∗i = 1. Thus,

the dual problem amounts to finding a revenue vectorw∗ which
minimizes the total expected earned revenue, subject to the con-

straint
M∑
i=1

w∗i = 1.

In conclusion, for policy�w
∗

to balance the throughputs,
the revenue vectorw∗ must minimize the total expected earned
revenue, which may also be derived as follows. For any vec-

tor w with
M∑
i=1

wi = 1, the total expected earned revenue is

R(w) =
M∑
i=1

wiT
πw

i ≥
M∑
i=1

wiT
πw
∗

i ≥
M∑
i=1

wi min
m=1,...,M

T π
w∗

m =

M∑
i=1

w∗i min
m=1,...,M

T π
w∗

m =
M∑
i=1

w∗i T
πw
∗

i = R(w∗).

IV. CONTINUOUS RATE DISTRIBUTION

In this section we consider the case where the feasible rates
(R1, . . . , RM ) have a continuous distribution on some bounded
setU ⊆ RM . We first introduce some notation. Letp(u) be the
stationary density of the feasible rate vector. We writeRi(u) =
ui for u = (u1, . . . , uM) ∈ U . Letxπi (u) be the probability that
policy � selects useri for transmission when the feasible rate
vector isu ∈ U .

Lemma IV.1:Policy� is optimal iff xπi (u), zπ are an optimal
solution to the following mathematical program:

max z (4)

sub z ≤
∫
u∈U

p(u)Ri(u)xi(u)du i = 1, . . . ,M

M∑
i=1

xi(u) ≤ 1 u ∈ U

xi(u) ≥ 0 i = 1, . . . ,M, u ∈ U.
The proof of the above lemma is similar to that of

Lemma III.1.

In Section II, we reasoned that a revenue-based policy which
balances the throughputs is optimal. The next theorem shows
that the revenue principle is in fact a necessary optimality cri-
terion, in the sense that there exists a revenue vectorw∗ such
that if useri doesnot have the maximum rate-reward product
on some set of non-zero measure, then useri should not be se-
lected for transmission on that set. Thus, in the above sense,
any optimal strategymustbe a revenue-based policy associated
with w∗.

Theorem IV.1:If policy � is optimal, then there exists a vec-
torw∗ ≥ 0 such that for alli = 1, . . . ,M ,∫
u∈U

xπi (u)
[
w∗iRi − max

m=1,...,M
w∗mRm(u)

]
p(u)du = 0.

(5)
The proof of the above theorem is similar to that of The-

orem III.1. (Although strong duality does not directly apply,
the complementary slackness properties may be derived via dis-
cretization.)
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V. A DAPTIVE ALGORITHMS

In the previous two sections we concluded that revenue-based
policies optimize throughput relative to pre-specified target val-
ues. However, calculating the optimal revenue vector directly
is a complicated problem, requiring detailed information on the
channel statistics in the form of the joint stationary distribution
of the feasible rates(R1, . . . , RM). Instead, we develop adap-
tive scheduling algorithms for determining the optimal revenue
vector on-line in an iterative fashion without the need for explicit
knowledge of the channel behavior.

In the next two sections we assume that the channel state is
governed by some discrete-time irreducible Markov chain with a
finite discrete state spaceS. When the channel state iss ∈ S, the
feasible rates have some continuousM -dimensional distribution
Fs(·) onR ⊆ [Rmin, Rmax]M , 0 < Rmin < Rmax < ∞, with
zero probability measure in any set of Lebesgue measure zero.
In practice, the feasible rates will typically have to be selected
from a limited set of discrete values. However, we may adhere to
the above assumptions by simply adding a small random pertur-
bation. By choosing the random perturbation sufficiently small,
the true achieved throughputs should be arbitrarily close to the
perturbed ones.

Denote byW := {w ∈ RM+ :
M∑
m=1

wm = 1} the

set of all price vectors. For anyw ∈ W, denote by
Ξm(w) the expected average throughput per slot received
by user m under price vectorw in stationarity. Define

Ξave(w) := 1
M

M∑
m=1

Ξm(w), Ξmin(w) := min
m=1,...,M

Ξm(w),

and Ξmax(w) := max
m=1,...,M

Ξm(w) as the average, the min-

imum, and the maximum expected throughput per slot under
price vectorw over all users, respectively.

Denote byw∗ the optimal revenue vector, i.e., the price vec-
tor which balances the expected throughputs. To facilitate the
presentation, we assume thatw∗ is unique. The analysis may
readily be modified for the case where there is a whole range of
optimal price vectors.

VI. T WO USERS

We first focus on the case of two users. In the next section,
we consider the situation with an arbitrary number of users.

Before describing the algorithm in detail, we first introduce
some useful notation. With minor abuse of notation, we write
w = w1, so thatw2 = 1−w. Denote∆Y (n) := Y1(n)−Y2(n),

and defineU(N) :=
N∑
n=1

∆Y (n) as the difference in cumulative

throughput between users 1 and 2 afterN slots. The absolute
difference|U(N)| is referred to as the throughputgap. We say
that the throughput gapwidensin theN -th slot if |U(N)| >

max
n=1,...,N−1

|U(n)|. User 1 is said to beleading if U(N) > 0,

and is referred to aslaggingotherwise, and vice versa for user 2.
We say that across-overoccurs in theN -th slot if the lead-
ing and lagging users exchange positions, which means that the
throughput gap changes sign, i.e.,U(N)U(N − 1) < 0.

The algorithm may now be described as follows. In every slot,
the user with the maximum price-rate product, at the current

price value, is selected for transmission. Thus, then-th slot is
assigned to user 1 ifw(n)R1(n) > (1 − w(n))R2(n), and to
user 2 otherwise (ties being broken arbitrarily).

To drive the price sequencew(n) towards the optimal
valuew∗, the price is adjusted over time on the basis of the
observed throughput realizations. As long as the throughput
gap doesnot widen, the price is left unaltered. However, if the
throughput gapdoeswiden, then the price is changed in favor of
the deficit user, thus at the expense of the surplus user. The price
of the leading user is decreased by�k(n), while the price of the
lagging user is simultaneously increased by the same amount.

To ensure convergence, areset is triggered at every cross-
over. The step size�k(n) is then reduced by incrementingk(n),
with {�k, k = 1, 2, . . .} a pre-determined convergent sequence
(e.g.�k+1 = �1�

k with � < 1, or �k = �1k
−β with � > 1).

We now proceed to demonstrate convergence of the above-
described algorithm. We first state an important assumption.

Assumption VI.1:(Large-Deviations Assumption)
LetXN

m (s, w) be a random variable representing the average
throughput per slot obtained by userm over a period ofN slots
under price vectorw, given that the initial state of the Markov
chain iss. Given a price vectorw ∈ W and� > 0, there exist
numbersCξm(w), Dξ

m(w) > 0 such that for any initial states

P{| XN
m (s, w) − Ξm(w) |> �} ≤ Cξm(w) e−D

ξ
m(w)N ,

m = 1, 2.
It may be verified that the above assumption is satisfied for

the feasible-rate process described earlier.

The above assumption ensures almost-sure convergence to the
optimal revenue vector as established in the next theorem.

Theorem VI.1:For the scheduling algorithm described
above, the price sequencew(n) converges to the optimal
pricew∗ wp 1, and consequently the sequencez(n) converges

to the optimal valuezπ
w∗

wp 1.
In preparation for the proof of the above theorem we first

present two lemmas.
Lemma VI.1:The price sequencew(n) cannot get perma-

nently trapped in either of the intervals[0, w∗− �] or [w∗+ �, 1].
Proof
We only prove the statement for the interval[w∗ + �, 1]. The

statement for the interval[0, w∗ − �] follows from symmetry
considerations.

The idea of the proof is as follows. As long as the price re-
mains in favor of user 1, the throughput difference continues to
have a positive drift, and will wander off to infinity. As a result,
the price will keep decreasing in fixed steps, and will eventually
turn negative, which is not possible.

For the formal proof details we refer to [5]. 2

Lemma VI.2:The price sequencew(n) cannot move from the
interval [0, w∗ + �] to the interval[w∗ + 2�, 1] infinitely often.
Similarly,w(n) cannot move from the interval[w∗− �, 1] to the
interval[0, w∗ − 2�] infinitely often.

Proof
We only prove the first statement, The second one follows

from symmetry considerations.
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The idea of the proof is as follows. In order for the price
sequence to move from the interval[0, w∗ + �] to the interval
[w∗+2�, 1], it must cross the interval[w∗+�, w∗+2�] from left
to right. For that to happen, the algorithm must make a number
of �-wrong moves. By an�-wrong move, we mean that the price
is increased while the current price is at least� above the optimal
valuew∗. As will be shown below, the expected number of�-
wrong moves before a cross-over occurs is finite. However, as
cross-overs occur, the step size will get smaller and smaller, and
the required number of�-wrong moves for the interval to be
crossed will get larger and larger. As a result, it will eventually
become increasingly unlikely for the interval to be crossed.

For the formal proof details we refer to [5]. 2

Proof of Theorem VI.1
Lemma VI.1 implies that the sequencew(n) spends infinitely

many times in the interval[w∗ − �, 1] wp 1. Lemma VI.2 shows
that the sequencew(n) returns only finitely many times from
the interval[w∗ − �, 1] to the interval[0, w∗ − 2�] wp 1. Com-
bining these two statements, we find that the sequencew(n)
spends only finitely many times in the interval[0, w∗−2�] wp 1.
Similarly, we have that the sequencew(n) spends only finitely
many times in the interval[w∗ + 2�, 1] wp 1. Hence, for any
� > 0, the sequencew(n) will eventually enter the interval
[w∗ − 2�, w∗ + 2�] wp 1, to never leave it again. Thus, the
sequencew(n) converges to the optimal pricew∗ wp 1.

By continuity, the sequenceE[Ym(n)] converges toΞm(w),
m = 1, 2. The convergence ofz(n) then immediately follows.

2

Remark VI.1:Some interesting related algorithms are pro-
posed in [1], [7], [8], [9], [10], where queue lengths instead
of rewards are used as weight factors. These algorithms pro-
vide throughput guarantees in terms of bounded expected queue
lengths (if achievable) rather than target ratios. 2

VII. A RBITRARY NUMBER OF USERS

We now turn to the situation with an arbitrary number of
users. In principle, the algorithm described in the previous
section for the case of two users may be extended to several
users, although there are some subtleties involved in identifying
a proper rule for when to trigger a reset.

Here we consider a related but somewhat different algorithm,
which may be described as follows. The algorithm makes price
updates based on sample periods of pre-determined ever in-
creasing size. Thus, the price updates occur at pre-determined
slotsK(n), instead of randomly determined slots as before, with
L(n) := K(n+1)−K(n) the length of then-th sample period.
In every slot of then-th sample period, the price vectorw(n)
is used for selecting a user for transmission. (From now on we
usen to index sample periods, rather than transmission slots as
before.)

To drive the price sequencew(n) towards the optimal
pointw∗, the price is adjusted over time on the basis of the ob-
served throughput realizations. Thedirectionin which the price
vector is modified at then-th update is determined by a random
vectorv(w(n)) based on the throughput obtained during then-
th sample period when the price vectorw(n) is used. Thesize
of then-th update is�(n) = �k(n), with {�k, k = 1, 2, . . .} a

pre-determined convergent sequence. Thus, at the(n + 1)-th
update, the price vector is recursively determined as

w(n+ 1) = w(n)− �(n)v(w(n)).

To ensure convergence, the step size�(n) is reduced by incre-
mentingk(n) every time a reset is triggered. Intuitively, resets
should occur rarely far away from the optimal pointw∗, but oc-
cur readily once the price vector is close tow∗.

It remains to specify the exact rules for (i) how to determine
the update directionv(w(n)), and (ii) when to trigger a reset.

(i) For every user the empirical average throughput over the
sample period is computed. The users are then partitioned into
two groups: (a) those with above-average throughput; (b) those
with below-average throughput. The prices of the above-average
users are decreased, while the prices of the below-average users
are increased. As the sample size grows, so that with high proba-
bility the empirical average throughputs line up with the true ex-
pected throughputs, this ensures that the price vector gets closer
to the optimal pointw∗ in some appropriate sense, as will be
shown later.

Formally, the procedure may be described as follows. Denote
by Xm the throughput received by userm during a particular
sample period in which price vectorw is used. DefineXave :=
1
M

M∑
m=1

Xm as the average throughput over all users. Denote by

Ω− := {m : Xm ≤ Xave} andΩ+ := {m : Xm > Xave}
the groups of below-average and strictly above-average users,
respectively. Then the price update directionv(w) is determined
as

vi(w) =
wi∑

m∈Ω− wm
i ∈ Ω−, (6)

vj(w) =
−wj∑

m∈Ω+ wm
j ∈ Ω+. (7)

Note that the price ratios within bothΩ− andΩ+ are main-
tained. This ensures that the expected throughput of the below-
average users increases, while the expected throughput of the
above-average users decreases, as may be easily checked. In
caseΩ+ = ∅, the price vector is simply left unaltered.

Also note that the above price update cannot be applied in
case the price values of some of the users inΩ+ are zero. To
prevent that situation from happening, the price process will be
restricted to the setWν := {w ∈ W : wm ≥ � for all m =
1, . . . ,M}, with � := Rmin/(Rmin+(M−1)Rmax). It is easily
verified thatw∗ ∈ Wν . In order to restrict the price process to
the setWν , the update is truncated at the boundary if necessary.

(ii) To ensure convergence, a reset is triggered under the con-
dition that every user has been a member ofΩ+ at least once
during a consecutive sequence of updates. Once the reset has
occurred, the next one is not triggered until every user has been
a member ofΩ+ at least once again.

We now proceed to prove convergence of the above-described
algorithm. We first discuss a few important assumptions.

Large-deviations assumption

As described above, the algorithm works by making price
updates based on samples of ever increasing size. To ensure
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convergence, we need that as the sample size grows, a ‘cor-
rect’ price update direction is selected with sufficiently high
probability. Given a price vectorw ∈ W, userm is called
�-below-average (respectively,�-above-average) ifΞm(w) <
Ξave(w)−� (respectively,Ξm(w) > Ξave(w)+�). We say that
the price update direction is ‘�-right’ if all the �-below-average
users belong toΩ− and have their price increased, and all the
�-above-average users belong toΩ+ and have their price de-
creased. This ensures that the price vector gets closer to the op-
timal pointw∗ in some appropriate sense, as will be shown later.
Now remember that at each update, the prices of the empirical
below-average users are increased, while the prices of the em-
pirical above-average users are decreased. Thus, for the price
update direction to be ‘correct’, it is critical that the empirical
average throughputs line up with the true expected throughputs.
This then motivates the following assumption.

Assumption VII.1:(Large-Deviations Assumption)
Let Xn

m(w) be a random variable representing the aver-
age throughput per slot obtained by userm over a period of
L(n) slots under price vectorw in stationarity. Given a price
vectorw ∈ W and� > 0, there exist a�-neighborhoodN ξ

ζ (w)
of w and numbersCξm(w), Dξ

m(w) > 0 such that

P{| Xn
m(w′)− Ξm(w) |> �} ≤ Cξm(w) e−D

ξ
m(w)L(n),

for all w′ ∈ Nξ
ζ (w), m = 1, . . . ,M .

We refer to [5] for a proof that the above assumption is satis-
fied for the feasible-rate process described earlier.

Boundary conditions

We further require that when a correct price direction is se-
lected, the update cannot be truncated to an arbitrarily small
size. The following assumption implies that if a correct price
direction is chosen, then for small enough step size�, the price
sequence will stay away from the boundary.

Assumption VII.2:There exist positive constants�∗ > 0,
� > 0 such that for all price vectorsw ∈ Wν , for any�-right
directionv(w), and for any� ∈ (0, �∗),

w + �v(w) ∈ Wν .
To check that the above assumption is satisfied, it suffices to

verify that extremely low prices cannot be decreased and that ex-
tremely high prices cannot be increased. First consider a useri
with a pricewi < Rmin/(Rmin + (M − 1)Rmax). Then the
throughput of useri is zero, which means that the price of useri
is increased if the price direction is right. Similarly, the through-
put of a userj with a pricewj > Rmax/(Rmin + Rmax) is �-
above-average for some� > 0, so that the price of userj is
decreased if the price direction is right.

FunctionT (·)
As indicated above, we also need that when a correct price

update direction is selected, the price vector gets closer to the
optimal pointw∗ by some definite amount. To measure dis-
tance fromw∗, we introduce a functionT (·) which attains a
unique minimum atw∗. DefineΓε := {w ∈ W : Ξmax(w) −
Ξmin(w) ≤ �} as an ‘�-neighborhood’ ofw∗. The following as-
sumption implies that if a correct price update direction is cho-
sen, then outsideΓε the reduction in the value ofT (·) for small

enough step size�, is at least� times some constant of propor-
tionality �.

Assumption VII.3:There exist positive constants�∗ > 0, � >
0, � > 0 such that for all price vectorsw 6∈ Γε, for any�-right
directionv(w), and for any� ∈ (0, �∗),

T (w+ �v(w)) ≤ T (w)− ��.
We will consider two alternative choices for the functionT (·).

The first one is

T (w) := Ξmax(w) − Ξmin(w),

i.e., the maximum difference in expected throughput between
any pair of users. By definitionT (w∗) = 0, andT (w) ≥ 0
for all w 6= w∗, with strict inequality in case the optimal price
vectorw∗ is unique.

The second function that we will consider is

T (w) :=
M∑
m=1

wmΞm(w),

i.e., the total expected revenue earned. As found in Section III,
the optimal price vectorw∗ minimizes that quantity over all vec-
tors in the setW, i.e.,T (w∗) ≤ T (w) for all w ∈ W, w 6= w∗,
with strict inequality in casew∗ is unique.

We refer to [5] for a proof that Assumption VII.3 is indeed
satisfied for the above twoT (·) functions.

In contrast to the first one, the secondT (·) function is also
suitable to show that Assumption VII.3 is satisfied for various
alternative options to select a price update direction, for example

vi∗ = 1− � > 0 i∗ = arg min
m=1,...,M

Xm, (8)

vj∗ = −1 j∗ = arg max
m=1,...,M

Xm, (9)

andvk = �n/(M − 2) for all k 6= i∗, j∗, for �n a given positive
sequence withlim

n→∞
�n = 0. In the sequel this will be referred to

as the ‘Update-Extreme’ algorithm, as opposed to the procedure
described earlier which will be called the ‘Move-to-Average’ al-
gorithm.

The next theorem establishes almost-sure convergence to the
optimal revenue vectorw∗ for the Move-to-Average algorithm.

Theorem VII.1:The price sequencew(n) converges to the
optimal price vectorw∗ wp 1, and consequently the sequence

z(n) converges to the optimal valuezπ
w∗

wp 1.
The above theorem is proved in [5]. The proof for the Update-

Extreme algorithm is mostly similar, except for a somewhat dif-
ferent notion of a correct price update direction.

Remark VII.1: In the present paper we focus on establishing
almost-sure convergence to the optimal revenue vectorw∗. This
critically relies on the step sizes{�k, k = 1, 2, . . .} being a con-
vergent sequence. As an alternative, the step sizes may be kept
fixed at some given value�. We expect that the price sequence
will then continue to oscillate aroundw∗, but with smaller am-
plitudes for smaller values of�. Observe however that there is
an inherent trade-off between the accuracy achieved on the one
hand and the speed the convergence, and thus the responsive-
ness to changing conditions, on the other hand. The value of�
then may be used to find the right balance between these two
conflicting objectives. 2
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Fig. 1. Normalized expected throughputΞi(w) as function ofw.

VIII. N UMERICAL RESULTS

In this section we describe some numerical experiments
which we conducted to investigate the convergence properties
of the proposed control algorithms. Besides verifying long-run
convergence, we also examine the transient performance, in par-
ticular the rate at which the prices converge to the optimal val-
ues.

In the first three experiments we consider continuous rate dis-
tributions. In the fourth experiment we assume a discrete distri-
bution where the feasible rates are determined by a fading pro-
cess via the signal-to-noise ratio. The fading process is modeled
using a discrete number of sinusoidal oscillators as described by
Jakes’ model [6].

In the final three experiments, we examine how well the
throughput ratios are maintained, and how well the algorithms
are able to track changes in the channel conditions or throughput
targets.

A. Two users with exponential rates

In the first experiment we consider a model of two users
with independent rates. The feasible rate for useri is gov-
erned by a conditional exponential distribution on some interval
[Rmin, Rmax], i.e.,

Fi(r) = G−1
i [1− e−γi(r−Rmin)], r ∈ [Rmin, Rmax],

with Gi = 1 − e−γi(Rmax−Rmin) a normalization coefficient,
i = 1, 2. We take[Rmin, Rmax] = [10, 400] Kbits/s and assume
(γ1, γ2) = (0.02, 0.01). Thus, the feasible rate for user 2 is
about twice as large in distribution as for user 1. The throughput
target for user 2 is also set twice as large as for user 1, i.e.,
(�1, �2) = (1, 2).

The normalized expected throughputs for these parameters as
a function ofw are plotted in Figure 1. From the figure, we see
that the optimal price isw∗ ≈ 0.6, which may more precisely
be determined asw∗ ≈ 0.593 using bisection.

We ran the control algorithm described in Section VI for 1000
slots. We used step sizes�k+1 = �k�1, with initial value�1 =
0.5 and reduction factor� = 0.9. The resulting price trajectories
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Fig. 2. Price trajectory for 2 users over 1000 slots.
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Fig. 3. Price trajectories for 2 users vs.w∗ (non-geometric step sizes).

are graphed in Figure 2 for a period of 1000 slots. Observe that
the prices converge to the optimal values in roughly 300 slots,
which corresponds to about 0.3 seconds of operation.

We repeated the above experiment for non-geometric step
sizes�k = �1k

−β, with � successively chosen as 1.5, 2.0, 3.0,
4.0. Note that the sum of the price changes is still convergent,
although the step sizes decay slower than before. The corre-
sponding price trajectories are shown in Figure 3 for a period of
1000 slots. We see that convergence is considerably slower for
smaller values of�, i.e., slower decay of the step sizes.

B. Three users

In the second experiment we consider a scenario with three
users. As before, the feasible rate for useri follows a conditional
exponential distribution on the interval [10, 400] with parame-
ters(γ1, γ2, γ3) = (0.02, 0.01, 0.02). Thus, the feasible rate for
user 2 is about twice as large in distribution as for users 1 and 3.

The target throughput ratios for the three users are set equal,
i.e., (�1, �2, �3) = (1, 1, 1). The optimal revenue vector is
w∗ ≈ (0.424, 0.152, 0.424) as may be determined using numer-
ical integration and two-dimensional bisection. Observe that the
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Fig. 4. Price trajectories for 3 users over 5000 slots vs.w∗ (Move-to-Average
algorithm).
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Fig. 5. Price trajectories for 3 users over 5000 slots vs.w∗ (Update-Extreme
algorithm).

optimal price for users 1 and 3 is higher than for user 1, as is
required in order to obtain equal throughput, since the feasible
rate for user 2 is stochastically larger.

We ran the two control algorithms described in Section VII
for 5000 slots, or approximately 5 seconds of operation, with
L(n) = 10n slots for then-th update. This amounts to
roughly 30 price updates. The initial revenue vector is set
to w(1) = (0.3, 0.6, 0.1). We used step sizes�k = k−2,
k = 1, 2, . . .. The resulting price trajectories are depicted as
the solid curves in Figures 4 and 5. The revenue vector for the
Update-Extreme algorithm after 30 price updates isw(30) ≈
(0.441, 0.123, 0.436), quite close to the optimal one.

We repeated the above experiment for the Update-Extreme
algorithm using40n and60n slots for then-th update, with the
same power series for�k. The corresponding price trajectories
are reproduced as the the dashed lines in Figure 5 for user 1 in
the first case and user 2 in the second (with similar results for the
remaining prices.) As expected, we see that using fewer samples
per price update leads to a slower and ‘noisier’ convergence to
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Fig. 6. Price trajectories for 8 users with 15,000 slots vs.w∗ (Move-to-Average
algorithm).

TABLE I

FEASIBLE RATE PER SLOT AS FUNCTION OFSNR.

Signal-to-Noise Ratio (dB) Rate (bits)

−5.0 < SNR 1000
−10.0 < SNR ≤ −5.0 500
−20.0 < SNR ≤ −10.0 250
−30.0 < SNR ≤ −20.0 100

SNR ≤ −30.0 30

the optimal revenue vectorw∗.

C. Eight users

In the third experiment we consider a situation with eight
users. As before, the feasible rate for useri follows a condi-
tional exponential distribution on the interval [10, 400]. The
exponents were chosen at random uniformly in [0.01, 0.05], and
turned out to be approximately (0.0489, 0.0263, 0.0139, 0.0480,
0.0220, 0.0107, 0.0461, 0.0128).

The target throughput ratios are again set equal for all users.
As before, we expect that a larger value of the exponentγ, in-
ducing smaller feasible rates, requires a higher price in order to
obtain equal throughput.

We ran the two control algorithms described in Section VII
for 15,000 slots, or approximately 15 seconds of operation, with
L(n) = 30n slots for then-th update. This amounts to roughly
55 price updates. The initial revenue vector is set at random.
We used step sizes�k = k−2, k = 1, 2, . . .. The resulting price
trajectory for the Move-to-Average algorithm is graphed in Fig-
ure 6.

D. Discrete rates driven by a fading process

We now consider a case with discrete rates governed by inde-
pendent fading processes as described by Jakes’ model [6]. The
mean received powers of user 1, 2 and 3 are -15.0 dB, 0.0 dB,
and -10.0 dB, respectively. The feasible rates per slot then fol-
low from Table 1.
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Fig. 7. Empirical average throughput for 3 users over 10,000 slots (Move-to-
Average algorithm withδk = k−3/2).

The throughput target for user 2 is set twice as large as for
users 1 and 3, i.e.,(�1, �2, �3) = (1, 2, 1).

We ran the two control algorithms described in Section VII
for 10,000 slots, withL(n) = n slots for then-th update. We
used step sizes�k = k−3/2 and�k = k−2, k = 1, 2, . . ..

As explained earlier, the discrete rate values are perturbed by
adding a small uniformly distributed random variable to obtain
a continuous version of the problem. We thus ensure that the
optimal control algorithm is determined by the revenue vector
only.

The empirical average throughputs are depicted in Figures 7,
and 8. The achieved throughputs under the Update-Extreme al-
gorithm are approximately 130 bits per slot for both users 1
and 3 and 270 bits per slot for user 2, quite close to the tar-
get ratios. Under the Move-to-Average algorithm the realized
throughputs are reasonably close to the target ratios too, pro-
vided the step size is reduced sufficiently slowly as in Figure 7.

The corresponding price trajectories are displayed in Fig-
ures 9, and 10. We see that that under the Update-Extreme
algorithm the prices converge to the optimal values in about 5
seconds. Under the Move-to-Average algorithm the prices con-
verge fairly quickly too, unless the step size is reduced so fast
that the process gets essentially overdamped.

E. Comparison with a forcing scheme

We now compare the revenue-based algorithms with a forc-
ing scheme. The forcing scheme assigns then-th transmission
slot to the userm∗(n) with the current minimum normalized
throughput, i.e.,

m∗(n) = arg min
m=1,...,M

ym(n)/�m.

By construction, the forcing scheme realizes the target
throughput ratios perfectly, in the sense that with probability 1,

yi(N)
yj(N)

→ �i
�j
, asN →∞

for all pairs of usersi, j = 1, . . . ,M .
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Fig. 8. Empirical average throughput for 3 users over 10,000 slots (Update-
Extreme algorithm withδk = k−2).
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Fig. 9. Price trajectories for 3 users over 10,000 slots (Move-to-Average algo-
rithm with δk = k−3/2).
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Fig. 10. Price trajectories for 3 users over 10,000 slots (Update-Extreme algo-
rithm with δk = k−2).
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Fig. 11. Empirical average throughput for 3 users over 5000 slots (forcing
algorithm).

The downside of the forcing scheme of course, is that it gen-
erally achieves lower throughput in absolute terms, as it does not
take advantage of the variations in the feasible rates. Under i.i.d.
assumptions, the throughput obtained under the forcing scheme
may in fact be computed in closed form as

yi(N)→ �iK, asN →∞.

with K−1 =
M∑
j=1

�j/E[Rj ].

We repeated the experiment of the previous subsection for the
forcing scheme. The empirical average throughputs are repro-
duced in Figure 11 for a period of 5000 slots. The achieved
throughputs are approximately 90 bits per slot for both users 1
and 3, and 180 bits per slot for user 2. The results show how
tightly the target throughput ratios are maintained under the
forcing scheme. In absolute terms however, the throughput for
all users is about 30% smaller than for the revenue-based algo-
rithms.

F. Tracking capability

We now examine how well the algorithms are able to track
sudden changes in the target throughput ratios or channel condi-
tions. In the first experiment, the throughput target for user 3 is
initially set to some low value. After 80 seconds, the throughput
target is suddenly incremented to allow for the transmission of
a data burst for user 3.

The resulting price trajectory for the Move-to-Average algo-
rithm is plotted in Figure 12. The optimal price values for the
new throughput ratios are also indicated as dashed straight lines.
The results show that after a few oscillations the prices quickly
settle down to the new optimal values.

IX. CONCLUSION

We considered the problem of scheduling data users with
varying channel conditions so as to obtain the optimal long-
run throughputs for given target ratios. We have shown that
the problem may be solved by selecting users for transmission
according to an optimal revenue vectorw∗ which balances the
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Fig. 12. Price adjustment to allow for data burst for user 3 (Move-to-Average
algorithm).

expected throughputs. We presented a wide class of stochastic
control algorithms which ensure almost-sure convergence tow∗

and thus achieve the optimal long-run throughputs.
Numerical experiments showed that the convergence to the

optimal revenue vector is in practice quite rapid (of the order
of a few seconds), and that the algorithms have the ability to
track changes in the channel conditions and throughput targets.
Further experiments are required to determine which form of
the algorithm is most adequate for implementation in the HDR
scheme. The algorithms may also be enhanced by allowing the
step sizes or the sample sizes to be adapted in response to non-
stationary changes in the feasible rate declarations
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