
OWL Tutorial

Reasoning Services

Reasoning services help knowledge engineers and users to build and use ontologies

(Many of the following slides have been taken from a longer tutorial on Logical Foundations for the Semantic Web by Ian Horrocks and Ulrike Sattler)

1

Complexity of Ontology engineering

Ontology engineering tasks:

• design

• evolution

• inter-operation and Integration

• deployment

Further complications are due to

• sheer size of ontologies

• number of persons involved

• users not being knowledge experts

• natural laziness

• etc.

2

Reasoning Services: what we might want in the Design Phase

• be warned when making meaningless statements

➠ test satisfiability of defined concepts

SAT(C, T) iff there is a model I of T with CI 6= ∅

unsatisfiable, defined concepts are signs of faulty modelling

• see consequences of statements made

➠ test defined concepts for subsumption

SUBS(C, D, T) iff CI ⊆ DI for all model I of T

unwanted or missing subsumptions are signs of imprecise/faulty modelling

• see redundancies

➠ test defined concepts for equivalence

EQUIV(C, D, T) iff CI = DI for all model I of T

knowing about “redundant” classes helps avoid misunderstandings

3

Reasoning Services: what we might want when Modifying Ontologies

• the same system services as in the design phase, plus

• automatic generation of concept definitions from examples

➠ given individuals o1, . . . , on with assertions (“ABox”) for them, create

a (most specific) concept C such that each oi ∈ CI in each model I of T

“non-standard inferences”

• automatic generation of concept definitions for too many siblings

➠ given concepts C1, . . . , Cn, create

a (most specific) concept C such that SUBS(Ci, C, T)

“non-standard inferences”

• etc.

4

Reasoning Services: what we might want when Integrating and Using Ontologies

For integration:

• the same system services as in the design phase, plus

• the possibility to abstract from concepts to patterns and compare patterns

➠ e.g., compute those concepts D defined in T2 such that

SUBS(Human u (∀child.(X u ∀child.Y)), D, T1 ∪ T2)

“non-standard inferences”

When using ontologies:

• the same system services as in the design phase and the integration phase, plus

• automatic classification of indidivuals

➠ given individual o with assertions, return all defined concepts D such that

o ∈ DI for all models I of T

5

Reasoning Services: what we can do

(many) reasoning problems are inter-reducible:

EQUIV(C, D, T) iff sub(C, D, T) and sub(D, C, T)

SUBS(C, D, T) iff not SAT(C u ¬D, T)

SAT(C, T) iff not SUBS(C, A u ¬A, T)

SAT(C, T) iff cons({o : C}, T)

➠ In the following, we concentrate on SAT(C, T)

6

Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is

SAT is semi-decidable iff co-SUBS is

➠ if SAT is undecidable but semi-decidable, then

there exists a complete SAT algorithm:

SAT(C, T) ⇔ “satisfiable”, but might not terminate if not SAT(C, T)

there is a complete co-SUBS algorithm:

SUBS(C, T) ⇔ “subsumption”, but might not terminate if SUBS(C, D, T))

1. Do expressive ontology languages exist with decidable reasoning problems?

Yes: DAML+OIL and OWL DL

2. Is there a practical difference between ExpTime-hard and non-terminating?

let’s see

7

Relationship with other Logics

• SHI is a fragment of first order logic

• SHIQ is a fragment of first order logic with counting quantifiers

equality

• SHI without transitivity is a fragment of first order with two variables

• ALC is a notational variant of the multi modal logic K

inverse roles are closely related to converse/past modalities

transitive roles are closely related to transitive frames/axiom 4

number restrictions are closely related to deterministic programs in PDL

8

Deciding Satisfiability of SHIQ

Remember: SHIQ is OWL DL without datatypes and nominals

Next: tableau-based decision procedure for SAT (C,T)

The algorithm proceeds by trying to construct a representation of a model I for C

This can be done because there always is such a representation, and the representation is

at most of size exponential in the size of the ontology

9

Complexity of DLs: Summary

Deciding satisfiability (or subsumption) of

without w.r.t.

concepts in Definition a TBox is a TBox is

ALC u, t, ¬, ∃R.C, ∀R.C, PSpace-c ExpTime-c

S ALC + transitive roles PSPace-c ExpTime-c

SI SI + inverse roles PSPace-c ExpTime-c

SH S + role hierarchies ExpTime-c ExpTime-c

SHIQ SHI + number restrictions ExpTime-c ExpTime-c

SHIQO SHI + nominals NExpTime-c? NExpTime-c?

SHIQ + SHIQ + “naive number restrictions” undecidable undecidable

SH + SH + “naive role hierarchies” undecidable undecidable

10

Complexity of SHIQ (Roughly OWL Lite)

SHIQ is ExpTime-hard because ALC with TBoxes is and SHIQ can

internalise TBoxes: polynomially reduce SAT(C, T) to SAT(CT , ∅)

CT := C u u
Civ̇Di∈T

(Ci ⇒ Di) u ∀U. u
Civ̇Di∈T

(Ci ⇒ Di)

for U new role with trans(U), and

R v̇ U, R− v̇ U for all roles R in T or C

Lemma: C is satisfiable w.r.t. T iff CT is satisfiable

Why is SHIQ in ExpTime?

Tableau algorithms runs in worst-case non-deterministic double exponential space

using double exponential time....

11

SHIQ is in ExpTime

Translation of SHIQ into Büchi Automata on infinite trees

C, T AC,T

such that

1. SAT(C, T) iff L(AC,T) 6= ∅

2. |AC,T | is exponential in |C| + |T |

(states of C,T are sets of subconcepts of C and T)

This yields ExpTime decision procedure for SAT(C, T) since

emptyness of L(A) can be decided in time polynomial in |A|

Problem AC,T needs (?) to be constructed before being tested: best-case ExpTime

12

SHIQO (roughly OWL DL) is NExpTime-hard

Fact: for SHIQ and SHOQ, SAT(C, T) are ExpTime-complete

I stands for “with inverse roles”, O” for “with nominals”

Lemma: their combination is NExpTime-hard

even for ALCQIO, SAT(C, T) is NExpTime-hard

13

Implementing OWL Lite or OWL DL

Naive implementation of SHIQ tableau algorithm is doomed to failure:

Construct a tree of exponential depth in a

non-deterministic way

 requires backtracking in a deterministic implementation

Optimisations are crucial

A selection of some vital optimisations:

Classification: reduce number of satisfiability tests when classifying TBox

Absorption: replace globally disjunctive axioms by local versions

Optimised Blocking: discover loops in proof process early

Backjumping: dependency-directed backtracking

SAT optimisations: take good ideas from SAT provers

14

Missing in SHIQ from OWL DL: Datatypes and Nominals

(Remember: I stands for “with inverse roles”, O” for “with nominals”)

So far, we discussed DLs that are fragments of OWL DL

SHIQ + Nominals = SHIQO

• we have seen:

SHIQO is NExpTime-hard

• so far: no “goal-directed” reasoning

algorithm known for SHIQO

• unclear: whether SHIQO is

“practicable”

• but: t-algorithm designed for SHOQ

➠ live without nominals or inverses

SHIQ + Datatypes = SHIQ(Dn)

SHOQ + Datatypes = SHOQ(Dn)

• extend SH?Q with concrete data and

built-in predicates

• extend SH?Q with, e.g.,

∃age. > 18 or

∃age, shoeSize. =

• relevant in many ontologies

• dangerous, but well understood extension

• currently being implemented and tested

for SHOQ (D)

15

Missing in SHIQ from OWL DL: Datatypes

In DLs, datatypes are known as concrete domains

Concrete domain D + (dom(D), pred) consists of

• a set dom(D), e.g., integers, strings, lists of reals, etc.

• a set pred of predicates, each predicate P ∈ pred comes with

– arity n ∈ N and

– a (fixed!) extension P n ⊆ dom(D)n

• e.g. predicates on Q: unary =3, ≤7, binary ≤, =, ternary {(x, y, z) | x + y = y}

16

Summing up: SAT and SUBS in OWL DL

We know

• how to reason in SHIQ (proven to be ExpTime-complete)

implementations and optimisations well understood

• how to reason in SHOQ(D) (decidable, exact complexity unknown)

optimisation for nominals O need more investigations

optimisation for (D) are currently being investigated

• that their combination, OWL DL1, is more complex: NExpTime-hard

so far, no “goal-directed” reasoning algorithm known for OWL DL

➠ accept an incomplete algorithm for OWL DL

➠ use a first-order prover for reasoning (and accept possibility of non-termination)

➠ live with OWL Lite while waiting for complete OWL DL algorithm

——————————–

1. SHIQO(D) with number restrictions restricted to >nR.>, 6nR.>

17

ABoxes and Instances

Remember: when using ontologies, we would like to automatically classify individuals

described in an ABox

an ABox Ais a finite set of assertions of the form

C(a) or R(a, b)

I is a model of A if aI ∈ CI for each C(a) ∈ A

(aI, bI) ∈ RI for each R(a, b) ∈ A

Cons(A, T) if there is a model I of Aand T

Inst(a, C, A, T) if aI ∈ CI for each model I of Aand T

Easy: Inst(a, C, A, T) iff not Cons(A ∪ {¬C(a)}, T)

Example: A = {A(a), R(a, b), A(b), S(b, c), B(c)}

T = {A v̇ 61R.>}
Inst(a, ∀R.A, A, T) but not Inst(b, ∀S.B, A, T)

18

ABoxes and Instances

How to decide whether Cons(A, T)?

 extend tableau algorithm to start with ABox C(a) ∈ A ⇒ C ∈ L(a)

R(a, b) ∈ A ⇒ (a,R,y)

this yields a graph—in general, not a tree

work on forest—rather than on a single tree

i.e., trees whose root nodes intertwine in a graph

theoretically not too complicated

many problems in implementation

Current Research: how to provide ABox reasoning for huge ABoxes

approach: restrict relational structure of ABox

19

Non-Standard Reasoning Services

For Ontology Engineering, useful reasoning services can be based on SAT and SUBS

Are all useful reasoning services based on SAT and SUBS?

Remember: to support modifying ontologies, we wanted

• automatic generation of concept definitions from examples

➠ given ABox Aand individuals ai create

a (most specific) concept C such that each ai ∈ CI in each model I of T

msc(a1, . . . , an), A, T)

• automatic generation of concept definitions for too many siblings

➠ given concepts C1, . . . , Cn, create

a (most specific) concept C such that SUBS(Ci, C, T)

lcs(C1, . . . , Cn), A, T)

20

Non-Standard Reasoning Services: msc and lcs

Unlike SAT, SUBS, etc., msc and lcs are computation problems

Fix a DL L. Define

C = msc(a1, . . . , an, A, T) iff aI
i ∈ CI ∀1 ≤ i ≤ n and ∀ I model of Aand T

C is the smallest such concept, i.e.,

if aI
i ∈ C′I ∀1 ≤ i ≤ n and ∀ I model of Aand T

then SUBS(C, C ′, T)

C = lcs(C1, . . . , Cn, T) iff SUBS(Ci, C, T) ∀1 ≤ i ≤ n

C is the smallest such concept, i.e.,

if Ci ∈ C′ ∀1 ≤ i ≤ n

then SUBS(C, C ′, T)

Clear: msc(a1, . . . , an, A, T) = lcs(msc(a1, A, T), . . . , msc(an, A, T))

lcs(C1, C2, C3, T) = lcs(lcs(C1, C2, T), C3, T))

21

Non-Standard Reasoning Services: msc and lcs

Known Results:

• lcs in DLs with t is useless: lcs(C1, C2, T) = C1 t C2

• msc(a, A, T) might not exist: e.g., L = ALC
T = ∅
A = {A(a), R(a, a)}

msc(a, A, T) = A u ∃R.A? A u ∃R.(A u ∃R.A)?

• ∃ DLs: (SUBS, SAT) msc, lcs are decidable/computable in polynomial time

EL with cyclic TBoxes (only u and ∃R.C)

• ∃ DLs: lcs can be computed, but might be of exponential size

ALE (only u, primitive ¬, ∀R.C, ∃R.C)

22

Non-Standard Reasoning Services: other

concept pattern: concept with variabels in the place of concepts

The following non-standard reasoning services also come w.r.t. TBoxes

unification: C ≡? D for C, D concept patterns

solution to C ≡? D: a substitution σ (replacing variables with concepts)

such that σ(C) ≡ σ(D)

Goal: decide unification problem and find a (most specific) such substitution

matching: C ≡? D for C concept patterns and D a concept

solution to C ≡? D: a substitution σ with σ(C) ≡ D

approximation: given DLs L1, L2 and L1-concept C, find

L2-concept Ĉ with SUBS(C, Ĉ) and

SUBS(C, D) implies SUBS(Ĉ, D) for all L2-concepts D

rewriting given C, T , find “shortest” Ĉ such that EQUIV(C, Ĉ, T)
23

Resources

ESSLI Tutorial by Ian Horrocks and Ulrike Sattler

http://www.cs.man.ac.uk/\~horrocks/ESSLI203/

W3C Webont Working Group Documents http://www.w3.org/2001/sw/WebOnt/

Particularly OWL Web Ontology Language Guide http://www.w3.org/TR/owl-guide/

W3C RDF Core Working Group Documents http://www.w3.org/2001/sw/RDFCore/

Particularly RDF Primer http://www.w3.org/TR/rdf-primer/

Description Logics Handbook http://books.cambridge.org/0521781760.htm

RDF and OWL Tutorials by Roger Costello and David Jacobs

http:/www.xfront.com/rdf/

http:/www.xfront.com/rdf-schema/

http:/www.xfront.com/owl-quick-intro/

http:/www.xfront.com/owl/

24

