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Abstract

Subsumption—determining whether one concept is more general than another—
is known to be NP-hard for all reasonably expressive terminological logics,
but, up to now, the decidability of subsumption for terminological logics
used in current knowledge representation systems such as NIKL remained
unknown. This paper shows that subsumption in the terminological logic
of NIKL is undecidable and thus that there are no complete algorithms for
subsumption or classification in NIKL.



1 Introduction

Terminological logics (also called frame-based description languages) formal-
ize and extend the notions of frames. They are used to represent knowledge
about the terminology used to describe the world. Terminological logics are
found in many modern knowledge representation systems, such as KL-ONE
[Brachman and Schmolze, 1985], KRYPTON [Brachman et al., 1985], KL-TWO
[Vilain, 1985], NIKL [Robins, 1986; Kaczmarek et al., 1986], KANDOR [Patel-
Schneider, 1984], BACK [Nebel and von Luck, 1988], and LooM [MacGregor
and Bates, 1987; MacGregor, 1988].

Although the syntax and expressive power of the terminological logics
used in different knowledge representation systems vary considerably, these
terminological logics all have the same basic ideas. They all allow the con-
struction of structured concepts and roles; they all have a similar set of op-
erators for constructing these concepts and roles; and they all have a formal
semantics' which provides a precise meaning for concepts and roles.

Perhaps the most important point of similarity between all these termi-
nological logics is that they define semantic relationships between concepts
and roles which play an essential part in the operation of the system. These
semantic relationships include whether one concept or role is necessarily more
general than another, i.e. whether the first subsumes the other; whether two
concepts or roles are necessarily disjoint; and whether one concept or role can
have any instances. The operations of the system are then defined in terms
of these semantic relationships. For example, all of the systems have a query
operation which asks whether one concept or role subsumes another. The
formal definition of subsumption in the logic provides a correctness criterion
for the operation.

It turns out that most of the operations performed by such systems can be
reduced to determining subsumption relationships. For example, determin-
ing whether a concept can have any instances is equivalent to determining
whether it is subsumed by a concept which is known to necessarily not have
any instances. Similarly classification—determining where a concept fits in
a taxonomy of concepts—reduces to asking which of the concepts in the
taxonomy it subsumes and which are subsumed by it.

In the earlier systems, this formal semantics was devised after the system was built,
but nowadays the semantics precedes the system.



Unfortunately, determining whether one concept subsumes another is an
inherently computationally expensive operation. This came as quite a sur-
prise, since the first subsumption algorithm (for KL-ONE), developed by Lip-
kis [1982], was a simple structural algorithm that ran in polynomial time,
and was initially thought to be complete. However, when Schmolze and
Israel [1983] developed a formal semantics for KL-ONE, the algorithm was
found to be sound but not complete.

More recently, Levesque and Brachman [1987] have shown that subsump-
tion in a very simple terminological logic is co-NP-complete. This logic is a
subset of the terminological logics of KL-ONE, NIKL, and KL-TWO, and thus
subsumption is NP-hard in these systems. Also, Nebel [1988] has shown that
subsumption is NP-hard in a subset of the terminological logics of KANDOR,
BACK, KL-ONE, NIKL, and KL-TWO. This intractability remains even when
numbers are represented in unary notation, thus making subsumption in all
these languages strongly NP-hard.

Although subsumption was known to be intractable in these languages,
it was not known whether it was decidable or not. A very recent result
by Schild [1988] shows that subsumption is undecidable in very expressive
terminological logics, ones that include conjunction and negation of roles.?
However, since the terminological logics used in most existing knowledge
representation systems do not include these constructs, this does not imply
that subsumption is undecidable in these less expressive terminological logics.
The purpose of this paper is to show that subsumption is indeed undecidable
for the terminological logic of NIKL (a much less expressive logic than the
one shown undecidable by Schlid), and hence in knowledge representation
systems that use terminological logics of similar power.

2 Formal Definitions

Before this undecidability result can be shown, a formal definition of the
terminological logic in question is needed.
This terminological logic has the following syntax:

<concept> 1= <atomic concept> |

2Shild’s proof is by reduction to Turing machines and is much more complicated than
the proof here.



(and <concept>T) |
(some <role>) |
(atmost 1 <role>) |
(all <role chain> <role chain>)
<role> ::= <atomic role> |
(restrict <role> <concept>) |
(inverse <role>)
<role chain> ::= (self) |
<role> |
(compose <role> <role>*)

This syntax is slightly different from the syntax of NIKL, as given in
[Schmolze, 1989]. However, the expressive power of this logic is a subset of
the expressive power of NIKL, as all the constructs in this logic can be created
in NIKL, even using arbitrary roles in role chains, which can be obtained in
NIKL by naming the role and using the name in the role chain.

The semantics of the logic is defined as follows:

Definition 1 A semantic structure, s, is a pair, {(D,E), where D is a non-
empty set and £ 1s a mapping from concepts and roles to their extension.
The extension of a concept is a subset of D—the set of domain elements that
belong to the concept. Similarly, the extension of a role is a subset of D X D.

The extension of non-atomic concepts and roles has to meet certain prop-
erties, namely

de&[(and C; ...C,)] iff foreachi, de E[C

d € &[(some R)] iff de (d,e) € E[R]

d € &[(atmost 1 R)] if He:{d,e) € ER]}| <1

d € &[(all Ry Ry)] iff Ve (d,e) & E[Ry] or (d,e) € E[Ry]

(d,e) € &[(restrict R C)] iff (d,e) € E[R] and e € E[C]

(d,e) € &[(inverse R)] iff (e,d) € £[R|

(d,e) € E[(self)] iff d=e

(d,e) € E[(compose Ry ...Ry)] iff Jz1,..., 2041 21 =d,2n41 =€, and

for each i, (2, zi11) € E[R}]
This semantics is compatible with the definitions in [Schmolze, 1989).
Now subsumption can be defined:

Definition 2 For any two concepts, C and C', C is subsumed by C' (C = (')
iff for any semantic structure, s = (D, ), E[C] C E[C'].

3



that is, one concept is subsumed by a second when all individuals that are
instances of the first must also be instances of the second.

3 Undecidability

Subsumption is shown to be undecidable in this logic via a reduction to the
Post correspondence problem for the alphabet {0,1}. The following definition
of the Post correspondence problem is taken from [Lewis, 1979, p. 55].2

Definition 3 A correspondence system is a finite subset P of X x X1 for
some finite alphabet X; i.e., a finite set of pairs of nonempty strings. A
presolution of P is a pair of strings (a1 ... g, B1 - - . Bx) such that {«;, 5;) € P
fori=1,..., k. This presolution is a solution of P provided that k > 0 and
ai...ap = P1...0,. The Post correspondence problem is to determine,
gwen a correspondence system P, whether or not P has a solution, for a
fixed alphabet ..

Theorem 1 The Post correspondence problem is undecidable for the alpha-
bet T = {0,1}.
Proof: See [Lewis, 1979], pp. 55-58.

The outline of the proof of undecidability of subsumption in this logic is
as follows: Given a correspondence system P, construct a concept Cp such
that there is a solution to P if and only if C is subsumed by Cp, where C is an
atomic concept not appearing in Cp. If this can be done then any algorithm
for subsumption in this logic would give rise to an algorithm for the Post
correspondence problem; since no such algorithm exists for the Post corre-
spondence problem, subsumption for this logic would then be undecidable.

Several atomic roles and concepts are used in the construction. The
atomic role T plays the role of a “universal role”. The extension of the
atomic concept A is the domain element that represents the empty string.
The atomic role F,, for a € {0,1}, has the property that (d,e) € E[F,] iff
e represents the concatenation of the string represented by d with a. The

3The following notation is used: If ¥ is a set of characters, then X7 is the set of finite,
non-empty strings over X. If 0 € ¥, then |o| is the number of characters in o, and o* is
the ith character of o.



atomic role P has the property that (d, e) € £[P] iff there is a presolution of
P with the strings represented by d and e.

The construction is much easier to understand if the following semanti-
cally meaningful abbreviations are used.

Definition 4 (Syntactic Abbreviations)

1. UY (and (all T (inverse T))
(all (compose T T) T)
(some T)
(all T (restrict T (all Fy T)))
(all T (restrict T (all F; T))))

o

(unique C) & (and (atmost 1 (restrict T C))
(some (restrict T C)))

. (function R) % (all T (restrict T (and (atmost 1 R) (some R))))

o

. (exists-self R) % (some (restrict T (all (self) R)))

_Qn-v\

(impl C; Cp) o (all (restrict T C;) (restrict T Cy))

(impl Ry Ry) o (all T (restrict T (all Ry Ry)))

Sl

A

(some (restrict T
(and A (some (restrict F,u
(some (restrict F ol
(some (restrict P
(some (restrict (inverse Fgs|)

(some (restrict (inverse Fy1) A)) -..)))).-.)))

8 Jop

(impl P (compose F,1 ...F,a P (inverse Fgs) ... (inverse Fg1)))

where a, 3 are elements of {0,1}7.



The first abbreviation states certain properties about T, which must hold
for a semantic structure to be of interest. These properties are that T must
be symmetric, transitive, and non-empty, as well as being a superset of Fy
and Fl.

The remaining abbreviations can be be understood in a semantic structure
where T is a universal relation. (It is not the case that T will always be a
true universal relation, but in all cases of interest a subset of the domain
where T is a universal relation will be used. The “domain” in the following
statements refers to this subset of the entire domain.) If this is the case then

1.

the extension of (unique C) is the entire domain iff the extension of C
is a singleton,

. the extension of (function R) is the entire domain iff the extension of R

forms a function,

. the extension of (exists-self R) is the entire domain iff the extension of

R includes (e, e) for some e in the domain,

. the extension of (impl C; C;) is the entire domain iff the extension of

C, includes the extension of Cy,

. the extension of (impl R; Ry) is the entire domain iff the extension of

R, includes the extension of Ry,

. the extension of |, g is the entire domain iff

de, f,g,h e € E[A] N f € E[A]A
(e,9) € E[(compose Fu1 ... F a)]A
(f,h) € E[(compose Fg1 ... Fgs)]A
(g9,h) € E[P],

and

the extension of J, g is the entire domain iff

Ve, f3g,h e, f) € EIP] = (e, g) € E[(compose Fyur ... F a)]A
(f,h) € E[(compose Fyi ... Fgs)A
(g9, h) € E[P].

Now the full construction is defined:



Definition 5 Let P be a correspondence system over the alphabet ¥ = {0, 1},
P ={{c1,51),-.-,{an, Bn)}. Then the concept Cp is defined as

(impl (and U (unique A) (function Fg) (function F;)

Ial,ﬂl s Ian,ﬁn Jal,ﬂl - 'Jan;ﬂn)
(exists-self P))

The idea behind the construction is that the extension of Cp is the entire
domain iff whenever certain conditions are satisfied then the extension of P
includes (e, e) for some e in the domain. These conditions are that T is a
“universal” role, that the extension of A is a singleton, that the extension of
Fo and F; form functions, and that if the strings represented by d and e form
a presolution of P then (d, e} is in the extension of P. This equivalence is used
to show that C = Cp, where C is an atomic concept not occurring in Cp, iff
P has a solution, and thus that subsumption in the logic in undecidable.

Theorem 2 Subsumption in the terminological logic given here is undecid-
able.

Proof: Let P be a correspondence system, let Cp be as above, and let C be
an atomic concept not appearing in Cp.

Suppose C = Cp.
Let s = (D, &) be a semantic structure with D = {0, 1}* for which

E[C] =D,

E[T]=D x D,

d € E[A] iff d is the empty string (written A),
(d,e) € E[Fy| iffe=4d-0,

(d,e) € E[F4] iff e=d -1, and

(d,e) € E|P] iff (d,e) is a presolution of P.

Now a simple inspection reveals that

EU] =D,

E|[(unique A)] = D,

E|(function Fy)] = D,

E|(function Fy)] = D,

Ella; 3] =D, for 1 <i<n, and
Ea, ) =D, for 1 <i<n.



Therefore E[(exists-self P)] = D, since £[Cp] = D. Thus there exists
e € D such that e € &[(all (self) P)] and thus (e, e) € £[P]. Therefore P has
a solution.

Suppose P has a solution.
Let s = (D, &) be an arbitrary semantic structure. Consider d € D for
which

d e £V,

d € E[(unique A)],

d € &[(function Fy)],

d € &[(function Fy)],

de&llypl, forl1 <i<mn, and
d e &y p), for 1 <i<n.

Let D' = {e € D : (d,e) € E[T|}. Then there is a unique e € D' such
that e € E[A]. Also, for all e € D’ there is a unique ¢ € D' such that
(e, €'y € E[Fo] and a unique €” € D’ such that (e, e") € E[F4].

For oo € {0,1}*, let @ be defined inductively as:

e ) is the unique €’ € D' such that e’ € £[A],
e o -0 is the unique e’ € D’ such that (@, e’) € £[Fy|, and
e o -1 is the unique €’ € D' such that (@, e’) € E[F;].

Similarly, for a € {0,1}" and e € D', let ea be defined inductively as:

€0 is the unique €’ € D' such that (e, €') € E[F],

el is the unique €’ € D' such that (e, €') € E[F],

ea - 0 is the unique ¢’ € D’ such that (e@,e') € E[F,], and

ea - 1 is the unique ¢’ € D' such that (e@,e') € E[F4].

Then (ag, 3;) € E[P], for 1 < i < n, because d € E[la, 5,]. Also, (e, €') €
E[P] implies (eay, 'B;) € E[P], for 1 < i < n, because d € £[J,, 5,]. Therefore,
if (, B) is a presolution of P then (@, 3) € £[P]. Since P has a solution, there
exists @ € {0, 1} such that (o, ) is a presolution of P. Thus (@, a) € [P,
and, since @ € D' for all o € {0, 1}, d € &[(exists-self P)].



Therefore, for alld € D, ifd € £[U], d € E[(unique A)], d € E[(function Fy)],
d € &[(function Fy)], d € Ela, 5], for 1 < i < n, and d € E[Jy, ], for
1 < i < mn, then d € &[(exists-self P)].

Thus for all d € D, for any d' € D, if

d' € &[(and U (unique A) (function Fg) (function F,)
Ia1,ﬁ1 K Ian,ﬂn Jal,ﬂl s Jan,ﬂn) ]

and (d,d’) € E[T], then d' € &|(exists-self P)] (and (d, d') € £[T]). Therefore,
recalling the definition of Cp, d € £[Cp], i.e., E[Cp| = D, and thus C = Cp.

Therefore C = Cp iff P has a solution, and thus, since the Post correspon-
dence problem is undecidable, so too is subsumption in this terminological
logic. m

Since this logic is a subset of the terminological logics of NIKL and LOOM,
these terminological logics are also undecidable. A simple translation to first-
order logic can be used to show that subsumption is semi-decidable in this
logic and also in the terminological logics of NIKL and LOOM.

There are several other subsets of the terminological logic of NIKL that are
also undecidable. For example, the inverse role construct can be eliminated
by adding

@l T
(&l T
(&l T
(all T

restrict T (atmost 1 Gy)))
restrict T (atmost 1 G;)))
restrict T (all (self) (compose Fy Gy))))
restrict T (all (self) (compose F; Gy))))

P e e

to the conjuncts in Cp, and replacing (inverse Fy) with G, and (inverse F;)
with G;.* A proof that this logic is undecidable is given in Appendix A.

4 Conclusion

This result does not lessen the utility of terminological logics, especially since
knowledge representation systems using terminological logics have retreated

4Manfred Schmidt-Schauss, in work performed while this note was in press, has a proof
that an even smaller subset is undecidable.



to incomplete subsumption and classification algorithms as a result of the
intractability of subsumption in these logics. In particular, the classification
algorithm of NIKL does nothing with the information that one role is the
inverse of another and also does not discover subsumptions such as (all R Cy)
subsuming (and (all R C;) (all (restrict R C;) Cy)).

The meaning of this result is that no complete algorithm exists for sub-
sumption in the terminological logic of NIKL, and for terminological logics
incorporating the terminological logic shown to be undecidable here. There-
fore attention must be transferred from finding complete subsumption and
classification algorithms to providing better, and better described, partial
subsumption and classification algorithms.
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A Undecidability of Logic without Inverse

This appendix contains a proof that subsumption is undecidable in the termi-
nological logic given here even if role inverses are not included. The basic idea
behind the proof is to replace role inverses by a new role which is constrained
to be the inverse of the original role.

Definition 6 Let P be a correspondence system over the alphabet ¥ = {0, 1},
P = {{a1,B1),---,{n, Bn)}. Then the concept C} is defined as

(impl (and U (unique A) (function Fg) (function F;)
(all T (restrict T (atmost 1 Gy)))
(all T (restrict T (atmost 1 Gy)))
(all T (restrict T (all (self) (compose Fy Gp))))
(all T (restrict T (all (self) (compose F; G1))))

II II ! J/ )
( . t al’ﬂl:_lf .P.).) an;ﬂn al;ﬂl e a’n)/B’n
exists-se ,

where

; def
1. Ia,ﬁ =

12



(some (restrict T
(and A (some (restrict F.
(some (restrict F ol
(some (restrict P
(some (restrict Ggs

(some (restrict Ggi A)) ... )))))---)))).

and
2. Jus X (impl P (compose Fy1 ...Fya P Ggisl - .. Ggr)).

Theorem 3 Subsumption in the terminological logic given here is undecid-
able, even if role inverses are not included.

Proof: Let P be a correspondence system, let C%, be as above, and let C be
an atomic concept not appearing in Cl.

Suppose C = Ch.
Then let s = (D, ) be a semantic structure for which

ElC] =

E[T]=D x D,

d € E[A] iff d is the empty string (written \),
(d,e) € E[Fo] iff e=4d -0,

(d,e) € E[Fy] iff e=d -1,
(d ,6> E(Go] iff (e, d) E5[Fo]
(d,e) € % 1] iff (e, d) € E[F4], and

(d,e)

Now a simple inspection reveals that

ElU] =

E[(unique A)] = D

&[(function Fy)] = D

E|(function Fy)] = D

E[(all T (restrict T (atmost 1 Gg)))] =D
(
(

E[P] iff {(d, e) is a presolution of P.

’

E[(all T (restrict T (atmost 1 G;)))] = D,

E[(all T (restrict T (all (self) (compose Fy GO))))]
E[(all T (restrict T (all (self) (compose F; Gi))))]
Ell. 5] =D, for1 <i<n, and

E,, 5] =D, for 1 <i<n.

13



Therefore E[(exists-self P)] = D, since £[C};] = D. Thus there exists
e € D such that e € &[(all (self) P)] and thus (e, e) € £[P]. Therefore P has
a solution.

Suppose P has a solution.
Then let s = (D, ) be an arbitrary semantic structure. Consider d € D
for which

d e £V,
d € E[(unique A)],
d € &[(function Fy)],
d € &[(function Fy)],
d e E[(all T (restrict T (atmost 1 Gy)))],
d e E[(all T (restrict T (atmost 1 Gy)))],
d e E[(all T (restrict T (all (self) (compose Fy Go))))],
d e E[(all T (restrict T (all (self) (compose F; G1))))],
deé’[ll ], for 1 <0 <, and
[Jo

deé& ]forlgign.

Let D' = {e € D : (d,e) € E[T]}. Then, as in the main proof, there
is a unique e € D' such that e € E[A]. Also, for all e € D’ there is a
unique €' € D' such that (e,e’) € £[Fy] and a unique e’ € D' such that
(e,e"y € E[F1]. Define o, for @ € {0,1}*, and ed/, for « € {0,1}* and
e € D', as in the main proof.

Since

d € &[(function Fy)],
d € E[(all T (restrict T (atmost 1 Gy)))], and
d € E[(all T (restrict T (all (self) (compose Fy Go))))],

therefore, for e, e’ € D', (e, e') € Fy iff (¢/,e) € Gy. Similarly, for e, e’ € D',
(e,e') € Fyiff (¢/,e) € G;.

Then (o, 3;) € E[P], for 1 < i < n, because d € £[I;,, 5], and (e, e’) € E[P]
implies (eqa;, e'B]) € E[P], for 1 < i < n, because d € E[J,,, 5.]. Therefore, if
(o, B) is a presolution of P then (o/, 5') € E[P]. Since P has a solution, thus
there exists o € {0, 1} such that (o, o) is a presolution of P. Thus (¢/,a/) €
E[P], and, since o/ € D' for all o € {0,1}*, thus d € E[(exists-self P)].

Therefore, as in the main proof, for all d € D, d € £[C}], and thus
C=Ch.

14



Therefore C = C’ iff P has a solution, and thus, since the Post correspon-
dence problem is undecidable, so too is subsumption in the terminological
logic without role inverses. m
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