Comparing Propositional Modal Satisfiability Optimisations
for Description Logic Subsumption*

Ian Horrocks
University of Manchester, Manchester, UK
and IRST, Trento, Italy

Abstract

Effective systems for expressive description logics re-
quire a heavily-optimised subsumption checker incor-
porating a range of optimisation techniques. Because
of the correspondence between description logics and
propositional modal logic most of these techniques
carry over into propositional modal logic satisfiability
checking. Some of the techniques are extremely effec-
tive on various test suites for propositional modal sat-
isfiability and others are less effective. Further, the
effectiveness of a technique varies widely depending on
the test performed.

Description logic systems (Brachman et al. 1991)
spend much of their time computing subsumption (gen-
eralization) relationships between descriptions. If the
system is based on an expressive description logic then
the amount of time spent computing subsumption can
be intolerable, even for small knowledge bases, unless
steps are taken to heavily optimise this task. The to-
tal time spent in subsumption checking comes from the
number of subsumption checks required to process a
knowledge base as well as from the time spent in per-
forming the hardest of these subsumption checks—with
an expressive description logic, the time taken by a
small number of hard subsumption checks can domi-
nate the total time.

Two systems based on expressive description logics,
KRris (Baader & Hollunder 1991) and CRrRACK (Bres-
ciani, Franconi, & Tessaris 1995), have incorporated a
number of optimisations to achieve better performance
of their subsumption checkers. These systems use vari-
ous techniques to avoid performing subsumption checks,
and they also optimise the subsumption check itself.
Two other systems that explore the optimisations re-
quired to build an expressive description logic system
are FaCT (Horrocks 1997), a full description logic sys-
tem, and DLP (Patel-Schneider 1997), an experimen-
tal system providing only a limited description logic
interface. The subsumption checkers for both FaCT
and DLP incorporate a range of known, adapted and

This is an extended version of “Comparing Subsump-
tion Optimizations”, from the Proceedings of the 1998 In-
ternational Workshop on Description Logics, Trento, Italy,
June 1998, pp. 90-94.

Peter F. Patel-Schneider
Bell Labs Research, Murray Hill, NJ, U.S.A.

novel optimisation techniques including lexical normal-
isation, semantic branching search, boolean constraint
propagation, dependency directed backtracking, heuris-
tic guided search and caching.

These optimisation techniques make a dramatic dif-
ference to the performance of the overall system. As
evidence, KRIS is not able to load (a modified version
of) a large medical terminology knowledge base from
the GALEN project (Rector & Horrocks 1997) because
it gets stuck trying to perform one of the thousands
of required subsumption tests. FaCT and DLP, which
have higher levels of optimisation, are able to easily
load this knowledge base, classifying over two thousand
definitions in about two hundred seconds.

Because FaCT and DLP incorporate several optimi-
sations we have investigated which of these optimisa-
tions are most effective. We would have liked to per-
form this investigation using a sample of description
logic knowledge bases that incorporate hard problems
for description subsumption, unfortunately such knowl-
edge bases are currently uncommon, largely because ex-
isting description logic systems have been unable to ef-
fectively process them.

However, there are other sources of hard descrip-
tion logic subsumption problems! Recent work (Schild
1991) has shown that determining subsumption in ex-
pressive description logics is equivalent to determining
satisfiability of formulae in propositional modal or dy-
namic logics. In particular, KriS and CRACK imple-
ment a superset of the propositional modal logic Ky,
while FaCT and DLP implement a superset of the
propositional modal logic K4(,). A number of test-
ing methodologies have been established for proposi-
tional modal logics (Heuerding & Schwendimann 1996;
Giunchiglia & Sebastiani 1996; Hustadt & Schmidt
1997) and we have used these to perform experiments
comparing the effectiveness of the various optimisations
built into FaCT and DLP.

The Description Logic ALCg+

FaCT and DLP are designed to build and maintain tax-
onomies of named concepts. Given a collection of defi-
nitions of named concepts and statements about these
concepts, they determine their subsumption taxonomy.
To do this FaCT and DLP have to determine many

Syntax Semantics
A AT C AT

T AT

1 0

-C AT —C*
cnbD | ¢ctnD?
cub |ctuD?

3JR.C |{de AT | R*(d)NnCT £ 0}
VYR.C |{de AT |R*(d) C C*}
IT.C | {de AT | TE(d)nCT # ¢}
VT.C | {d e AT |T*(d) C CT}

Table 1: Semantics of ALC g+ concept expressions

subsumption relationships between descriptions.

The description logic that DLP implements is called
ALCp+. FaCT implements a considerably more-
expressive logic, but most of the satisfiability optimisa-
tions in FaCT are demonstrable in ALCg+. ALC g+ is
built up from atomic concepts and two kinds of atomic
roles, non-transitive roles and transitive roles. Concepts
in ACCp+ are formed using the grammar A | T | L |
-~C |CnD |CuD|3R.C|VR.C|3T.C|VT.C, where
A is an atomic concept, C' and D are concept expres-
sions, R is a non-transitive role, and T is a transitive
role.

The semantics of ALC g+ is a standard extensional se-
mantics, using an interpretation Z that is a pair (A%, .7)
consisting of a domain and a mapping from concepts to
subsets of the domain and from roles to binary relations
on the domain (transitive relations for transitive roles,
of course), as given in Table 1. One concept then sub-
sumes another if and only if the extension of the first
includes the extension of the second in all interpreta-
tions.

The semantics of ALC g+ is a simple transformation
of the possible world semantics for propositional modal
logics. In this transformation elements of the domain
correspond to possible worlds, atomic concepts corre-
spond to propositional variables, and roles correspond
to modalities. Thus fragments of ALC g+ correspond
t0 K(m) and K4(;,). ALC g+ can also express formulae
in K'T(1,) and S4(y,) via the usual encoding that maps
VR.C into CNVR.C, etc.

Determining subsumption in ALCg+ is PSPACE-
complete (Sattler 1996), as is the related problem of
determining whether a concept in ALCg+ is satis-
fiable. This and related complexity problems have
lead some developers of description logic systems to
use less-expressive description logics (Brachman et al.
1993). However, it is possible to build practical de-
scription logic systems based on expressive description
logics (Baader & Hollunder 1991; Bresciani, Franconi,
& Tessaris 1995; Horrocks 1997) that have this sort of
computationally intractable subsumption.

Systems that are based on description logics like
ALCgr+ generally determine whether a subsumption
holds by transforming the subsumption question into a
satisfiability question in the obvious manner. They then

2

attempt to construct a model for this concept, just as a
tableaux satisfiability checker for a propositional modal
logic attempts to construct a model for a formula. Dur-
ing this process, various nodes are created, where each
node represents an individual, and tells whether the
individual belongs to various concepts. This set of con-
cepts is said to form the label of the node—denoted
L(x).

The basic algorithm starts out with a single node rep-
resenting an individual that must be in the extension of
the concept being tested for satisfiability. This concept
is expanded to produce simpler concepts that must have
the individual in their extension. Disjunctive concepts
give rise to choice points in the algorithm.

Each existential role concept, IR.C, causes the cre-
ation of a new, related node representing another indi-
vidual which must be in the extension of C'. If a node
is related to another node via role R, the second node
is called an R-successor of the first. Universal role con-
cepts augment the concepts that these individuals must
belong to. In order to guarantee termination, transitive
roles require blocking: a check to ensure that no other
node has the same set of concepts—if so, the two nodes
can be collapsed into a cycle.!

If the algorithm constructs a collection of nodes
where there are no concept expressions that have not
been expanded and where there are no obvious contra-
dictions, called clashes, at any of the nodes, then the
collection of nodes corresponds to a model for the ini-
tial concept. If the algorithm fails to construct such a
collection then the initial concept is unsatisfiable.

The details of the basic algorithm are fairly standard,
and can be found in (Sattler 1996).

Optimisation Techniques

A naive implementation of the algorithm described
above would be much too slow to be used for sub-
sumption testing in a description logic, where classi-
fying a large knowledge base may may require tens of
thousands of subsumption /satisfiability tests (Horrocks
1997). DLP (and FaCT)? therefore employ a range
of known, adapted and novel optimisations that im-
prove the performance of the satisfiability testing al-
gorithm. These optimisations include: lexical normal-
isation, semantic branching search, boolean constraint
propagation, dependency directed backtracking, heuris-
tic guided search, and caching.

DLP simplifies all concept expressions and converts
them into a lexically normalised form. In this form,
concept expressions consist only of (possibly negated)
atomic concepts, conjunction concepts and universal
role concepts: expressions of the form IR.C are trans-
formed into —(VR.—C) and expressions of the form
(D1U...UD,) are transformed into =(—=D; M. ..N-D,,).
In addition, the sub-expressions forming conjunctive

'In this description logic all cycles are good—they can
be interpreted as valid cyclical models.

2From now on we will often refer to DLP only, as it has a
larger set of optimizations, and incorporates the ideas from
FaCT.

concepts are sorted, and any duplicates eliminated. The
normalisation process also identifies and simplifies sub-
expressions which are obviously satisfiable or obviously
unsatisfiable, replacing them with T or L respectively.
In extreme cases the need for a tableau expansion can
be completely eliminated.

Lexically identical concepts are uniquely stored so
that a clash can be detected as soon as an expression
and its lexical negation occur in the same node label.
This can lead to clashes being detected much earlier,
eliminating the (possibly costly) expansion which would
have been required in order to generate node label(s)
containing clashing atomic concepts

Description logic satisfiability tests typically deal
with an unexpanded disjunction (D; U...UD,) € L(x)
by searching the possible models obtained by adding
each of Dy,...,D, to L(z), a technique known as
syntactic branching (Giunchiglia & Sebastiani 1996).
In contrast, DLP uses a semantic branching search
technique adapted from the Davis-Putnam-Logemann-
Loveland procedure (DPLL) commonly used to solve
propositional satisfiability (SAT) problems (Davis, Lo-
gemann, & Loveland 1962; Freeman 1996). In semantic
branching a single disjunct D is chosen from the un-
expanded disjunctions in L(z), and the two possible
models obtained by adding either D or =D to L(zx) are
then searched.

Because the two possible models generated at a se-
mantic branching point are strictly disjoint, there is no
possibility of wasted search. An additional advantage
of using a DPLL-based search technique is that a great
deal is known about the implementation and optimi-
sation of this algorithm. In particular, both boolean
constraint propagation and heuristic guided search can
be used to try to minimise the size of the search tree.

Boolean constraint propagation (BCP) is a technique
used to maximise deterministic expansion, and thus
pruning of the search tree via clash detection (Free-
man 1996). Before semantic branching is applied to
the label of a node z, BCP deterministically expands
disjunctions in L(x) which present only one expansion
possibility and detects a clash when a disjunction in
L(x) has no expansion possibilities: in effect, BCP uses
the inference rule w to simplify the expression
represented by L(z). This can dramatically reduce the
size of the search space, particularly when used in con-
junction with semantic branching.

Inherent unsatisfiability concealed in sub-problems
can lead to large amounts of unproductive backtracking
search known as thrashing. DLP tackles this problem
by adapting a form of dependency directed backtrack-
ing called backjumping, which has been used in solving
constraint satisfiability problems (Baker 1995).

Backjumping labels concept expressions with a de-
pendency set indicating the branch points on which
they depend. When a clash is discovered, the depen-
dency sets can be used to identify the most recent
branch point where exploring the other branch might
alleviate the cause of the clash. The algorithm can then

3

jump back over intervening branch points without ex-
ploring alternative branches. Backjumping can lead to
dramatic reductions in the search space, but there is
some overhead caused by the evaluation and storage of
the dependency sets.

During a tableau expansion many identically labelled
nodes may be created, particularly as the R-successors
for a node x each have the same concept expressions for
the universal role concepts in L(z). DLP takes advan-
tage of the repetitive structure of a typical tableau by
caching the satisfiability result for each node label as it
is evaluated. If a label recurs, then there is no need to
reevaluate the satisfiability of that node: the previous
satisfiability result can simply be reused.

Caching can produce dramatic performance improve-
ments but it may require considerable additional stor-
age. Caching can also interact adversely with back-
jumping because full dependency information is not
available for cached results.

DPLL SAT algorithms often use heuristics to guide
the search by selecting the next disjunct on which to
branch. These heuristics typically try to maximise the
effectiveness of BCP by selecting disjuncts which occur
frequently in small disjunctions (Freeman 1995). How-
ever, these techniques do not work well with modal
problems because they rely for their effectiveness on
finding the same disjuncts recurring in multiple disjunc-
tions. This is likely in non-modal problems, otherwise
most problems would be trivially satisfiable, but it is
less likely in modal problems where unsatisfiability can
be caused by modal sub-problems.

DLP tackles this problem by using a heuristic which
tries to maximise the effectiveness of backjumping. This
is done by branching first on a disjunction with the old-
est dependencies (Horrocks 1997). The disjunct within
these disjunctions is chosen using Jeroslow and Wang’s
weighted occurrences heuristic (Jeroslow & Wang 1990)
(the JW heuristic hereafter), a BCP-maximising heuris-
tic. In addition, DLP reduces the size of the search
space by using similar heuristic techniques to select the
order in which R-successors of a node are expanded.

Comparing Optimisations

In order to determine which optimisations are effective,
DLP has configuration options to turn on and off or
vary all of the above optimisations. We have run DLP in
various configurations on several test suites. All statis-
tics reported for DLP are for runs on machines with
approximately the speed of a SPARC Ultra 1 and with
128MB of main memory.
The configurations that we tested are:

Oldest-JW: Select an oldest disjunction and use the
JW heuristic to select a disjunct in it and whether to
branch positive or negative first. This is the basis for
the other configurations below.

JW: Use the JW heuristic to select a disjunct from
all disjunctions and whether to branch positive or
negative first.

Configuration Total S4 class

45 branch grz ipc md path ph s5 tdp
Oldest-JW 928 21 21 21 10 3 13 4 19 21
JW 915 | 21 18 21 10 3 8 5 21 21
Random, negative 907 | 21 18 21 10 3 12 7 3 21
Random, positive 868 21 18 21 10 3 9 7 4 21
No caching 839 | 21 21 21 8 7 9 4 8§ 21
No backjumping 863 | 21 21 21 7 3 3 4 5 19
No semantic branching | 738 12 4 21 7 3 2 7 4 6
No BCP 910 21 21 21 9 3 13 4 17 21
No normalisation 901 21 21 21 10 3 8 6 13 21

Table 2: Total Tableaux’98 problems solved and Provable S4 problems solved

Random, negative: Select a disjunct at random, and
branch negative on it first.

Random, positive: Select a disjunct at random, but
do the positive (instead of the negative) branch first.

No caching: Turn off caching.
No backjumping: Turn off backjumping

No semantic branching: Turn off semantic branch-
ing

No BCP: Turn off boolean constraint propagation
No normalisation: Turn off normalization

Unfortunately, we are not yet satisfied with the kinds
of tests that we have been able to do. We would pre-
fer to test on actual description logic knowledge bases,
as that is what DLP is designed for. However, there
are very few description logic knowledge bases that use
the more-powerful constructs provided by DLP. Most of
our testing has thus been against test suites for proposi-
tional modal logics, using the propositional modal logic
interface for DLP. We have tested against the test suite
for the Tableaux’98 propositional modal logic compar-
ison (Heuerding & Schwendimann 1996) and against
a collection of random formulae initially generated by
Hustadt and Schmidt (Hustadt & Schmidt 1997).2

The Tableaux’98 test suite consists of several classes
of formulae (e.g. branch), in both provable and non-
provable forms, for each of K, KT, and S4. For each
class of formula, 21 examples of supposedly exponen-
tially increasing difficulty are automatically generated
from a basic pattern which incorporates features in-
tended to make the formulae hard to solve. The test
methodology is to ascertain the number of the largest
formula of each type which the system is able to solve
within 100 seconds of CPU time.

The complete test suite contains 1,134 problems; Ta-
ble 2 shows the total number of problems solved (within
100s of CPU time) by various configurations of DLP
and how many of the provable S4 formulae were solved
within the time limit.

30ne side-effect of this testing is that our results ap-
ply directly to the straight problem of optimising proposi-
tional modal satisfiability, without taking into account our
intended goal of optimising description logic systems.

There is a wide variability between the different
types of formula, with some optimisations dramatically
changing the behaviour both quantitatively, in solv-
ing much more difficult problems, and qualitatively, in
changing from an exponential growth in solution time
to an almost-constant solution time. This is illustrated
by Fig. 1 which shows the actual solution times for two
classes of formulae with various optimisations disabled.
In one of these examples the qualitative improvement
is due to caching; in the other it is due to semantic
branching and backjumping,.

The results indicate that the most effective optimisa-
tion for this test suite is semantic branching. The next-
most-effective technique is caching, followed by back-
jumping. The benefits from semantic branching, how-
ever, are concentrated in a few classes of formulae, such
as branch and t4p in Table 2, which were designed to
have large amounts of redundant syntactic search. Se-
mantic branching avoids this redundant search and thus
does much better on these classes of formulae. Caching
is very effective on this test suite because of its large
amount of structure, which results in the frequent rep-
etition of sub-problems.

The heuristics were only effective for some classes
of problem in this test suite. In some classes the JW
heuristic was good, such as s5 in Table 2, and in others
it resulted in worse performance, but overall it actu-
ally resulted in fewer problems being solved than us-
ing the simpler oldest-first heuristic. This is probably
due to the fact that the JW heuristic is designed for
non-modal problems whereas the oldest-first heuristic
enhances backjumping.

Our second propositional modal logic test suite uses
a common method for testing SAT decision proce-
dures (Franco & Paull 1983) that has been adapted for
use with propositional modal K by Giunchiglia and Se-
bastiani (Giunchiglia & Sebastiani 1996), and further
refined by Hustadt and Schmidt (Hustadt & Schmidt
1997). The method uses a random generator to produce
formulae, with the characteristics of the formulae being
controlled by a number of parameters. Each formula
is a conjunction of L K-clauses, where a K-clause is a
disjunction of K elements, each element being negated
with a probability of 0.5. An element is either a modal
atom of the form VR.C, where C is itself a K-clause, or
at the maximum modal depth D, a propositional vari-

100

Oldest-JW ——

No caching -

No backjyrmping -
No semantic byanching
No BCP

x bk b4

No normalisation -x--

CPU time (s)

0.1

0.01

5 10 15 20
modal K unprovable 'dum’ class formula number

100

Oldest-JW ——

¥ No‘caching -+--
Nobatkjumping -&

10t No semantic branching - |

B No BCP -+

P No normalisation ---

o

CPU time (s)

0.1t

0.01

5 10 15
modal KT provable 'branch’ class formula number

Figure 1: Solution times for two Tableaux’98 tests

able chosen from the N propositional variables which
appear in the formula.* Hustadt and Schmidt used two
sets of formulae, denoted PS12 and PS13, choosing
N =4 and N = 6 respectively, with K =3 and D =1
in both cases. The test sets are created by varying L
from N to 30N, giving formulae with a probability of
satisfiability varying from &1 to =0, and generating 100
formulae for each integer value of L/N.5

The median times required to test the satisfiability
of the PS12 formulae using various configurations of
DLP are given in Figure 2. (To make the graph read-
able some of the configurations with similar results have
been dropped.) The results for PS13 are generally sim-
ilar.

The most effective optimisation for this test suite is
again semantic branching. Random problems can have
large amounts of overlapping search between the differ-
ent disjuncts in a disjunction, which semantic branch-
ing avoids. The two next-most-effective optimisations
are backjumping and boolean constraint propagation,
with backjumping being more effective for intermedi-
ate values of L/N, where the “harder” problems arise,
and boolean constraint propagation being more effec-
tive for the larger values of L/N, where the formulae

4Trivial satisfiability of K-clauses is avoided by choos-
ing a combination of propositional variables from the ¥ Cx
possibilities.

®For SAT problems it has been demonstrated that when
the other parameters are fixed, the “hardness” of formulae
is determined by L/N.

1000

Yo
¥ Oldest-JW:, =—
No caching 5+
No backjumping &
100 ¢ No semantic branching - 3

No BCP -»--
No normalisation -»--

B,
B g

as
s
PP

median CPU time (s)

0.1 |

0.01 &

5 10 15 20 25 30

Figure 2: Median solution times for PS12 formulae

are severely overconstrained, so there is considerable
scope for simplification whenever a branching choice is
made. The effectiveness of boolean constraint propaga-
tion also helps to explain the effectiveness of semantic
branching for the overconstrained formulae, as syntac-
tic branching does not allow as much boolean constraint
propagation.

The other optimisations are much less effective in this
suite. In particular, caching is not effective at all. This
is because, with such a small number of literals, the
purely propositional problems at depth 1 can always be
solved deterministically, and performance is therefore
dependent on the efficiency of propositional reasoning
at depth 0. Caching is thus ineffective because there are
no hard modal sub-problems to cache. Normalisation is
largely ineffective here because the formulae are already
in conjunctive normal form.

None of the heuristics are particularly effective with
this test suite, so changing heuristic made little dif-
ference. The JW heuristic is ineffective because the
disjuncts are randomly generated modal sub-formulae,
and the large number of different possibilities means
that any given sub-formula is unlikely to occur in many
disjunctions. The oldest-first heuristic is ineffective be-
cause, for formulae in conjunctive normal form, every
disjunction at depth 0 has the same “age”.

Although the Tableaux’98 and random test suites
show how our optimisations perform on propositional
modal logics, neither is very good for our purposes.
In particular, the collection of random formulae has a
modal depth of 1 and most of the computational dif-
ficulties have to do with the initial non-modal com-
ponent. When using the algorithm for subsumption
testing with a realistic KB we expect to encounter hard
problems where the hardness comes from the number of
successors that have to be considered and their interac-
tion with the non-modal component. The Tableaux’98
formulae have this form, but there are too few hard
collections there to validate our optimisations, and the
regular structure of the formulae tends to exaggerate
the utility of the caching optimisation, particularly for
satisfiable (non-provable) formulae.

One test with a knowledge base that we have been
able to do is to take the GALEN knowledge base and
construct versions of it that are acceptable to FaCT,

Configuration Time (s)
Oldest-JW 264
JW 487
Random, negative 472
Random, positive 203
No caching 4808
No backjumping >10000
No semantic branching 199
No BCP 251
No normalisation 223

Table 3: Times for the GALEN KB

DLP and KRris. KRris was unable to process this knowl-
edge base within four hours, but both FaCT and DLP
can process it in about 200 seconds. The times for the
various configurations of DLP loading this knowledge
base are given in Table 3.

In this test the most important optimisation is back-
jumping, followed by caching. In fact, with backjump-
ing turned off the knowledge base cannot be processed
in 10,000 seconds. Semantic branching is not effective in
this knowledge base—in fact, turning semantic branch-
ing off results in the fastest configuration. We do not
understand why this is—perhaps in the GALEN knowl-
edge base there are seldom any cases where adding the
negation of a disjunct affects the other elements of the
disjunction and the results simply reflect the additional
complexity of semantic branching,.

Summary

The collection of optimizations we have described are
effective in improving the speed of modal propositional
logic reasoners, as shown by the results we have given
above. They can also dramatically improve the speed of
subsumption reasoning on description logic knowledge
bases. To our knowledge some of these improvements
have not been investigated in the modal propositional
reasoning literature. The combination appears to be
unique and, moreover, results in a powerful reasoner
for the propositional modal logics K, KT, and S4.

The optimisations are not uniformly effective. In
particular, semantic branching is extremely effective on
constructed hard problems and on random satisfiabil-
ity problems, but not on the GALEN knowledge base.
We plan to perform more experiments on knowledge
bases to see if semantic branching is indeed ineffective
on them. The two other optimisations that are the
most effective are backjumping and caching. These two
optimisations make the difference between acceptable
and ridiculous performance in many of the tests. Their
absence in previous description logic systems has made
them unacceptablely slow.

We, along with a colleague, are embarking on a
project to create a description logic system for a de-
scription logic that corresponds to a propositional dy-
namic logic. This project will require more optimisa-
tion, as propositional dynamic logic is harder than the
logics we are currently handling, and will give us further
opportunities to investigate the optimisation of satisfi-

6

ability reasoners. We are also performing more testing
of the optimisations we are putting into our provers and
we plan to create a test suite that emphasizes the modal
nature of description logics.

References

Baader, F., and Hollunder, B. 1991. KRris: Knowledge rep-
resentation and inference system. SIGART Bulletin 2(3):8—
14.

Baker, A. B. 1995. Intelligent Backtracking on Constraint
Satisfaction Problems: Ezperimental and Theoretical Re-
sults., Ph.D. Dissertation, University of Oregon.

Brachman, R. J.; McGuinness, D. L.; Patel-Schneider,
P. F.; and Resnick, L. A. 1991. Living with CrassIC:
When and how to use a KL-ONE-like language. In Sowa,
J. F., ed., Principles of Semantic Networks: Ezplorations
in the representation of knowledge. San Francisco, Califor-
nia: Morgan Kaufmann Publishers. chapter 14, 401-456.

Brachman, R. J.; Selfridge, P. G.; Terveen, L. G.; Altman,
B.; Borgida, A.; Halper, F.; Kirk, T.; Lazar, A.; McGuin-
ness, D. L.; and Renick, L. A. 1993. Integrated support
for data archaeology. International Journal of Applied and
Cooperative Information Systems 2(2):159-185.

Bresciani, P.; Franconi, E.; and Tessaris, S. 1995. Imple-
menting and testing expressive description logics: a pre-
liminary report. In Ellis, G.; Levinson, R. A.; Fall, A.; and
Dahl, V., eds., Knowledge Retrieval, Use and Storage for
Efficiency: Proceedings of the First International KRUSE
Symposium, 28-39.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. Communications
of the ACM 5:394-397.

Franco, J., and Paull, M. 1983. Probabilistic analysis of
the Davis-Putnam procedure for solving the satisfiability
problem. Discrete Applied Mathematics 5:77-87.

Freeman, J. W. 1995. Improvements to propositional sat-
isfiability search algorithms. Ph.D. Dissertation, Depart-
ment of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA, USA.

Freeman, J. W. 1996. Hard random 3-SAT problems
and the Davis-Putnam procedure. Artificial Intelligence
81:183-198.

Giunchiglia, F., and Sebastiani, R. 1996. A SAT-based de-
cision procedure for ALC. In Aiello, L. C.; Doyle, J.; and
Shapiro, S. C., eds., Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Fifth International
Conference (KR’96), 304-314. Morgan Kaufmann Pub-
lishers, San Francisco, California.

Heuerding, A., and Schwendimann, S. 1996. A benchmark
method for the propositional modal logics K, KT, and S4.
Technical report IAM-96-015, University of Bern, Switzer-
land.

Horrocks, I. 1997. Optimising Tableaur Decision Proce-
dures for Description Logics. Ph.D. Dissertation, Univer-
sity of Manchester.

Hustadt, U., and Schmidt, R. A. 1997. On evaluating de-
cision procedures for modal logic. Technical Report MPI-
1-97-2-003, Max-Planck-Institut Fir Informatik, Im Stadt-
wald, D 66123 Saarbriicken, Germany.

Jeroslow, R., and Wang, J. 1990. Solving propositional sat-
isfiability problems. Annals of Mathematics and Artificial
Intelligence 1:167-187.

Patel-Schneider, P. F. 1997. System description: DLP.
Bell Labs Research, Murray Hill, NJ.

Rector, A., and Horrocks, I. 1997. Experience building a
large, re-usable medical ontology using a description logic
with transitivity and concept inclusions. In Proceedings
of the Fourteenth National Conference on Artificial Intel-
ligence and Ninth Innovative Applications Artificial Intel-
ligence Conference. Providence, Rhode Island: American
Association for Artificial Intelligence.

Sattler, U. 1996. A concept language extended with differ-
ent kinds of transitive roles. In Gorz, G., and Holldobler,
S., eds., 20. Deutsche Jahrestagung fir Kinstliche Intel-
ligenz, number 1137 in Lecture Notes in Artificial Intelli-
gence, 333-345. Springer Verlag.

Schild, K. 1991. A correspondence theory for termino-
logical logics: Preliminary report. In Proceedings of the
12th International Joint Conference on Artificial Intelli-
gence (IJCAI-91), 466-471.

