SIGART Bulletin 2, 3 (1991), pages 108-113.

The CLASSIC Knowledge Representation
System:
Guiding Principles and Implementation Rationale

Peter F. Patel-Schneider Deborah L. McGuinness
Ronald J. Brachman Lori Alperin Resnick
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

Alex Borgida
Department of Computer Science
Rutgers University
New Brunswick, New Jersey

6 December 1991

Abstract

Our work on the CcLASSIC knowledge representation system covers a
broad range from theory to practice. While CLASSIC was implemented
primarily to provide a simple, easy to learn and use, locally available tool
for a relatively limited set of applications, it has a substantial theoretical
foundation, based on a formal “terminological” logic. The logical foun-
dation provides the semantics of a term description language, which is
used to define structured concepts and make assertions about individuals
in a knowledge base. These concepts and individuals are organized into
a generalization hierarchy by classification and subsumption algorithms.
The CLASSIC system explores the expressiveness vs. tractability tradeoff,
driven by concerns of usefulness and usability in several real applications.
Within this context, it embodies our views of what a knowledge represen-
tation system should be: useful, comprehensible and usable, predictable,
non-subvertable, and at bottom, based on a formal logic.

The cLASSIC knowledge representation system [1, 2] has been designed and
implemented at AT&T Bell Laboratories over the last several years. CLASSIC
has its roots in at least a dozen years of work on theory and implementation of

“terminological” knowledge representations.! The main reason for building an
implementation was to provide a locally available tool to support several classes
of applications that were important at AT&T. Among our main concerns were
leverage on these applications—that is, the system had to be useful in a real
practical context—it had to be understandable by non-experts—that is, really
usable—and it had to be reliable and predictable.

CLASSIC is based on a formal logic, research on which proceeds in paral-
lel with implementation and use, and there has been much interplay between
these two sides of the work. We have now had significant practical experience
with the first release of the system, and are substantially into a second ver-
sion. CommonLisp and C implementations of CLASSIC exist and are in use in
applications. The system is fully documented [9] and the CommonLisp version
is available to universities for research use.2 CLASSIC has been used in several
university courses, and is taught in an internal Bell Labs course on knowledge
representation.

1 Guiding Principles

The design of the CLASSIC system, like that of all computer tools (e.g., program-
ming languages and database management systems), is the result of compro-
mises between often contradictory desires: maximum expressive and reasoning
power, efficiency, ease of learnability and usability, etc. In developing CLASSIC,
we have been guided by a number of principles, which help distinguish it from
many other implemented KR&R systems.

The fundamental principle underlying the design of CLASSIC is that knowl-
edge representation and reasoning systems should be predictable. CLASSIC achieves
predictability by providing its users with a clear description of its behavior inde-
pendent of its implementation (i.e., one can describe the inferences made by the
system in any situation without having to execute or trace our implementation
code for cLASSIC), and by having all operations return results in a reasonable
amount of time (i.e., the time taken to process questions can be easily predicted
from the form of the facts told to the system, and does not involve potentially
unbounded search).

The predictability of inferences is supported by a second guideline: a knowl-
edge representation system should be based on a formal logic. Such a logic
normally provides a language for expressing assertions (as well as questions and
maybe even answers) and a notion of entailment relating responses (and non-
responses) provided by the system. Usually logics are described in at least two

1Other systems in CLASSIC’s immediate family include KANDOR [7] and BACK [8]

2We have released CLASSIC to over 20 universities. In order to request a copy of the
CommonlLisp version, send a letter to D. McGuinness at the above address. This should be
on university letterhead and it should state that cLASSIC will be used for research and/or
educational purposes only.

complementary ways: model-theoretically (the denotational semantics of the
sentences) and proof-theoretically (syntactic rules of inference). Together with
the implementation of the reasoner, this provides three perspectives for under-
standing the intended behavior of the KR system, which leads to much better
comprehension than with any one alone.

An ideally useful general KR system would then provide maximum expres-
sive power and be based on some form of logic. Unfortunately, it is well known
that increased expressiveness comes at the cost of resource utilization, even non-
computability. While some applications of knowledge representation demand
comprehensive expressive power (in exchange perhaps for incomplete or user-
controlled inference), not all do. We believe that in a reasonable and important
class of applications, trading expressive power for computational tractability by
providing a simple and limited language is the right choice to make. Besides
directly supporting our goal of predictability, this principle provides significant
additional benefits: simpler languages are easier to learn and to use correctly,
as well as to implement, maintain and port. Of course, for some kinds of ap-
plications this principle is not the right one to follow: for example, natural
language understanding and general-purpose logic programming would seem to
require Turing-equivalence.? However, it is now clear to us from several signifi-
cant industrial applications that arbitrary expressive power is simply not always
necessary.

A final principle that has been followed in the design of CLASSIC is that there
should be no way of subverting the knowledge representation system. This means
that user code should not destroy the correspondence between the reasoning
subsystem and its formal description.

As stated earlier, in building a useful and usable system one has to make
compromises. So how have the above principles fared? With two exceptions,
to be discussed in a moment, all of the features of the CLASSIC language are
implementations of aspects of a formal logic. Moreover, the formal computa-
tional complexity of subsumption reasoning with these features is known: the
only constructor whose standard semantics would require intractable reasoning
is ONE-OF—sets of individuals—and the reasoning actually implemented by
the system is both polynomial time and describable by a precise, albeit slightly
nonstandard semantics, as well as formal rules of inference.* We therefore have
a limited and tractable logic. Moreover, the current implementation reasons in
a sound and complete manner with respect to even the standard semantics of
the ONE-OF constructor, if the elements of the set are host-language individu-
als, which cannot have contingent properties. The practical systems built with

3¢LASSIC is also unsuitable for heuristic classification applications because the logic it is
based upon is two-valued, and does not deal with uncertainty.

4Theoretically, it is possible that expanding concept identifier definitions might also lead
to an explosion in size [5] but this has never been observed in practice either in AT or in the
extensive use of the SML programming language, which has a similar problem in its type
system.

CLASSIC have been able to observe this guideline.

While our goal was to build a direct implementation of our logic, it was
evident that in different situations users would want to express a variety of con-
cepts and inferences not provided by that logic. Rather than try to anticipate
in advance and design in all possible desired features, we chose to maintain us-
ability by adding to CLASSIC two simple features: (1) a limited forward-chaining
rule system, whose interpretation is somewhat “procedural” (i.e., “if ¢; is added
to the description of individual 4 then also add cy”), and (2) concepts whose
definitions include tests written as functions in the host programming language
(and which are therefore opaque to such operations as concept subsumption).

These aspects of CLASSIC are therefore outside the scope of the formal logic,
yet they are limited: the rules are of a very simple, monotonic kind—certainly
not a full rule system; and even though user code is allowed to be part of concept
descriptions, CLASSIC maintains the distinction between its own operations and
other computations: there are clear rules for what these test functions can and
cannot do, which, if followed, will result in no possibility of subverting the
semantics of the rest of the concept definitions.

In some respects, it is these features that most distinguish cLASSIC from
its precursor, KANDOR, which also subscribed to many of the above principles,
though it had somewhat different constructors, and its inference was incomplete
in several places.

2 Comments on the Implementation

As mentioned, the primary reason for implementing CLASSIC was to provide
inferential support for several key applications—in simple terms, we needed a
usable KR tool. In addition, although CLASSIC was designed as the implemen-
tation of a term description language, with clear a priori theoretical properties,
there are a number of aspects of the logic underlying it that can not really
be evaluated without an implemented (and used) system. The implementation
itself demonstrates that some theoretically interesting portions of the termino-
logical logic can be built to run acceptably fast in real domains. This to some
extent addresses the distinction between normal case and worse case analysis,
as well as the importance of constant factors—both of which are usually ignored
by formal complexity analysis.

Some aspects of CLASSIC are theoretically uninteresting, and have been in-
cluded so that it can be of practical use. The least interesting—but nonetheless
important—of these aspects is the extensive programming interface CLASSIC
presents; this interface is vital for reasonable use of the system.> The termino-

5This points out a key difference between two faces of knowledge representation: one can
study and assess the “data model” and its virtues without regard to implementation, and
implementation demands certain critical features not worth discussing at the data model
level.

logical logic of CLASSIC also includes concepts that describe LISP objects. Al-
though there are some theoretical problems in incorporating these host concepts
in a terminological logic, they were included for their utility in applications,
not because of any theoretical interest. Similarly, although there are some the-
oretically interesting aspects to the aforementioned test procedures, they were
incorporated simply to allow users to extend the expressive power of CLASSIC if
necessary.

The CLASSIC system has been used in three classes of applications and its
basic raison d’etre is to support these and similar types of applications well. The
first, query by reformulation and structured knowledge browsing, was predicted
by past experience with KANDOR and ARGON. LASSIE [3] is a knowledge-based
information system built to browse a large software system in an attempt to
help programmers overcome the “discovery problem.” The use of reasoning
and query by reformulation helped minimize several identified sources of “invis-
ibility” of software information. This work subsequently led to another effort,
CODE-BASE [10], which uses CLASSIC as a semantic data model for very large
databases of software information. Again, this system uses CLASSIC in a brows-
ing fashion, but CLASSIC taxonomies also serve as extensible schemas for large
collections of facts stored in a database. This extensibility is used to add struc-
ture to an ill-structured collection of facts about the procedures in very large
computer systems. A third type of use of CLASSIC has been in configuration
problems, primarily as an integrity checker. One system implemented in CLAS-
SIC is currently being used on factory floors to configure transmission equipment
[11]. The crLAssIC knowledge base encodes all the constraints between parts and
is used to generate consistent parts lists.

The use of CLASSIC in applications has shown that it is possible to design a
principled knowledge representation and reasoning system that is also useful in
practice. It has also reinforced our beliefs in our principles: The formal basis
of CLASSIC has served as an independent explanation of its behavior in appli-
cations, and has helped application developers to understand the system. The
predictable nature of CLASSIC has allowed it to be treated as a competent piece
of a much larger software system. The limited expressive power has not been
an impediment to representing several interesting domains in CLASSIC. (Some
domains have required the use of user-defined functions in concept definitions,
but none have required extensive use of this feature.) There has been no need
to subvert the meaning of CLASSIC operations through user-written functions
that modify the basic behavior of the system.

CLASSIC’s availability for use has also produced an unexpected benefit. We
originally pictured it as being used by asserting (and retracting) information
and making queries about the current state of the knowledge base. In this
manner of use contradictions would seldom occur, if ever. However, several of
the applications of CLASSIC within AT&T have been in configuring pieces of
equipment. In these contexts information is added to a knowledge base and is

checked for consistency, i.e., the most important thing to know is whether an
individual satisfies the requirements of a concept to which it is known to belong.
Often this will not be the case and a contradiction is detected (and the system
removes the information that triggered the contradiction). We had not originally
thought of this manner of use of cLassIic. (Unknown to us, Owsnicki-Klewe had
proposed just such a use for terminologically-based knowledge representation
systems [6].)

This and other additional viewpoints on representation that we obtained
because others used CLASSIC have turned out to be a fruitful aspect of imple-
mentation. Aside from the unexpected benefit just mentioned, we modified the
design of CLASSIC in a number of ways to accommodate users, while adhering
to the same basic philosophy. We are currently in the process of building a new
version of CLASSIC, with increased expressive power. The directions in which
expressive power has been augmented have been largely driven by the needs
of our users.® We plan to continue this interaction with users, but without
compromising our representational guidelines in meeting their needs.

3 System Overview

CLASSIC allows the definition of roles and concepts, the association of rules with
concepts, the creation of individuals, the addition of information to individuals,
the retraction of information from individuals, and the retraction of rules from
concepts.

In the first version of CLASSIC, roles are atomic, i.e., there is no role taxon-
omy. Roles are, however, divided into multi-valued roles and uni-valued roles
(attributes). This distinction has important computational consequences: one
construct (SAME-AS) is limited to paths of attributes in order to preserve
tractability.

A concept in CLASSIC is defined by associating its name with it a description,
composed from a simple, compositional concept description language. Concept
definitions must be non-circular (i.e., the concept being defined cannot have
been referenced in any existing concept description, nor can it reference itself).
Also, concepts cannot be modified after they are created.

The concept description language forms the core of CLASSIC’s representa-
tional repertoire. The syntax of concept descriptions is defined using the fol-
lowing grammar:

<concept-description> ::=
THING | CLASSIC-THING | HOST-THING |
(built-in host concepts) |
<concept-name> |

61n fact, for most of its life, CLASSIC has been developed jointly with a Development group,
which includes Gregg Vesonder, Elia Weixelbaum, and Jon Wright.

(AND <concept-expr>1) |

(ALL <role-expr> <concept-expr>) |

(AT-LEAST <positive-integer> <role-expr>) |

(AT-MOST <non-negative-integer> <role-expr>) |

(SAME-AS <attribute-path> <attribute-path>) |

(TEST-C <fn> <argument>*) |

(TEST-H <fn> <argument>*) |

(ONE-OF <individual-name>*) |

(PRIMITIVE <concept-expr> <index>) |

(DISJOINT-PRIMITIVE <concept-expr>
<group-index> <index>) |

(FILLS <role-expr> <individual-name>T)

<concept-name> = <symbol>

<individual-name> ::= <symbol> | <cl-host-expr>
<role-expr> ::= <mrole-expr> | <attribute-expr>
<mrole-expr> ::= <symbol>

<attribute-path> ::= (<attribute-expr>1)
<attribute-expr> 1= <symbol>

<cl-host-expr> ::= <string> | <number> |

’<CommonLISP-expr> |
(quote <CommonLISP-expr>)
<index> ::= <number> | <symbol>
<group-index> 1= <number> | <symbol>
<fn> ::= a three-valued logical function in the
host language (Common LISP)
<argument> ::= an expression passed to the test function

Most of this syntax is similar to that used in related systems (e.g., BACK and
LOOM [4]). Some important less familiar features are briefly described here.

The SAME-AS constructor requires that the two composed attribute (uni-
valued role) paths have the same filler. The TEST-C and TEST-H constructors
allow users to write functions that serve as tests for membership in concepts
(“C” being for cLASSIC individuals and “H” for host individuals). The PRIM-
ITIVE constructor allows the creation of concepts with incomplete definitions.
(The <index> portion of the constructor allows identification of different prim-
itive concept descriptions without having to name them.) The DISJOINT-
PRIMITIVE constructor allows the creation of primitive concepts that are
also disjoint. (Disjoint primitives that only differ on their <index> argument
are disjoint.)

CLASSIC has a simple forward-chaining rule mechanism. Descriptions can be
attached to concepts as rule consequents and, when an individual is known to
be an instance of the antecedent concept, the information in the consequent is
added to the individual.

An individual is created in CLASSIC by providing a concept description that

describes it. Information, in the form of a concept description, can be added to
an individual after it is created. It is also possible to state that the currently
known fillers of a role for an individual are the only fillers (we call this “closing”
arole). Information can also be removed from an individual and all unsupported
facts are removed.

CLASSIC allows quite a number of queries about concepts, roles, and indi-
viduals. The most general queries ask whether one concept description is more
general than (subsumes) another or whether an individual is described by (is
an instance of) a concept description. The former query only uses information
from concept definitions—no properties currently known about individuals are
taken into account.

CLASSIC determines subsumption relationships between concepts when they
are defined, maintaining a cached subsumption taxonomy of all named concepts.
CLASSIC also determines which named concepts describe each individual, and
runs each rule that applies to the individual. This means that CLASSIC detects
incoherent concepts (concepts whose concept description can never have any
instances) when they are defined and detects inconsistent individuals when they
are created or when the information that makes them inconsistent is first added.
In CLASSIC queries can never cause new incoherencies or inconsistencies.

The operations of CLASSIC have descriptions of varying formality. There is a
standard model-theoretic semantics for the above concept description language
which induces a standard semantics for all the operations of CLASSIC except
removal of information. Removal of information is not part of this semantics
because it depends on how the information was provided, and not just on the
model-theoretic consequences of the information.

However, the operations of CLASSIC are incomplete with respect to this se-
mantics. Subsumption does not take into account the semantics of the host
functions and also does not take into account properties of individuals implied
by concept definitions (although note the comment above about its completeness
in practice with respect to ONE-OF). A variant semantics has been developed
for which cLASSIC’s subsumption algorithm is complete.

Determining whether an individual is an instance of a concept description
sometimes uses the incomplete subsumption algorithm and also does not take
into account all properties of individuals that have not yet been created. A
variant semantics has not yet been developed to describe this processing.

The above description shows that there are a number of aspects of the CLAS-
SIC system that are not defined by CLASSIC’s theoretical underpinnings. More-
over, even the theoretical underpinnings of CLASSIC were influenced by the goal
of producing an efficient and usable implemented system.

4 Annotated Example

The following example demonstrates some typical uses of CLASSIC. It should
also help to describe the syntax of CLASSIC.

Because of space considerations, the following is not a complete transcript
and may not precisely conform to the actual workings of CLASSIC. It is, however,
taken from an real transcript, and is closely related to the examples used in
several papers on CLASSIC. The example uses the domain of wines and meals
(for a longer example in the same domain see [2]).

Most of the example is devoted to defining the ontology of the domain. First,
the roles are defined.

(cl-define-roles course grape)
(cl-define-attributes
color body flavor sugar maker drink food)

Recall that attributes are nothing more than single-valued roles.

Concepts that will be used as value restrictions for roles are defined next.
CLASSIC does not allow ranges for roles to be stated, except by means of value
restrictions in concept definitions.

(cl-define-concept ’wine-color

’ (one-of white rose red))
(cl-define-concept ’wine-body

> (one-of light medium full))
(cl-define-concept ’wine-flavor

’ (one-of delicate moderate strong))
(cl-define-concept ’wine-sugar

’ (one-of sweet off-dry dry))

Now the top levels of the domain ontology are created. There are several
sets of disjoint primitives in the top levels; a disjoint primitive is only disjoint
from other disjoint primitives under the same parent concept and with the same
group index.

(cl-define-concept ’consumable-thing
’(disj-prim classic-thing 1 1))

(cl-define-concept ’winery
’(disj-prim classic-thing 1 2))

(cl-define-concept ’edible-thing
’(disj-prim consumable-thing 1 1))
(cl-define-concept ’potable-liquid
’(disj-prim consumable-thing 1 2))
(cl-define-concept ’meal-course
’(and (disj-prim consumable-thing 1 3)

(all food edible-thing)
(all drink potable-liquid)))

meal-course is the first concept that actually has restrictions.
Next some types of food and particular foods are defined:

(cl-define-concept ’fruit
’(disj-prim edible-thing 1 1))
(cl-define-concept ’dessert
’(disj-prim edible-thing 1 2))
(cl-define-concept ’seafood
’(disj-prim edible-thing 1 3))
(cl-define-concept ’shellfish
’(disj-prim seafood 1 1))
(cl-define-concept ’fish
’(disj-prim seafood 1 2))
(cl-define-concept ’oyster-shellfish
’(disj-prim shellfish 1 1))
(cl-define-concept ’non-oyster-shellfish
’(disj-prim shellfish 1 2))

(cl-create-ind ’oysters ’oyster-shellfish)
(cl-create-ind ’crab ’non-oyster-shellfish)
(cl-create-ind ’cake ’dessert)

Now the grapes are given similar treatment.

(cl-define-concept ’grape
’(prim fruit 1))

(cl-define-concept ’wine-grape
> (prim grape 1))

(cl-create-inds ’ (chardonnay
sauvignon-blanc semillon
cabernet-sauvignon) ’wine-grape)

Finally we get into the wines. First, general categories of wine are defined.

(cl-define-concept ’wine

’(prim (and potable-liquid
(all color wine-color)
(all body wine-body)
(all flavor wine-flavor)
(all sugar wine-sugar)
(at-least 1 grape)
(all grape wine-grape)

10

(all maker winery))

1))

(cl-define-concept ’red-wine
’(and wine (fills color red)))
(cl-define-concept ’white-wine
’(and wine (fills color white)))

Second, some basic types of wine are given. The third and subsequent ar-
guments to cl-define-concept are rules associated with the concept. Because
the types of wines are primitive concepts, there is not all that much difference
between a rule and an extra piece of the concept description.

(cl-define-concept ’chardonnay
’(prim white-wine chardonnay)
’(all grape (one-of chardonnay))
’(all body (one-of full medium))
’(all flavor (one-of strong moderate)))
(cl-define-concept
’semillon-or-sauvignon-blanc
’(prim wine semillon-or-sauvignon-blanc)
’(fills color white)
’(all grape
(one-of semillon sauvignon-blanc))
’(all body (one-of medium full)))
(cl-define-concept ’cabernet-sauvignon
’(prim red-wine cabernet-sauvignon)
’(all grape (one-of cabernet-sauvignon))
’(all flavor (one-of moderate strong))
’(all body (one-of medium full))
’(£ills sugar dry))

Third, actual wines are defined. Many wines have been omitted to save
space.

(cl-create-ind ’forman-chardonnay
’(and chardonnay
(fills body full)
(fills flavor moderate)
(fills sugar dry)
(fills maker forman)))
(cl-create-ind
’kalin-cellars-sauvignon-blanc
’ (and sauvignon-blanc
(£fills body full)

11

(fills flavor strong)
(fills sugar dry)
(fills maker kalin-cellars)))
(cl-create-ind ’kalin-cellars-semillon
’(and semillon
(fills body full)
(fills flavor strong)
(fills sugar dry)
(fills maker kalin-cellars)))
(cl-create-ind
’schloss-volrad-trochenbierenauslese-riesling
’(and riesling
(fills body full)
(fills flavor moderate)
(fills color white)
(fills sugar sweet)
(fills maker schloss-volrad)))
(cl-create-ind
’schloss-rothermel-trochenbierenauslese-riesling
’(and riesling
(fills body full)
(fills flavor strong)
(fills color white)
(fills sugar sweet)
(fills maker schloss-rothermel)))

Now do the same for courses in meals.

(cl-define-concept ’dessert-course
’ (and meal-course (all food dessert))
’(all drink (and (fills body full)
(fills flavor strong)
(fills sugar sweet))))
(cl-define-concept ’seafood-course
’ (and meal-course (all food seafood))
’(all drink white-wine))
(cl-define-concept ’shellfish-course
’ (and meal-course (all food shellfish))
’(all drink
(and (£ills body full)
(all flavor
(one-of moderate strong)))))
(cl-define-concept ’oyster-shellfish-course
’ (and meal-course
(all food oyster-shellfish))

12

’(all drink (fills sugar sweet)))
(cl-define-concept
’non-oyster—-shellfish-course
’ (and meal-course
(all food non-oyster-shellfish))
’(all drink (fills sugar dry)))

The rules attached to these concepts perform most of the actual work in this
domain. For example, if a meal-course is recognized as a dessert-course, the
drink of that course is restricted to be a full-bodied, strong-flavored, sweet
wine.

Now the domain of wines and meal courses has been defined. A particular
use of this application would proceed by creating meal courses and determining
which wines are compatible with the course. (In the larger application meal
courses are grouped into meals or picnic baskets and more compatibilities can
be stated and checked.)

A simple meal course would be:

(cl-create-ind ’course-1
’ (and meal-course (fills food crab)))

This individual is automatically placed under the appropriate concepts in the
concept taxonomy, including, in this case, seafood-course, shellfish-course,
and non-oyster-shellfish-course, and any applicable rules are run, resulting
in information being determined about the drink role of the individual.

The drink role of this individual can be queried in several ways. First, the
properties of any filler of the role can be determined—in this case any filler
must be a white, full-bodied, moderate or strong-flavored, dry wine. Second,
the currently known individual wines that can be fillers can be determined—in
this case resulting in Forman chardonnay, Kalin semillon, and Kalin sauvignon
blanc.

A more complicated example involves creating two meal courses with the
same drink. This can be done by explicitly creating a dummy individual to be
the drink as follows:

(cl-create-ind ’course-24
> (and meal-course (fills food oysters)
(fills drink wine-1)))

At this point the drink must be white, full-bodied, moderate- or strong-flavored,
and sweet. There are two known wines that match this description, the two
rieslings.

When the second course is added with the same drink

(cl-create-ind ’course-25
’(and meal-course (fills food cake)
(fills drink wine-1)))

13

the drink is further restricted to be strong-flavored. The only wine that matches
this description is Schloss Rothermel trochenbierenauslese riesling.

Suppose we didn’t know exactly what food we were going to serve at a
course but we did know something more general like the class of the food. Say
for example, instead of oysters, we know that we are going to have a seafood
meal. We would retract oysters’ and add seafood meal.

The oysters are retracted by

(cl-ind-remove-filler Qcourse-24
@food Qoysters)

This change results in the drink not having a color restriction, as this had come
from the fact that oysters were being served. (This shows a major difference
between rules in CLASSIC and rules in many other forward chaining rule-based
systems.) The seafood course information is added by

(cl-ind-add @course-24 ’(all food seafood))

again restricting the color of the drink to white.
If we now tried to specialize the seafood meal to crab

(cl-ind-add-filler @course-24 @food @crab)

there would be a contradiction since non-oyster shellfish courses, including crab
courses, require dry wines and we already know that the wine here is restricted
to be sweet (because it is also the drink for a cake course). cLASSIC will produce
an error and refuse to add this information.

If crab were really desired as the food for course-24, then either the two
courses would have to have different drinks or the food for course-25 would
have to be changed. This type of contradiction resolution could be done interac-
tively but is not currently done automatically by CcLASSIC which instead simply
removes the most recent information added.

This process of adding information to an individual or group of individuals
and performing contradiction resolution when necessary is precisely the method
that is used in the configuration applications developed at AT&T.

5 Current Research

Our experiences with CLASSIC’s logic, its implementation and use have spurred
us to continue to refine our view of such systems. In particular, there is ongoing
work on numerous fronts related to CLASSIC:

"Note that retracting oysters does not leave the system knowing anything like the class of
the food for the course. The only information that was given to the system—oysters—was
retracted so all inferred information like seafood meal is retracted along with it.

14

a second version of the language, with a somewhat richer set of construc-
tors, though still abiding by the original design principles;

e an explanation facility that can help users understand the reasoning that
produced certain answers;

e a graphical user interface;
e an interactive query language for evaluating complex queries;

o 3 facility for creating and loading individuals from data already available
in relational databases, and eventually a full persistence mechanism for
CLASSIC; and

e PROTO-TL — an embryonic version of CLASSIC that can be extended to
include new, possibly domain-dependent term constructors (e.g., related
to time, etc.) by filling in template functions describing the necessary
inferences.

References

[1]

Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin
Resnick. CLASSIC: A structural data model for objects. In Proceedings of the
1989 ACM SIGMOD International Conference on Mangement of Data, pages
59-67. Association for Computing Machinery, June 1989.

Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider,
Lori Alperin Resnick, and Alex Borgida. Living with CLASSIC: When and how
to use a KL-ONE-like language. In John F. Sowa, editor, Principles of Seman-
tic Networks: Fzplorations in the representation of knowledge, pages 401-456.
Morgan Kaufmann Publishers, San Francisco, California, 1991.

Premkumar Devanbu, Ronald J. Brachman, and Peter G. Selfridge. LaSSIE—a
classification-based software information system. In Proceedings of the Interna-
tional Conference on Software Engineering, Nice, France, 1990. IEEE Computer
Society.

Robert M. MacGregor and Raymond Bates. The Loom knowledge representa-
tion language. Technical Report ISI/RS-87-188, Information Sciences Institute,
University of Southern California, May 1987.

Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43(2):235-249, May 1990.

Bernd Owsnicki-Klewe. Configuration as a consistency maintenance task. In
W. Hoeppner, editor, Proceedings of GWAI-88—the 12th German Workshop on
Artificial Intelligence, pages 77-87. Springer Verlag, September 1988.

Peter F. Patel-Schneider. Small can be beautiful in knowledge representation. In
Proceedings of the IEEE Workshop on Principles of Knowledge-Based Systems,
pages 11-16, Denver, Colorado, December 1984. IEEE Computer Society.

15

(8]

[9]

[10]

[11]

Christof Peltason, Albrecht Schmiedel, Carsten Kindermann, and Joachim
Quantz. The BACK system revisited. KIT-Report 75, Fachbereich Informatik,
Technische Universitdt Berlin, September 1989.

Lori Alperin Resnick, Alex Borgida, Ronald J. Brachman, Deborah L. McGuin-
ness, and Peter F. Patel-Schneider. CLASSIC description and reference manual
for the COMMON LISP implementation. AI Principles Research Department,
AT&T Bell Laboratories, December 1992.

Peter Selfridge. Knowledge representation support for a software information
system. In IEEE Conference on Artificial Intellingence Applications, pages 134—
140, Miami, Florida, February 1991. The Institute of Electrical and Electronic
Engineers.

Jon R. Wright, Elia S. Weixelbaum, Karen Brown, Gregg T. Vesonder, Stephen R.
Palmer, Jay I. Berman, and Harry H. Moore. A knowledge-based configurator
that supports sales, engineering, and manufacturing at AT&T network systems.
In Proceedings of the Innovative Applications of Artificial Intelligence Conference,
pages 183-193, Washington, D. C., July 1993. American Association for Artificial
Intelligence.

16

