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POLLING SYSTEMS IN HEAVY TRAFFIC:
A BESSEL PROCESS LIMIT

E. G. COFFMAN, JR., A. A. PUHALSKII, AND M. I. REIMAN

This paper studies the classical polling model under the exhaustive-service assumption; such
models continue to be very useful in performance studies of computer/communication systems.
The analysis here extends earlier work of the authors to the general case of nonzero switchover
times. It shows that, under the standard heavy-traffic scaling, the total unfinished work in the
system tends to a Bessel-type diffusion in the heavy-traffic limit. It verifies in addition that, with
this change in the limiting unfinished-work process, the averaging principle established earlier by
the authors carries over to the general model.

1. Introduction. In classical polling models, M ¢ 2 queues are visited by a single
server in cyclic order. Such models have many applications in the performance analysis
of communication systems, including token rings and packet switches, where a single-
server resource (e.g., a communication link) is shared among many demands on the
resource (e.g., traffic streams). An analysis of the 5ESSt switching system performed by
Leung (1991) is a modern example and a sequel to work of Kruskal (1969) on earlier
switching systems. Introductions to a massive literature addressing many different appli-
cations can be found in Takagi (1986, 1990) and Levy and Sidi (1990).

This paper focuses on polling with exhaustive service: The visit of the server to any
given queue terminates only when no work remains to be done at that queue. We number
the queues from 1 to M and assume they are served in that order. The time for the server
to switch over (or move) from queue i to queue i/ 1 is nonzero in general, and is allowed
to be random and to depend on i .

An exact analysis of exhaustive polling systems is quite difficult; hopes for explicit
solutions are soon abandoned in favor of numerical methods and approximations. A recent
study of asymptotic behavior derived from heavy-traffic (diffusion) limits has been a
promising approach, one that leads to relatively simple formulas which in turn yield useful
insights. The cornerstone of the theory is an averaging principle proved in Coffman,
Puhalskii, and Reiman (1995). In a recent application of this principle, Reiman and Wein
(1998) study set-up scheduling problems in two-class single-server queues. Olsen (1995)
provides a heuristic refinement of the averaging principle that improves the quality of the
resulting approximation for waiting time distributions in moderate loading.

A limitation of the results in Coffman et al. (1995) is the often untenable assumption
of zero switchover times. The main contribution of this paper is a proof that the total
unfinished work in the general two-queue system tends, in the heavy-traffic limit, to a
Bessel type diffusion rather than the reflected Brownian motion in the case of zero switch-
over times. We verify that, as a corollary, the averaging principle in Coffman et al. (1995)
carries over to the general model. The remainder of this section describes the averaging
principle and gives a heuristic argument leading to the new diffusion limit for exhaustive
polling systems. Section 2 introduces notation and formulates our main results. A threshold
queue very similar to the one in Coffman et al. (1995) is analyzed in §3. Results for this
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queueing system supply bounds for the polling system which lead to the averaging prin-
ciple, as shown in §4. Further preliminaries are taken up in §5, where the tightness of a
number of basic processes is proved. The development of §§3–5 culminates in the proofs
in §6 of our main results. A critical element in the proofs is a semimartingale representation
of the unfinished work process which allows us to use general convergence results
for semimartingales from Jacod and Shiryaev ( 1987 ) and Liptser and Shir-
yaev (1989).

Briefly, the mathematical model is as follows. Customers arrive at the i th queue in a
renewal process with rate li and interarrival-time variance The service rate parameter2s .ai

at the i th queue is mi and the service-time variance is Let di be the mean switchover2s .si

time from queue i to queue i / 1. Define r Å r1 / ··· / rM , where ri Å li /mi is the
traffic intensity at queue i .

We first review the case of M Å 2 queues and zero switchover times di Å 0, 1 ° i
° M , adapting the presentation of Coffman et al. (1995), which was for queue lengths,
to the context of unfinished work. Let Ut , t¢ 0, denote the total unfinished work (service
time) in queues 1 and 2 at time t . Then since the process (Ut , t ¢ 0) is the same as the
unfinished work process in the corresponding SGI /G /1 system, we can extend the heavy-
traffic limit theorem of Iglehart and Whitt (1970) as follows (see also Reiman (1988)) .
Consider a sequence of systems indexed by n , and let r n denote the traffic intensity of
the n th system. The heavy-traffic limit stipulates that r n r 1 as n r ` with

__√
n nn (r 0 1) å c r c as n r ` , 0` õ c õ ` .

(As in the standard set-up, we also assume that r li ú 0, r as n r ` , in n 2 2l (s ) si si si

Å 1, 2. There is one more technical assumption that we defer until later ; it implies that
the Lindeberg condition holds.) For the scaled process Å n ¢ 1, 0 ° t ° 1,n 01/2 nV n U ,t nt

under the above conditions, V n V, as n r ` , where V is reflected Brownian motiond
r

with infinitesimal drift c and variance

M
2 2 2 2s å l (s / r s ) ú 0.∑ i si i ai

iÅ1

The averaging principle proved in Coffman et al. (1995) deals with queue lengths; con-
verted to unfinished work, the principle states that, for any continuous function f : R/
r R and any T ú 0, we have

T T 1
d

n,if (V )dt r f (uV )du dt , i Å 1, 2,(1.1) t t* * S* D
0 0 0

where is the time scaled and normalized unfinished work at queue i and the symboln,iV t

denotes convergence in distribution. Extended to general M , the corresponding aver-
d
r

aging principle for sojourn times Wt( i) at queue i is given by

T T 1
d 1 0 rin,if (Y )dt r f V u dudt , 1 ° i ° M ,(1.2) t t* * * S D◊0 0 0

where Å n ¢ 1, 0 ° t ° 1, and ◊ Å (1°jõk°M rjrk .
__√

n,i nY W ( i) / n ,t nt

We now return to nonzero switchover times with the expected values di , 1 ° i ° M .
While a similar averaging principle can be expected, the unfinished-work process is no
longer the same as in the SGI /G /1 system, so the limit diffusion V may be different. To
see what this limit process should be, we give the following heuristic argument. The
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purpose of the remainder of the paper is to formulate the argument precisely and to prove
rigorously that it is correct.

Consider the same sequence of systems as before, assuming in addition to the previous
conditions that r di , 0 ° di õ ` . As before, Å The drift c(x) of then n 01/2 nd V n U .i t nt

limit process V at point x is the limit D r 0, n r ` of

n 01 n n nc (x) Å D E[V 0 V ÉV Å x ú 0].D t/D t t

Work enters the system at rate r n per unit time. We assume that D is small enough that
does not reach zero during [ t , t / D] . With nonzero switchover times, work leavesnV t

the system at a rate less than 1, which we calculate as follows. Let rn(x) denote the
fraction of time the server spends doing useful work (not switching) when Å x . ThennV t

rn(x) is the rate at which work leaves the system. Since there are cycles per unit
__√

O( n )
of ‘‘diffusion’’ time, we can write

E[useful work done over a cycle]nr (x) Å .
E[duration of a cycle]

For simplicity, let M Å 2 and start the cycle at the moment the server switches to queue
1. On average, it takes time 0 r1) to empty queue 1, d1 to switch to queue 2,

__√
nx / (1

0 r2) to empty queue 2, and d2 to switch back to queue 1. The useful work is
__√
nx / (1

__ __√ √
nx nx

v(x) Å / ,
1 0 r 1 0 r1 2

so we have

v(x)nr (x) Å .
v(x) / d / d1 2

But in heavy traffic, r1 / r2 Å 1, so a little algebra yields

xn __r (x) Å ,(1.3) √
x / d / n

where d Å r1r2(d1 / d2) . Extending the calculation to general M gives the same result
with d generalized to d Å ◊(d1 / ··· / dM) . Now Å 0 rn(x)] , so the limit

__√
n nc (x) n [rD

D r 0, n r ` yields

nc (x) r c(x) å c / d /x .D

Note that the seemingly innocuous addition of a O(1) switchover time to a cycle which
takes time (before normalization) produces a dramatic change in the form of

__√
O( n )

the drift.
A heuristic calculation along the above lines shows that the infinitesimal variance is

unaffected by the addition of switchover times. We are thus led to expect that Vn r V,
where the limit process V is a one-dimensional diffusion with state dependent drift c(x) ,
and constant variance s2 . This fact is proved rigorously for M Å 2. The limit process is
a Bessel process with negative drift. When 2d /s 2 õ 1, the process can hit the origin, in
which case it instantaneously reflects. When c õ 0, V is positive recurrent and has a
stationary distribution with density
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b 0axa(ax) e
p(x) Å , x ¢ 0,(1.4)

G(b / 1)

where a Å 2ÉcÉ/s2 , b Å 2d /s2 . This is the gamma density of order b and scale a .
We further verify that the averaging principles (1.1) and (1.2) hold for M Å 2, with V

the above Bessel process. Extended to general M , we have

T T 1
d1 1 1 0 rin,if (Y )dt r f V u dudt ,t t* * * S DT T ◊0 0 0

so if we let V0 have the stationary distribution (1.4) , then

T 1 ` 1b 0x1 1 0 r a(ax) e 1 0 ri iE f V u dudt Å f ux du dx .t* * S D * F* S D GT ◊ G(b / 1) ◊0 0 0 0

For example, if f ( x) Å x , we find that the limiting sojourn times have the means

b / 1 1 0 ri .
a 2◊

2. Results. We begin with notational matters. In the standard set-up for heavy traffic
limits, we consider a sequence of two-queue polling systems. For the n th system, denote
by Å / ··· / i ¢ 1, l Å 1, 2, the time of the i th arrival to the l th queue inn,l n,l n,lt j j ,i 1 i

terms of interarrival times n,lj ,i

i ¢ 1, l Å 1, 2, the i th service time in the l th queue,n,lh ,i

i ¢ 1, l Å 1, 2, the i th switchover time from the l th queue.n,ls ,i

We assume that i ¢ 1, i ¢ 1, i ¢ 1, l Å 1, 2, are independent i.i.d.n,l n,l n,lj , h , s ,i i i

sequences, and that ú 0, i ¢ 1. As in the previous section, we introduce, for n Å 1,n,lj i

2, . . . and l Å 1, 2,

n n,l 01 n n,l 01 n n,ll Å (Ej ) , m Å (Eh ) , d Å Es ,l 1 l 1 l 1

nlln n n nr Å , r Å r / r .l 1 2nml

Instead of dealing with the variances and it is more convenient here ton 2 n 2(s ) (s ) ,ai si

introduce

n 2 n,l n n,l 2(s ) Å E(h 0 r j ) , l Å 1, 2.l 1 l 1

As in §1, we assume the limits, as n r ` for l Å 1, 2,

n n nl r l , m r m ú 0, s r s ú 0,(2.1) l l l l l l

nd r d ,(2.2) l l

and assume the heavy traffic condition
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__√
nlim n (r 0 1) Å c .(2.3)

nr`

The Lindeberg conditions mentioned earlier are, for l Å 1, 2, e ú 0,
__√

n,l 2 n,llim E(j ) ·1(j ú e n ) Å 0,(2.4) 1 1
nr`

__√
n,l 2 n,llim E(h ) ·1(h ú e n ) Å 0,(2.5) 1 1

nr`

__√
n,l 2 n,llim E(s ) ·1(s ú e n ) Å 0.(2.6) 1 1

nr`

Also let

2 2 2s Å l s / l s ú 0, r Å l /m , l Å 1, 2.(2.7) 1 1 2 2 l l l

Recall that is the total unfinished work in the n th system at time t , with independentn nU Ut 0

of i ¢ 1}, i ¢ 1}, and i ¢ 1}, l Å 1, 2, and thatn,l n,l n,l{j , {h , {s ,i i i

1n n n n__V Å U , t ¢ 0, V Å (V , t ¢ 0).(2.8) √t nt t

n

Recalling that d Å r1r2(d1 / d2) , let the process X Å (Xt , t ¢ 0) solve the equation

1/2 2 1/2dX Å [2(d / c(X Û 0) ) / s ]dt / 2s(X Û 0) dW , X ¢ 0,(2.9) t t t t 0

where W Å (Wt , t ¢ 0) is a standard Brownian motion, and X0 and W are independent.
Next, define V Å (Vt , t ¢ 0) as the diffusion process on [0, `) with the generator

2d dg 1 d g2Lg(x) Å c / (x) / s (x) ,S D 2x dx 2 dx

where the domain of L is

2 2 2D(L) Å {g √ C ([0, `)) : g(x) Å g̃(x ) for some g̃ √ C ([0, `))},K K

`)) being the space of twice continuously differentiable functions on [0, `) with2C ([0,K

compact support.
A proof of the following technical result is similar to the proof of the existence of the

Bessel diffusion (Ikeda and Watanabe (1989), Chapter 4, Examples 8.2 and 8.3) .

LEMMA 2.1. For given X0 and V0 , the processes X and V exist and are unique in law .
If V0 is distributed as then the distributions of V and coincide .

___ __√ √
X , X0

In the main result below, and throughout the remainder of the paper, all processes are
assumed to have right-continuous with left-hand limits sample paths and considered as
random elements of the Skorohod space D[0, `) (see, e.g., Jacod and Shiryaev (1987),
Liptser and Shiryaev (1989)) , and convergence in distribution for the processes is un-
derstood as weak convergence of the induced measures on D[0, `) . By we denote

d
r

convergence in distribution in an appropriate metric space. Also, denotes convergence
P
r

in probability.
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THEOREM 2.1. Assume that V0 , as n r ` , where V0 is a nonnegative random
dnV r0

variable . If conditions (2.1) – (2.6) hold , then

dnV r V .

Theorem 2.1 allows us to get the averaging principle for unfinished work. Let tn,lU ,t

¢ 0, denote the unfinished work at time t at queue l Å 1, 2, and define Å Vn , l
__√

n,l n,lV U / n ,t nt

Å t ¢ 0).n,l(V ,t

THEOREM 2.2. Let f ( x) , x ¢ 0, be a real-valued continuous function . Then , under
the conditions of Theorem 2.1, for t ú 0,

t t 1
d

n,lf (V )ds r f(uV )du ds , l Å 1, 2.s s* * S* D
0 0 0

To conclude this section, it is instructive to compare the result of Theorem 2.1 with a
related Bessel process limit obtained by Yamada (1984, Theorem 1). (An example of
this type for point processes is considered by Yamada (1986). Rosenkrantz (1984) con-
siders an alternative approach to the problem studied in Yamada (1984).) Note that the
process of total unfinished work satisfies the equation

t
n n n n nU Å U / S 0 1(U ú 0)a ds ,(2.10) t 0 t s s*

0

where

n,lA t
n n,1 n,2 n,l n,lS Å S / S , S Å h , l Å 1, 2,(2.11) ∑t t t t i

iÅ1

An , l Å t ¢ 0), l Å 1, 2, are the input processes, i.e.,n,l(A ,t

j
n,l n,lA Å max j : j ° t ,∑t iS D

iÅ1

and is the indicator of the event that the server is not switching over (i.e., is serving)na s

at time s .
According to (2.10), if ú 0, then the instantaneous rate at which work leaves thenUs

system is The heuristic argument of §1 shows that it is reasonable to replace byn na . as s

i.e., consider the process Ŭn Å t ¢ 0) defined as the solution ton n n˘r (U ) , (U ,s t

t
n n n n n n˘ ˘ ˘U Å U / S 0 1(U ú 0)r (U )ds(2.12) t 0 t s s*

0

as an approximation for Un . Equation (2.12) is of the type studied by Yamada. The
conditions of our Theorem 2.1 allow us, with some reservations, to apply his Theorem 1;
the limit process that this gives us turns out to be the same as the one in Theorem 2.1.

This comparison justifies our guess that can be substituted for in (2.10).n n nr (U ) as s

Moreover, it is plausible to conjecture that one can weaken the much more restrictive
conditions of Yamada’s result. Indeed, the techniques developed in the proof of Theorem
2.1 can be applied to prove the following generalization of Yamada’s result. In this gen-
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eralization, we assume that Ŭn Å t ¢ 0) is a nonnegative process satisfying (2.12),n˘(U ,t

where rn(x) , x ¢ 0, is a nonnegative bounded function, not necessarily from (1.3) . We
further let Å t ¢ 0, V̆ n Å t ¢ 0) and rV n Å supx¢0 rn(x) . The previous

__√
n n n˘ ˘ ˘V U / n , (V ,t nt t

notation is preserved.

THEOREM 2.3. Assume that rn(x) satisfies the following conditions :

n n(r1) lim x(rV 0 r (x)) Å d ,
x,nr`

n n(r2) sup x(rV 0 r (x)) õ ` .
x,n

Assume that , as n r ` , 0 rV n) r c and conditions (2.1) , (2.4) and (2.5) hold . If
__√

nn (r
V0 , then V̆n V .

d dnV̆ r r0

The main improvements over Yamada’s result are that we do not need the input pro-
cesses to be Poisson (Yamada conjectured that this extension holds, but did not give a
proof) and that we do not assume the condition r n ° rV n . In addition, rn(x) does not have
to be nondecreasing, the initial condition does not need a second moment and thenU 0

increments of do not need fourth moments.nS t

3. A Threshold Queue. In this section we prove an averaging principle for a single-
server queue, called the threshold queue, which is central to our analysis. The threshold
queue is basically the standard FIFO single-server queue described in Coffman et al.
(1995) except that the threshold operates on the unfinished work, not the queue length.
For a given parameter h ¢ 0, busy periods of the threshold queue begin only when the
unfinished work first exceeds h ; busy periods terminate in the normal way, when no
unfinished work remains. We say that the server switches on when the busy periods begin
and switches off when the busy periods end. Those periods during which the server is
switched off are called accumulation periods; such a period includes the usual idle period
plus a period during which arrivals are accumulating in the queue. An accumulation period
and its following busy period make up a cycle.

Threshold queues correspond in the obvious way to the queues in our two-queue polling
system; for example, the accumulation periods of the threshold queue representing queue
1 correspond to the busy periods of queue 2. In our general approach to the proof of the
averaging principle (cf. Theorem 2.2), the time interval [0, T] is divided into subintervals
sufficiently small that the total unfinished work in the system remains approximately
constant during each. Then, during a subinterval, the behavior of the unfinished work at
each queue is approximated by that of a threshold queue. The main result of this section
(Theorem 3.1) shows that a threshold queue also obeys an averaging principle; the av-
eraging principle for the polling system is derived as a consequence of the averaging
principles for the threshold queues defined for the subintervals.

We use the notation of Coffman et al. (1995). Consider a sequence of threshold queues
indexed by n . The generic interarrival and service times are denoted by j n and h n re-
spectively. The threshold for the unfinished work in the n th queue is hn Å where

_√
nna ,

an is a given constant. We are assuming that

n 2 n 2sup E(j ) õ ` , sup E(h ) õ ` ,(3.1)
n n

and, letting l n Å (Ej n)01 and mn Å (Eh n)01 , assume that
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n n nlim l Å l ú 0, lim m Å m ú 0, lim a Å a ú 0, l õ m.(3.2)
nr` nr` nr`

As in Coffman et al. (1995), within each busy period, at most one of the interarrival
periods is allowed to be exceptional , i.e., to have a distribution other than that of j n .
Specifically, for each i¢ 1, we introduce a nonnegative random variable and an integer-nj̃ i

valued random variable which correspond to the i th cycle. If there are at leastn nx xi i

arrivals in the i th busy period, then the arrival has an exceptional interarrivaln(x ) thi

period whose duration is taken to be If the busy period has less than arrivals, non nj̃ . xi i

exceptional arrivals occur. We assume that there exists a family of sequences in{z (r) ,i

¢ 1}, r ú 0, of identically distributed nonnegative random variables such that

_√
 t n 1 Pn n n˜__ z (r) r 0 as n r ` , r ú 0, lim lim P(j ú z (r)) Å 0, t ú 0,(3.3) √ ∑1 i i

rr` nr` iÅ1n

and that the joint distribution of the normal interarrival times, and the service timesnz (r) ,i

in the i th cycle does not depend on i . We allow for two interarrival times to be dependent
if one is taken from a busy period of the i th cycle and the other is taken either from
another cycle or from an accumulation period of the i th cycle. However, interarrival
(except for the exceptional) , as well as service, times within each accumulation or busy
period are assumed to be mutually independent. We also assume that the time of the first
arrival, which we denote by may have a distribution different from that of the genericn

Vj ,1

interarrival time, and that
n

Vj P1__ r 0.(3.4) √
n

Introduce Xn( t) Å t ¢ 0, where Yn( t) is the unfinished work at t , and assume
__√

nY (nt) / n ,
that Xn(0) Å 0.

The following result is well known and will be used several times in the remainder of
the paper (see Iglehart and Whitt (1970) for a proof) .

LEMMA 3.1. Let i ¢ 1}, n ¢ 1, be a triangular array of nonnegative i .i .d .n{z ,i

random variables such that , for any e ú 0,
__√

n 2 nlim E(z ) ·1(z ú e n ) Å 0.1 1
nr`

Let Nn , n ¢ 1, be nonnegative integer-valued random variables such that , for some q
ú 0,

nN
lim P ú q Å 0.S Dnnr`

Then as n r ` ,

1 Pn__ max z r 0.√ i
n1°i°Nn

THEOREM 3.1. Let f ( x) , x√ R/ , denote a bounded continuous function . If conditions
(3.1) – (3.4) hold , then for any T ú 0
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T 1
Pnf ( X ( t))dt r T f (au)du as n r ` .* *

0 0

PROOF. We proceed as in the proof of Theorem 3.1 in Coffman et al. (1995). Define
the times

ng Å 0,0

n n na Å inf( t ú g : X ( t) ú 0), i ¢ 1,i i01

(3.5)
n n n nb Å inf( t ú g : X ( t) ú a ) , i ¢ 1,i i01

n n ng Å inf( t ú b : X ( t) Å 0), i ¢ 1.i i

Note that the start and the terminate busy periods. We prove thatn nb gi i

P 1 1_√ng r a / mt as n r ` ,(3.6)  nt S Dl m 0 l

and
_√ng a nt P 1 1nf ( X (s))ds r mt / f (u)du as n r ` ,(3.7) * S D *l m 0 l0 0

which immediately give the assertion of the theorem.
For i ¢ 2, denote by the time between and the first arrival after i.e.,n n n n

V Vj g g , ji i01 i01 i

Å 0 and denote by k ¢ 1} and k ¢ 1} the i.i.d. sequences, withn n n,1 n,2a g ; {j , {j ,i i01 i ,k i ,k

generic random variable j n , from which normal interarrival times on andn n n[a , b ] [b ,i i i

respectively, are taken. Similarly, let k¢ 1}, i¢ 1, lÅ 1, 2, be the sequencesn n,la ] , {h ,i/1 i ,k

from which service times of requests arriving in and respectively, aren n n n[a , b ] [b , g ] ,i i i i

drawn. Note that, by the conditions of the theorem, the distribution of n n,l n,l{z (r) , j , h ,i i ,k i ,k

l Å 1, 2, k ¢ 1} does not depend on i Å 1, 2, . . . .
In a sense, the i ¢ 2, also represent exceptional interarrival times. By Lemma 3.1n

Vj ,i

in Coffman et al. (1995), we know that they satisfy conditions similar to those imposed
on i.e.,nj̃ ,i

_√
 t n 

n n
V

Vlim lim P(j ú z (r)) Å 0, t ú 0,(3.8) ∑ i i
rr` nr` iÅ2

where

n n,2
Vz (r) Å max j , i ¢ 2, r ú 0._i √ i01,k

1°k°r n 

Moreover, as n r ` ,

n
V Pz (r)i __ r 0, i ¢ 2, r ú 0.(3.9) √

n

Define for i ¢ 1
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` k
n,1 n n n,1

V VA ( t) Å 1(j ° t) / 1 j / j ° t ,(3.10) ∑ ∑i i i i , jS D
kÅ1 jÅ1

n nx 01 k x 01i i
n,2 n,2 n,2 n˜A ( t) Å 1 j ° t / 1 j / j ° t∑ ∑ ∑i i , j i , j iS D S D

kÅ1 jÅ1 jÅ1

(3.11)
` k

n,2 n˜/ 1 j / j ° t ,∑ ∑ i , j iS D
nkÅx jÅ1i

k
n,l n,lS (k) Å h , k Å 1, 2, . . . , l Å 1, 2.(3.12) ∑i i , j

jÅ1

For homogeneity of notation, we further set Å As in Coffman et al. (1995), byn n
V

Vz (r) j .1 1

(3.3) and (3.8) , it is enough to prove (3.6) and (3.7) on the events
_√

 t n 
n n n n n

V˜ VG (r) Å > {j ° z (r) , j ° z (r)}.i i i i
iÅ1

Define the interval lengths

n n n n n nu Å b 0 g , £ Å g 0 b , i ¢ 1,i i i01 i i i

so that by (3.5) and (3.10) – (3.12)

1n n,1 n,1 n__u Å inf t ú 0: S (A (nt)) ú a ,√i i iH J
n

(3.13)
1 1n n,2 n,2 n,1 n,1 n__ __£ Å inf t ú 0: [nt 0 S (A (nt))] ú S (A (nu )) ,√ √i i i i i iH J
n n

and

n n n ng 0 g Å u / £ .(3.14) i i01 i i

In analogy with (3.10) and (3.11), define (since r is fixed, it is omitted in the new notation
below)

` k
n,1 n n n,1

V V VA ( t) Å 1(z (r) ° t) / 1 z (r) / j ° t ,∑ ∑i i i i , jS D
kÅ1 jÅ1

` k
n,1 n,1A ( t) Å 1 / 1 j ° t ,∑ ∑i i , jS D

kÅ1 jÅ1

(3.15)
` k

n,2 n,2
VA ( t) Å 1 / 1 j ° t ,∑ ∑i i , jS D

kÅ1 jÅ1

` k
n,2 n n,2A ( t) Å 1 z (r) / j ° t ,∑ ∑i i i , jS D

kÅ1 jÅ1

and define as in (3.13) and (3.14)
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1n n,1 n,1 n
V__uV Å inf t ú 0: S (A (nt)) ú a ,√i i iH J

n

1n n,1 n,1 n__u Å inf t ú 0: S ( A (nt)) ú a ,√i i iH J
n

(3.16)
1 1n n,2 n,2 n,1 n,1 n

V V__ __£V Å inf t ú 0: [nt 0 S (A (nt))] ú S (A (nuV )) ,√ √i i i i i iH J
n n

1 1n n,2 n,2 n,1 n,1 n__ __£ Å inf t ú 0: [nt 0 S ( A (nt))] ú S ( A (nu )) ,√ √i i i i i iH J
n n

and

i i
n n n n n n n ngV Å (uV / £V ) , g Å (u / £ ) , i ¢ 1, gV Å g Å 0.(3.17) ∑ ∑i j j i j j 0 0

jÅ1 jÅ1

Note that since and are defined in terms of the same process we actuallyn n n n,1u , uV u S ,i i i i

have Å Å so thatn,1 n n,1 n n,1 n
VA (nu ) A (nuV ) A (nu )i i i i i i

n,1 n,1 n n,1 n,1 n n,1 n,1 n
VS (A (nu )) Å S (A (nuV )) Å S ( A (nu )) .(3.18) i i i i i i i i i

Since ° ° 1 ° i ° on Gn(r) , we have by (3.10), (3.11) and
__√

n n n n
V

V ˜j z (r) , j z (r) , t n ,i i i i

(3.15) that

n,1 n,1 n,1
VA ( t) ° A ( t) ° A ( t) ,i i i

(3.19)
n,2 n,2 n,2

VA ( t) ° A ( t) ° A ( t) ,i i i

on Gn(r) , and hence by (3.13), (3.16) and (3.18), for 1 ° i °
__√

t n ,

n n n n n nu ° u ° uV , £ ° £ ° £V ,(3.20) i i i i i i

on Gn(r) , and then by (3.14) and (3.17), for 1 ° i °
__√

t n ,

n n n n n ng 0 g ° g 0 g ° gV 0 gV ,(3.21) i i01 i i01 i i01

on Gn(r) .
Now we prove (3.6) for and this will imply (3.6) for on G n(r) ._ _ _√ √ √n n ngV g ; g nt  nt  nt

Consider only the upper bound process. The proof for is similar._√ng  nt

First, note that by (3.15),

k
n,1 n n,1

V
VA ( t) Å inf k ¢ 0 : z (r) / j ú t ,∑i i i , jS D

jÅ1

k/1
n,2 n,2

VA ( t) Å inf k ¢ 0 : j ú t / 1.∑i i , jS D
jÅ1

Since k ¢ 1}, k ¢ 1}, l Å 1, 2, are i.i.d., we have by (3.1) and (3.2) thatn,l n,l{j , {h ,i ,k i ,k
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_ _√ √
 nt  nt

P P1 t 1 tn,l n,l__ __j r , h r , l Å 1, 2,√ √∑ ∑i ,k i ,k
l mkÅ1 kÅ1n n

and hence, by (3.3) , (3.9) , (3.12), and Lemma 2.1 in Coffman et al. (1995),

__ __√ √P P1 1 ln,l n,l n,l
V V__ __A ( nt) r lt , S (A ( nt)) r t , l Å 1, 2.(3.22) √ √i i i

mn n

By Lemma 2.1 in Coffman et al. (1995) and (3.16), (3.2)

__√ P amnnuV r .(3.23) i
l

Hence, by (3.22), a which gives us by Lemma 2.1 in Coffman et
__√ P

n,1 n,1 n
VS (A (nuV )) / n ri i i

al. (1995), (3.16), and (3.22)

__√ P amnn£V r , i ¢ 1.(3.24) i
m 0 l

Then, by (3.17) and (3.23),

__√ P 1 1n nn(gV 0 gV ) r am / , i ¢ 1.(3.25) i i01 S Dl m 0 l

Since
_√

 nt __√1_√n n n__gV Å n(gV 0 gV ) ,√ ∑ nt k k01

kÅ1n

and since 0 i ¢ 1, are identically distributed by construction, we would have,n ngV gV ,i i01

in view of Lemma 2.4 in Coffman et al. (1995),

P 1 1_√ngV r am / t(3.26)  nt S Dl m 0 l

provided

_ __√ √
n nlim lim nP( n (gV 0 gV ) ú k) Å 0.(3.27) 1 0

kr` nr`

By (3.17), this would follow from

_ __√ √
nlim lim nP( nuV ú k) Å 0,1

kr` nr`

(3.28)
_ __√ √

nlim lim nP( n£V ú k) Å 0.1
kr` nr`

Consider the first limit. By (3.16)
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__ __ __√ √ √
n n,1 n,1 n

VP( nuV ú k) Å P(S (A ( nk)) ° na )1 1 1

(3.29)
__ __ __ __√ √ √ √

1 1n,1 n n,1 n n
V° P(A ( nk) ° l nk) / P(S ( l nk) ° na ) .1 12 2

By (3.12) we have, applying Chebyshev’s inequality and (3.1) and (3.2) , that, for any e
ú 0,

_ _ __ _√ √ √ √kn,llim lim nP S (k n) 0 n ¢ k ne Å 0, l Å 1, 2.(3.30) 1SZ Z Dnmkr` nr`

By an analogue of (3.30) for interarrival times, and by (3.15), in analogy with the proof
of (3.20) in Coffman et al. (1995),

_ __ __ _√ √ √ √
n,l n

Vlim lim nP(ÉA ( nk) 0 l k nÉ ¢ k ne) Å 0, l Å 1, 2.(3.31) 1
kr` nr`

Relations (3.29) – (3.31) prove the first convergence in (3.28).
For the second convergence, we first prove that

_ n√ 1 lnlim lim nP w ú 1 0 k Å 0,(3.32) 1S S D Dn3 mkr` nr`

where

1n n,1 n,1 n n
V__w Å S (A (nuV )) 0 a .(3.33) √1 1 1 1

n

Note that is nonnegative. By the inequalitynw1

1n n,1__w ° sup h ,√1 1, j
n,1 n

V1° j°A (nuV )1 1n

we have
_ _ __n√ √ √1 ln nnP w ú 1 0 k ° nP( nuV ú k)1 1S S D Dn3 m

_ _ _ _n√ √ √ √1 ln,1 n n n,1
V/ nP(A ( nk) ú m nk) / m nkP h ú 1 0 k n .1 1,1S S D Dn3 m

We have proved that limkr` ú k) Å 0; by (3.31), since l õ m, we have
_ __√ √

nlim nP( nuV 1
nr`

limkr` ú Å 0. Finally, by Chebyshev’s inequality,
_ __ _√ √ √

n,1 n
Vlim nP(A ( nk) m nk)1

nr`

_n √1 l 9n,1 n,1 2nkP h ú 1 0 k n ° E(h ) ,1,1 1,1S S D Dn n n 23 m (1 0 l /m ) k

and applying (3.1) and (3.2) , we arrive at (3.32).
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Going back to the proof of the second inequality in (3.28), write, by (3.16) and (3.33),
in analogy with (3.29),

__ __ __ __ __√ √ √ √ √
n n,2 n,2 n n

VP( n£V ú k) Å P(sup( nt 0 S (A ( nt))) ° nw / na )1 1 1 1
t°k

__ __ __√ √ √
n,2 n,2 n n

V° P(S (A ( nk)) ¢ n (k 0 w ) 0 na )1 1 1

__ __ n√ √1 1 ln,2 n n n
V° P(A ( nk) ú (l / m ) nk) / P w ú 1 0 k1 1S S D Dn2 3 m

__ __ n√ √1 2 1 ln,2 n n n/ P S (l / m ) nk ¢ n / k 0 a .1S S D SS D DDn2 3 3 m

Putting together (3.30), (3.31), (3.32) and the inequality l õ m yields the second con-
vergence in (3.28). Thus, (3.26) has been proved. The proof of (3.6) is done.

To prove (3.7) on G n(r) , we apply Lemma 2.4 in Coffman et al. (1995), i.e., we prove
that

_√
n nt __ g i√1 n__lim P n f ( X (s))ds

(3.34)

√ ∑ SH Z *
nnr` g i01iÅ1n

a1 1 n0 m / f (u)du ú e > G (r) Å 0, e ú 0,S D * Z J Dl m 0 l 0

and

_√
n nt __ g i√

n nlim lim P n f ( X (s))ds ú k > G (r) Å 0.(3.35) ∑ SH Z* Z J D
nkr` nr` g i01iÅ1

Note that (3.35) is easy. For, by the right inequality in (3.21) and the boundedness of f ,
we have, letting \·\ denote the sup norm,

_ _√ √
n nt __  nt __g i√ √

n n n nlim P n f ( X (s))ds ú k > G (r) ° lim P( n (gV 0 gV )\ f \ú k)∑ ∑ i i01SH Z* Z J D
nnr` nr`g i01iÅ1 iÅ1

which tends to 0 as k r ` by (3.27) and by the fact that the 0 i ¢ 1, aren n(gV gV ) ,i i01

identically distributed.
By (3.14), (3.34) would follow if

_√
n nt __ u ai√1 mn n n__lim P n f ( X (s / g ))ds 0 f (u)du ú e > G (r) Å 0,√ ∑ i01SH Z * * Z J Dlnr` 0 0iÅ1n

and
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_√
n nt __ £ i√1 n n__lim P n f ( X (s / b ))ds

(3.36)

√ ∑ iSH Z *
nr` 0iÅ1n

am n0 f (u)du ú e > G (r) Å 0.* Z J Dm 0 l 0

These limits have similar proofs; we prove only (3.36), which is more difficult.
First, by the second set of inequalities in (3.20) and the fact that i ¢ 1} andn{£V ,i

i ¢ 1} each consist of identically distributed random variables, for d ú 0, 1 ° in{£ ,i

°
_√

t n ,

_√ amn nP n£ 0 ú d > G (r)iSH Z Z J Dm 0 l

__ __√ √am amn n° P n£V 0 ú d / P n£ 0 ú d ,1 1SZ Z D SZ Z Dm 0 l m 0 l

and hence

_√
 nt _√1 amn n__lim P n£ 0 ú d > G (r)

(3.37)

√ ∑ iSH Z Z J Dm 0 lnr` iÅ1n

__ __√ √am amn n° t lim P n£V 0 ú d / t lim P n£ 0 ú d Å 0,1 1SZ Z D SZ Z Dm 0 l m 0 lnr` nr`

where the last equality follows by (3.24) and its counterpart for Next,n
£ .1

n__ £ ai√ mn n nP n f ( X (s / b ))ds 0 f (u)du ú e > G (r)iSH Z * * Z J Dm 0 l0 0

_√
nn£ Úam/(m0l)i un n_° P f X / b√ iSH* Z S S DD

0 n

l e n0 f a 0 1 0 u du ú > G (r)S S D DZ J Dm 2

_√ am en n/ P \ f \· n£ 0 ú > G (r) .iSH Z Z J Dm 0 l 2

Sum the second term on the right over i Å 1, . . . , and divide by By (3.37),
_ __√ √

 t n n .
the result tends to 0 in probability as n r ` , so the proof of (3.36) will be finished by
proving
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_√
_ nt √

n1 un£ Úam/ (m0l)i n n__ _lim P f X / b

(3.38)

√ √∑ iSH* Z S S DD
nr` 0iÅ1n n

l e n0 f a 0 1 0 u du ú > G (r) Å 0.S S D DZ J Dm 2

We prove first that, for h ú 0,

_√
 nt1 un n__ _lim P sup X / b

(3.39)

√ √_∑ √ iSH Z S D
nn u° n£ Úam / (m0l)iiÅ1n n

l n0 a 0 1 0 u ú h > G (r) Å 0.S S D DZ J Dm

By construction,

n,2 n,2S (A (nu)) 0 nui in n n n n__X (u / b ) Å a / w / , u √ [0, £ ] ,√i i i

n

where is defined in analogy with (3.33), so,nwi

u ln n n_P sup X / b 0 a 0 1 0 u ú h > G (r)√_√ iSH Z S D S S D DZ J D
n mu° n£ Úam / (m0l)i n

__√
n,2 n,2S (A ( nu)) l hi i n__° P sup 0 u ú > G (r)√SH Z Z J Dm 3u°am / (m0l) n

h hn n/ P w ú / 1 Éa 0 aÉ ú .iS D S D3 3

Since the distributions of t ¢ 0), t ¢ 0) and t ¢ 0) do notn,2 n,2 n,2
V( A ( t) , (A ( t) , (S ( t) ,i i i

depend on i , we conclude from (3.32), (3.2) and (3.19) that the left-hand side of (3.39)
is not greater than

__√1 l hn,2 n,2
V__t lim P sup S (A ( nu)) 0 u ú√ 1 1S Z Z Dm 3nr` u°am / (m0l) n

__√1 l hn,2 n,2__/ t lim P sup S ( A ( nu)) 0 u ú√ 1 1S Z Z Dm 3nr` u°am / (m0l) n

which is zero by (3.22) and an analogous relation for (3.39) is
__ __√ √

n,2 n,2S ( A ( nu)) / n ;1 1

proved.
Now on the event
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u ln n__sup X / b 0 a 0 1 0 u ° h ,√_√ iH Z S D S S D DZ J
n mu° n£ Úam / (m0l)i n

we have that / ° a / h, u √ [0, Ú am/ (m 0 l)] , and therefore, for
__ __√ √

n n nX (u / n b ) n £i i

u √ [0, Ú am/ (m 0 l)] ,
__√

nn £ i

u ln n_f X / b 0 f a 0 1 0 u ° v (h, a / h) ,√ i fZ S S DD S S D DZmn

where vf (d, T ) is the modulus of continuity of f on [0, T] for partitions of diameter d.
This implies by the continuity of f that, for all h small enough and for all i ,

u ln n_sup X / b 0 a 0 1 0 u ° h√_√ iH Z S D S S D DZ J
n mu° n£ Úam / (m0l)i n

_√
n u l en£ Úam / (m0l)i n n_, f X / b 0 f a 0 1 0 u du ° ,√ iH* Z S S DD S S D DZ Jm 20 n

so for h small enough

_√
nn£ Úam/ (m0{l)i u l en n n_P f X / b 0 f a 0 1 0 u du ú > G (r)√ iSH* Z S S DD S S D DZ J D

0 m 2n

u ln n n_° P sup X / b 0 a 0 1 0 u ú h > G (r) ,√_√ iSH Z S D S S D DZ J D
n mu° n£ Úam / (m0l)i n

and so (3.38) follows from (3.39). Thus (3.36), (3.34) and (3.7) are proved. This com-
pletes the proof of the theorem. h

4. An averaging principle for the unfinished work. In this section, having in view
the averaging principle, we derive a limit theorem for the integral whereT n,1* f (V )dt ,t0

f ( x) is a real-valued continuous function on the positive half-line, assuming that V n Ṽ
d
r

for some continuous process Ṽ . This is carried out by providing suitable upper and lower
bounds for the unfinished work at an individual queue in analogy with the contents of §4
in Coffman et al. (1995). The main result is the following.

THEOREM 4.1. Assume that , in addition to the conditions of Theorem 2.1, V n Ṽ,
d
r

where Ṽ Å ( Ṽt , t ¢ 0) is a nonnegative continuous process such that , for any T ú 0,
1( Ṽt Å 0)dt Å 0 P-a .s . Then , for any continuous function f ( x) on R/ ,T*0

T T 1
d

n,1 ˜f (V )dt r f (uV )du dt .t t* * S* D
0 0 0

PROOF. We first assume that f ( x) is bounded and nonnegative. We note that it is
enough to prove that
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T T 1
d

n,1 n ˜ ˜f (V )·1(d ° V ° K)dt r f (uV )du ·1(d ° V ° K)dt ,(4.1) t t t t* * S* D
0 0 0

for any d and K , 0 õ d õ K , such that

T

˜ ˜[1(V Å d) / 1(V Å K)]dt Å 0 P-a.s.(4.2) t t*
0

The argument is given in the proof of Theorem 2.1 in Coffman et al. (1995). So, we
prove (4.1) assuming (4.2) . The idea of the proof is the same as in Coffman et al. (1995).
Note that if considered in isolation an individual queue in our polling system passes
through alternating periods of accumulating and serving requests, thus its behavior resem-
bles the behavior of the threshold queue above, the distinction being that here the threshold
is a random process: the queue starts being served when the unfinished work at this queue
becomes equal to the total amount of the unfinished work in the system. According to the
assumptions of the theorem, the (properly normalized and time-scaled) process of the
total unfinished work is a continuous process in the limit. Therefore, we can divide the
time axis into (random) intervals small enough for the total unfinished work during an
interval to be close to a constant. Then during such an interval an individual-queue un-
finished work is well approximated by the unfinished work in a threshold queue with the
associated constant as a threshold. The proof of the theorem implements this program.

As in Coffman et al. (1995), choose e √ (0, d /2) such that N Å (K0 d) /e is an integer
and, given r(e) õ e /2, let, for 0 ° i ° N ,

a (e) Å d / ie,i

B (e, i) Å (a (e) 0 r(e) , a (e) / r(e)) ,r(e) i i

C (e, i) Å (0, a (e) 0 e / r(e)) < (a (e) / e 0 r(e) , `) ,r(e) i i

nz (e, i) Å 0,0

n n nt (e, i) Å inf( t ú z (e, i) : V √ B (e, i)) , k ¢ 1,k k01 t r(e)

n n nz (e, i) Å inf( t ú t (e, i) : V √ C (e, i)) , k ¢ 1,k k t r(e)

z (e, i) Å 0,0

˜t (e, i) Å inf( t ú z (e, i) : V √ B (e, i)) , k ¢ 1,k k01 t r(e)

˜z (e, i) Å inf( t ú t (e, i) : V √ C (e, i)) , k ¢ 1.k k t r(e)

Thus, i) , i)] are intervals during which ‘‘does not vary too much.’’n n n[t (e, z (e, Vk k t

For the sequel, we note that, since Ṽ is continuous, the argument of the proof of Lemma
4.1 in Coffman et al. (1995) applies to V n and Ṽ to give that

t (e, i) õ z (e, i) P-a.s. on {t (e, i) õ `},k k k

lim P( min z (e, i) ° T ) Å 0,
(4.3)

k
kr` 0°i°N

and that r(e) can be chosen so that, as n r ` ,



275POLLING SYSTEMS IN HEAVY TRAFFIC: A BESSEL PROCESS LIMIT

/ 3904 0014 Mp 275 Wednesday May 06 03:12 PM INF–MOR 0014

n n n(V , (t (e, i) Ú T , z (e, i) Ú T ) )
(4.4)

k k k¢1,0°i°N

d ˜r (V, (t (e, i) Ú T , z (e, i) Ú T ) ) ,k k k¢1,0°i°N

where convergence in distribution is in D[0, `) 1 R` (Billingsley (1968)) .
Let k) , j ¢ 0, denote the successive times after i) , when the unfinishedn,1 nnk ( i , nt (e,j k

work at queue 1 becomes equal to 0. These are times when switchovers from queue 1 to
queue 2 start. We also let denote the number of accumulation-service cycles for queuen,1q i ,k

1 in i) Ú T , i) Ú T] , i.e.,n n[t (e, z (e,k k

n,1 n n,1 nmin( j : k ( i , k) ú z (e, i) Ú T ) , if k ( i , k) ° z (e, i) Ú T ,j/1 k 0 k
n,1q Åi ,k H n,1 n0, if k ( i , k) ú z (e, i) Ú T .0 k

We now define two threshold queues approximating queue 1 on i) Ú T ,n n[t (e, z (e,k k

i) Ú T] whose unfinished work processes bound the unfinished work process of queue 1
from below and from above, respectively. We begin by introducing a threshold queue
associated with queue 1 on i) Ú T , i) Ú T] .n n[t (e, z (e,k k

Fixing i and k , we denote Å k) and let j ¢ 1, denote the successiven n,1 nk k ( i , nu ,j j j

times after when the server starts serving queue 1; obviously, õ õ jn n n nnk k u k ,0 j01 j j

¢ 1. Let the arrivals to queue 1 on `) be numbered successively starting from 1.n[nk ,0

Let denote the time period between and the first arrival. Denote by l ¢ 2, then n n˜ ˜j nk j ,1 0 l

times between the ( l0 1)th and l th of these arrivals. Obviously, l¢ 2} is a sequencen˜{j ,l

of i.i.d. random variables with the distribution of the generic interarrival time for queue
1. Introduce independent replicas l ¢ 1}, j ¢ 1, m Å 1, 2, of the interarrival timen,m{j ,j ,l

sequence at queue 1 and independent replicas l ¢ 1}, j ¢ 1, m Å 1, 2, of then,m{h ,j ,l

service time sequence at queue 1.
Given h ú 0, let

n n n,1 nw Å inf( t ú k : V ú h) Ú u , j ¢ 1,j j01 t j

n n n,1 n,1
nc Å inf( t ú u : V ° V ) , j ¢ 1.j j t w j

Note that if ° h , then Å Å Let j ¢ 1, index the last arrival to queuen,1 n n n n
nV w c u . x ,u j j j jj

1 occurring no later than at and let j ¢ 1, denote the time between and then n nnc £V , ncj j j

/ 1)th arrival. By definition, °n n n
V n(x £V j .j j x /1j

Construct as follows a threshold queue with the threshold hn Å In the first cycle
__√
nh .

the interarrival times in the accumulation period are taken from the sequence . . . ,n n˜ ˜{j , j ,1 2

···}. The associated service times for arrivals 1 through aren n n,1 n,1 n˜ ˜n nj , j , j , j , xx x /1 1,1 1,2 11 1

those of corresponding arrivals to queue 1 and the subsequent service times are n,1h ,1,1

. . . .n,1h ,1,2

Denoting the threshold queue normalized and time-scaled unfinished work at t by
definen,1

VV ,t

n n,1
Vb Å inf( t ú 0 : V ú h) .1 t

Then ends the first accumulation period. Obviously, Å 0 if ú h whichn n n n n,1
nnb b w k V1 1 1 0 w1

happens if ú h , in this case ··· are not actually used as interarrivaln,1 n n,1 n,1˜n nV j , j , j ,u x /1 1,1 1,21 1

times and ··· are not used as service times. At service switches on. Ifn,1 n,1 nh , h , nb1,1 1,2 1

° h , which happens if ° h , then interarrival times after are taken fromn,1 n,1 n
n nV V nbw u 11 1
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l ¢ 1} and service times after are taken from l ¢ 1} until timen,2 n n,2 n{j , nb {h , nf ,1,l 1 1,l 1

where

n n n,1 n,1
V nf Å inf( t ú b : V ° V ) .1 1 t w1

We then take to be the last random variable in the sequence ···} that isn,2 n,2 n,2
nj {j , j ,1,xV 1,1 1,21

actually realized as an interarrival time in In the case that ú h , we definen n n,1
n[nb , nf ] . V1 1 w1

Å and set Å Å 0. In both cases, the first arrival after is made to occurn n n n,2 n
nf b xV j nf1 1 1 1,xV 11

at time / and bring the same service time as the / 1)th arrival in queue 1 son n nnf £V (x1 1 j

that its interarrival time satisfies the inequality ° / ° /n n n n,2 n n,2˜n n n£ £ £V j j j .1 1 1 1,xV /1 x /1 1,xV /11 1 1

The subsequent interarrival times are . . . , and the service times are the samen n˜ ˜n nj , j ,x /2 x1 2

as for arrivals / 2, . . . , in queue 1, where is the index of the last arrival inn n nx x x1 2 2

queue 1 occurring no later than at Arrivals / 1, / 2, ··· have the interarrivaln n nnc . x x2 2 2

times ··· and the service times ··· until (and unless, i.e., thesen n,1 n,1 n,1 n,1˜ nj , j , j , h , h ,x /1 2,1 2,2 2,1 2,22

times are not used if ú h) the threshold has been exceeded. After this has happenedn,1
nVw2

at wherennb ,2

n n n,1
Vb Å inf( t ú g : V ú h) ,2 1 t

and

n n n,1
Vg Å inf( t ú b : V Å 0),1 1 t

and until wherennf ,2

n n n,1 n,1
V nf Å inf( t ú b : V ° V ) ,2 2 t w2

the interarrival times are ··· and the service times are ··· (as aboven,2 n,2 n,2 n,2j , j , h , h ,2,1 2,2 2,1 2,2

these are not used if ú h and hence Å After the next arrival brings then,1 n n n
nV f b ) . nf ,w 2 2 22

same service time as the arrival in the original queue terminating the interarrival time
and occurs at time / ( in both cases ú h and ° h) so that itsn n n n,1 n,1˜ n n nj nf £V V Vx /1 2 2 w w2 2 2

interarrival time satisfies ° / ° / where denotes the lastn n n,2 n n,2 n,2˜n n n n£ £V j j j , j2 2 2,xV /1 x /1 2,xV /1 2,xV2 2 2 2

random variable from ···} that is realized as an interarrival time inn,2 n,2 n{j , j , [nb ,2,1 2,2 2

(again Å Å 0 if ú h) . The subsequent interarrival times are ···n n n,2 n,1 n˜n n nnf ] xV j V j ,2 2 2,xV w x /22 2 2

and the service times replicate those of queue 1 until the unfinished work hits 0 after
which the cycle resumes.

That this is indeed a threshold queue with generic interarrival and service times dis-
tributed as in the original queue follows by Lemma 4.2 in Coffman et al. (1995). The
exceptional arrivals, if any, are the ones occurring at / j ¢ 1. Note also that ifn nnf £V ,j j

° h , then is used for constructing interarrival sequences in both accumulationn,1 n˜n nV ju x /1j j

and busy periods so that these sequences, generally, are dependent. This explains why we
emphasised this assumption in Theorem 3.1.

We now check that VV n ,1 satisfies the conditions of Theorem 3.1. We need focus only
on the part related to exceptional interarrival times and the time of the first arrival. Define

n n n,2˜ nz (r) Å max j / max j ,_ _j √ x̃/k √ j ,kj
1°k° nr  1°k° nr 

where indexes the first arrival in the original queue after Noting that kn n n˜ n˜x̃ k . {j ,j j01 x /kj

¢ 1} is distributed as k ¢ 1} and that ° / one can prove in analogyn n n n,2˜ ˜ n n{j , £ j j ,k j x /1 j ,xV /1j j

with Lemma 3.1 in Coffman et al. (1995) that the sequence j ¢ 1} satisfiesn n{£ , z (r) ,j j
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the conditions of Theorem 3.1. Informally, this follows by the fact that since the number
of arrivals in an accumulation-service cycle is of order ‘‘with high probability’’ the

__√
n ,

exceptional arrival is among the first arrivals when r is ‘‘big,’’ similarly, belongs
__√

n,2
nnr j j ,xV /1j

to the set . . . , ‘‘with high probability’’ for r ‘‘big.’’ By a similar argument,n,2 n,2_√{j , j }j ,1 j, nr

0. Thus, the conditions of Theorem 3.1 hold for the associated threshold queue.
__√

Pnj̃ / n r1

We now define a process Ṽ n ,1 as the process VV n ,1 corresponding to the threshold h
Å ai (e) 0 e and a process V̂ n ,1 as the process VV n ,1 corresponding to the threshold h
Å ai (e) / e, and check that they represent a lower and upper bound, respectively,
for Vn ,1 .

Since on the interval i) , i)) , the process Vn stays in the strip (ai (e) 0 en n[t (e, z (e,k k

/ r(e) , ai (e)/ e0 r(e)) , the process Vn ,1 up-crosses the level ai (e)0 e in every interval
belonging to i) Ú T , i) Ú T] , so the construction above yieldsn n n n[k , k ] [t (e, z (e,j01 j k k

n,1 n n n,1
n nV , t √ [ Ig , Hb ) , 1 ° j ° q ,t0 Ig /k j01 j i ,kj01 j01n,1Ṽ Åt H n,1 n n n,1
n nV , t √ [ Hb , Ig ) , 1 ° j ° q ,t0 Hb/c j j i ,kj j

where, in analogy with the proof of Theorem 3.1, denotes the j th time a busy periodn˜nb j

for Ṽ n ,1 starts and denotes the j th time when the queue empties. By the fact that f isnn g̃ j

nonnegative, we then get

n nq̃ z (e,i)ÚTk
n,1 n,1˜f (V )dt ° f (V )dt ,(4.5) t t* *

n0 t (e,i)ÚTk

where Ån n˜ n,1q g̃ .q i,k

Similarly, since Vn does not exceed ai (e) / e on i) Ú T , i) Ú T] , then n[t (e, z (e,k k

construction above implies that

n,1 n n n,1
P n nV , t √ [k , w ) , 1 ° j ° q ,t0k /gP j01 j i ,kj01 j01n,1V Åt H n,1 n n n,1
P n nV , t √ [w , k ) , 1 ° j ° q ,

Pt0w /f j j i ,kj j

where is defined as above corresponding to h Å ai (e) / e and is the j th timen n n
Pf f ngPj j j

when the queue empties. Again, since f is nonnegative,

n nz (e,i)ÚT k ÚTk 0
n,1 n,1f (V )dt ° f (V )dtt t* *

n nt (e,i)ÚT t (e,i)ÚTk k

(4.6) n nz (e,i)ÚT Oqk
n,1 n,1

P/ f (V )dt / f (V )dt ,t t* *
n n,1k 0q i ,kÚT

where Ån n
P n,1q gP .q i,k

Thus, recalling that \ f \ Å supx f ( x) , by (4.5) and (4.6) we have the bounds

n nq̃ z (e,i)ÚTk
n,1 n,1˜f (V )dt ° f (V )dtt t* *

n0 t (e,i)ÚTk

n
Pq

n,1 n n
P° f (V )dt / [k Ú T 0 t (e, i) Ú T]\ f \(4.7) t 0 k*

0

n n
n,1/ [z (e, i) Ú T 0 k Ú T]\ f \.k q i,k
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We next apply Theorem 3.1 to Ṽ n ,1 and V̂ n ,1 to get the asymptotics of the bounds on the
right and on the left.

Define

n,1 n n nq̃ Å min( j : g̃ ú z (e, i) Ú T 0 t (e, i) Ú T ) ,(4.8) i ,k j/1 k k

n,1 n n n
Pq Å min( j : gP ú z (e, i) Ú T 0 t (e, i) Ú T ) .(4.9) i ,k j/1 k k

Obviously,

n,1 n,1 n,1
P ˜q ° q ° q .(4.10) i ,k i ,k i ,k

Let i) and i) denote respectively the lower bound in (4.7) withn n n n˜ n,1U (e, V (e, q (Åg̃ )qk k i,k

changed to Å and the upper bound in (4.7) with changed ton n n n n
Pn,1 n,1ṽ g̃ P , q (ÅgP ) vPq qi,k i,k

Å By (4.10),n
n,1gP .q̃ i,k

nz (e,i)ÚTk
n n,1 nU (e, i) ° f (V )dt ° V (e, i) .(4.11) k t k*

nt (e,i)ÚTk

We now show that, as n r ` ,

d d
n nU (e, i) r U (e, i) , V (e, i) r V (e, i) , k ¢ 1, 0 ° i ° N ,(4.12) k k k k

where

1a (e) 0 eiU (e, i) Å (z (e, i) Ú T 0 t (e, i) Ú T ) f (u(a (e) 0 e))du ,
(4.13)

k k k i*a (e) / e 0i

1a (e) / eiV (e, i) Å (z (e, i) Ú T 0 t (e, i) Ú T ) f (u(a (e) / e))du ,k k k i*a (e) 0 e 0i

Let

n,1 nq̃ ( t) Å min( j ¢ 0 : g̃ ú t)(4.14) i ,k j/1

and

n,1 n
Pq ( t) Å min( j ¢ 0 : gP ú t) .(4.15) i ,k j/1

Note that

n,1 n,1 n n˜ ˜q Å q (z (e, i) Ú T 0 t (e, i) Ú T ) ,(4.16) i ,k i ,k k k

n,1 n,1 n
P Pq Å q (e, i) Ú T 0 t (e, i) Ú T ) .(4.17) i ,k i ,k k

In the course of proving Theorem 3.1 we established (3.6) . Since Ṽn ,1 and V̂ n ,1 meet
the conditions of Theorem 3.1 and the and are analogues of the from (3.5) , wen n ng̃ gP gj j j

can write for these processes, in analogy with (3.6) ,
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P P1 1 1 1n n__ __√ √g̃ r t(a (e) 0 e)m / , gP r t(a (e) / e)m / .i 1 i 1S D S D nt  ntl m 0 l l m 0 l1 1 1 1 1 1

By Lemma 2.1 in Coffman et al. (1995) and (4.14), (4.15),
n,1 01˜ Pq ( t) t 1 1i ,k__ r / ,

(4.18)
√ S Dm (a (e) 0 e) l m 0 l1 i 1 1 1n

n,1 01
P Pq ( t) t 1 1i ,k__ r / .√ S Dm (a (e) / e) l m 0 l1 i 1 1 1n

Lemma 2.2 in Coffman et al. (1995) then yields

P Pa (e) 0 e a (e) / ei in n
n,1 n,1g̃ r t , gP r t .(4.19) ˜ ˜q ( t) q ( t)i,k i,ka (e) / e a (e) 0 ei i

By Theorem 3.1 applied to Ṽ n ,1 and V̂ n ,1 and (4.19),

n n,1gP 1( t)˜ i,kq P a (e) 0 ein,1˜f (V )ds r t f (u(a (e) 0 e))du ,
(4.20)

s i* *a (e) / e0 0i

n n,1gP 1( t)˜ i,kq P a (e) / ein,1
Pf (V )ds r t f (u(a (e) / e))du .s i* *a (e) 0 e0 0i

In view of (4.16), Lemma 2.2 in Coffman et al. (1995) shows that (4.4) and (4.20)
imply

nṽ 1
d a (e) 0 ein,1˜f (V )dt r (z (e, i) Ú T 0 t (e, i) Ú T ) f (u(a (e) 0 e))du ,t k k i* *a (e) / e0 0i

nvP 1
d a (e) / ein,1

Pf (V )dt r (z (e, i) Ú T 0 t (e, i) Ú T ) f (u(a (e) / e))du .t k k i* *a (e) 0 e0 0i

Since Ú T 0 i) Ú TÉ 0 and i) Ú T 0 Ú TÉ 0 obviously hold,
P P

n n n n
n,1Ék t (e, r Éz (e, k r0 k k q i,k

(4.12) is proved. Moreover, the same argument shows that

d
n n ˜(V , (U (e, i)) ) r (V, (U (e, i)) ) ,

(4.21)
k k¢1,0°i°N k k¢1,0°i°N

d
n n ˜(V , (V (e, i)) ) r (V, (V (e, i)) ) .k k¢1,0°i°N k k¢1,0°i°N

Next, defining

` N ` N
n n n nU (e) Å U (e, i) , V (e) Å V (e, i) ,(4.22) ∑ ∑ ∑ ∑k k

kÅ1 iÅ0 kÅ1 iÅ0

we need to prove that

d d
n n n n˜ ˜(V , U (e)) r (V, U(e)) , (V , V (e)) r (V, V(e)) ,(4.23)

where
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` N ` N

U(e) Å U (e, i) , V(e) Å V (e, i) .(4.24) ∑ ∑ ∑ ∑k k

kÅ1 iÅ0 kÅ1 iÅ0

We prove the first convergence result in (4.23); the proof of the second uses the same
reasoning.

Since i) Å 0 if i) ¢ T , we have by (4.3) and (4.4) ,n nU (e, t (e,k k

M N
n nlim lim P U (e, i) 0 U (e) ú 0

(4.25)

∑ ∑ kSZ Z D
Mr` nr` kÅ1 iÅ0

n° lim lim P( min z (e, i) Ú (T / 1) õ T )M
Mr` nr` 0°i°N

° lim P( min z (e, i) Ú (T / 1) ° T ) Å 0.M
Mr` 0°i°N

Analogously,

M N
P

U (e, i) r U(e) (M r `) .(4.26) ∑ ∑ k

kÅ1 iÅ0

Next, by (4.21) and the continuous mapping theorem, we have

M N M N
d

n n ˜V , U (e, i) r V, U (e, i) .(4.27) ∑ ∑ ∑ ∑k kS D S D
kÅ1 iÅ0 kÅ1 iÅ0

The convergence (Vn , Un(e)) ( Ṽ, U(e)) then follows from (4.24) – (4.27) and The-
d
r

orem 4.2 in (Billingsley (1968)) .
Now by the definition of (e, i) and (e, i) ,n nt zk k

` NT T
n,1 n n,1 n nf (V )·1(d ° V ° K)dt 0 f (V )·1( t √ [t (e, i) , z (e, i)))dt∑ ∑t t t k kZ* * Z

0 0kÅ1 iÅ0

T
n n° \ f \ [1(d 0 e ° V ° d) / 1(K ° V ° K / e)]dtt t*

0

so by (4.11), we obtain from (4.22)

T
n n nU (e) 0 \ f \ [1(d 0 e ° V ° d) / 1(K ° V ° K / e)]dtt t*

0

T
n,1 n° f (V )·1(d ° V ° K)dt(4.28) t t*

0

T
n n n° V (e) / \ f \ [1(d 0 e ° V ° d) / 1(K ° V ° K / e)]dt .t t*

0

Therefore, if we prove that as e r 0
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T 1
d ˜ ˜U(e) r f (uV )du 1(d ° V ° K)dt ,

(4.29)

t t* S* D
0 0

T 1
d ˜ ˜V(e) r f (uV )du 1(d ° V ° K)dt ,t t* S* D

0 0

then by applying Lemma 2.3 in Coffman et al. (1995) to (4.29) and taking into account
(4.23), (4.2) , we will then obtain (4.1) . As before, we prove only the first of the results
in (4.29); the proof to the second is similar.

In fact, we prove convergence with probability 1. The argument is almost identical to
that in Coffman et al. (1995), but we give it here since it is used once again below. Since
ai (e) ú d, we have from (4.13) and (4.24)

` N 1 2e
U(e) 0 f (u(a (e) 0 e))du[z (e, i) Ú T 0 t (e, i) Ú T] ° \ f \T .∑ ∑ i k kZ * Z d0kÅ1 iÅ0

This tends to 0 as e r 0, so we prove that

` N 1

lim [z (e, i) Ú T 0 t (e, i) Ú T] f (u(a (e) 0 e))du∑ ∑ k k i*
er0 0kÅ1 iÅ0

(4.30) T 1

˜ ˜Å f (uV )du 1(d ° V ° K)dt .t t* S* D
0 0

We can write

` N 1

[z (e, i) Ú T 0 t (e, i) Ú T] f (u(a (e) 0 e))du∑ ∑ k k i*
0kÅ1 iÅ0

` N T 1

Å f (u(a (e) 0 e))du ·1(t (e, i) ° t õ z (e, i))dt(4.31) ∑ ∑ i k k* S* D
0 0kÅ1 iÅ0

å C .e

Note that if x , y ú d /2, Éx 0 yÉ õ 2e, then

y1 1 x1 1
f (ux)du 0 f (uy)du Å f (u)du 0 f (u)duZ* * Z Z * * Zx y0 0 0 0

x y1 1 1 8e° 0 f (u)du / f (u)du ° \ f \.Z Z * Z* Zx y y d0 x

Since √ [ai (e) 0 e, ai (e) / e] , for t √ [tk(e, i) , zk(e, i)) , we then haveṼt
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1

f (u(a (e) 0 e)du·1( t √ [t (e, i) , z (e, i)))i k kZ*
0

1

˜0 f (uV )du·1( t √ [t (e, i) , z (e, i)))t k k* Z
0

8e° \ f \·1( t √ [t (e, i) , z (e, i))) ,k k
d

so by (4.31)

` N T 1 8e˜C 0 f (uV )du ·1( t √ [t (e, i) , z (e, i)))dt ° \ f \T ,∑ ∑e t k kZ * S* D Z d0 0kÅ1 iÅ0

whence

T 1

˜ ˜C 0 f (uV )du ·1(d ° V ° K)dte t tZ * S* D Z
0 0

T 8e˜ ˜° \ f \ [1(d ° V ° d 0 e) / 1(K ° V ° K / e)]dt / \ f \T .t t* d0

Since by (4.2) the right-hand side of this inequality tends to 0 as e r 0, we have proved
(4.30). This completes the proof of the first assertion of Theorem 4.1 for bounded non-
negative f ( x) . The general case is handled via a localization argument as in the proof of
Theorem 2.1 in Coffman et al. (1995).

5. Tightness results. The purpose of this section is to prove several results on the
tightness of some processes closely related to the normalized and time-scaled unfinished-
work process Vn defined in (2.8) . We start, however, with a simple fact.

Introduce

n,l n nS 0 r nt S 0 ntnt l ntn,l n__ __B Å , l Å 1, 2, B Å ,(5.1) √ √t t

n n

where and were defined in (2.11), and let Bn , l Å t ¢ 0), l Å 1, 2, Bnn,l n n,lS S (B ,t t t

Å t ¢ 0).n(B ,t

LEMMA 5.1. As n r ` ,

_√
 nt nt n,l

P P P1 1 Antn,l n,l__ s r d t , s r d t , r l t , l Å 1, 2,√ ∑ ∑i l i l ln niÅ1 iÅ1n

d d
n , l 1/2 l nB r l sW , l Å 1, 2, B r (sW / ct , t ¢ 0),l l t

where W l , l Å 1, 2, and W Å (Wt , t ¢ 0) are standard Brownian motions .
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PROOF. We give proofs of the first and second convergence results in the first line.
Since, for e ú 0, Var ° ú / it follows by (2.2) and (2.6)

__ _√ √
n,l n,l 2 n,l ns E(s ) 1(s e n ) e nd ,1 1 1 l

that Var r 0 as n r ` . Hence,
__√

n,ls / n1

_√
 nt nt

P P1 1n,l n n,l n__ (s 0 d ) r 0, (s 0 d ) r 0,√ ∑ ∑i l i lniÅ1 iÅ1n

and both convergences follow by (2.2) .
The third convergence follows from the convergence 1/n which is

Pnt n,l 01( j r l t ,iÅ1 i l

proved similarly, and properties of the first-passage-time map (Whitt 1980; see also Coff-
man et al. 1995, Lemma 2.1) . The claimed convergences in distribution hold by the
Donsker-Prohorov invariance principle and (2.3) . h

Let denote the indicator of the event that the server is switching over at nt , i.e.,nb t

Å 1 0 Then definitions (2.8) , (2.11), (5.1) and Equation (2.10) imply thatn n nb a . Vt nt t

satisfies
__ __t t√ √

n n n n n nV Å V / B / n 1(V Å 0)ds / n 1(V ú 0)b ds .(5.2) t 0 t s s s* *
0 0

We study properties of the processes on the right. For e ú 0, we define the processes Kn ,e

Å t ¢ 0) byn,e(K ,t

__ t√
n,e n nK Å n 1(V ú e)b ds .(5.3) t s s*

0

Though the Kn ,e have continuous paths, we still consider them as random elements of
D[0, `) .

Recall that a sequence of processes {X n , n ¢ 1} in D[0, `) is called C-tight if it is
tight and all weak limit points of the sequence of their laws are laws of continuous
processes (Jacod and Shiryaev (1987), VI.3.25). Below, we repeatedly use the fact that
{X n , n ¢ 1} is C-tight if and only if, for all T ú 0 and h ú 0,

nlim lim P(ÉX É ú H) Å 0,0
Hr` nr`

n nlim lim P( sup ÉX 0 X É ú h) Å 0t s
dr0 nr` s,t°T,És0tÉ°d

( this follows, e.g., from Jacod and Shiryaev (1987), VI.3.26).
Another technical tool used below is the concept of strong majorization (Jacod and

Shiryaev (1987), VI.3.34): Say that a process X Å (Xt , t ¢ 0) strongly majorizes a
process Y Å (Yt , t ¢ 0) if the process X 0 Y Å (Xt 0 Yt , t ¢ 0) is nondecreasing. If a
sequence {X n , n ¢ 1} of processes is C-tight and each X n strongly majorizes a process
Y n , where X n and Y n are both nondecreasing and start at 0, then the sequence {Y n , n
¢ 1} is C-tight (Jacod and Shiryaev (1987), VI.3.35).

LEMMA 5.2. The sequence {Kn ,e , n ¢ 1}, where Kn ,e Å t ¢ 0), is C-tight forn,e(K ,t

every e ú 0 .

PROOF. Denote by and i¢ 1, the respective successive switch-n,1 n,1 n,2 n,2[u , £ ] [u , £ ] ,i i i i

over periods (i.e., times during which the server is switching) from the first queue to the
second and from the second queue back to the first. Let be the number of switchoversn,lq t

from queue l started in [0, nt] . By (5.3) ,
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n,l n,l2 q __£ Úntt i √1n,e n__K Å 1(U ú e n )ds .(5.4) √ ∑ ∑t s*
n,lu ÚntilÅ1 iÅ1n

So, if we define
n,l n,l2 q __£t i √1n,e n˘ __K Å 1(U ú e n )ds ,(5.5) √ ∑ ∑t s*

n,lu ilÅ1 iÅ1n

then, obviously,

1n,e n,e n,l n,l˘ __supÉK 0 K É ° max max (£ 0 u ) .(5.6) √s s i i
n,ls°t lÅ1,2 1°i°q tn

Note that since

n ( t/1)/d n,l lq t / 1t n,lP ú ° P s ° nt ,∑ iS D S Dn dl iÅ1

Lemma 5.1 implies that

n,lq t / 1tlim P ú Å 0.(5.7) S Dn dnr` l

Recalling also that

n,l n,l n,l
£ 0 u Å s ,(5.8) i i i

we get by Lemma 3.1 and (2.6) that the right-hand side of (5.6) tends in probability to
0 as n r ` . Thus the C-tightness of {Kn ,e , n ¢ 1} will follow from the C-tightness of
{K̆ n ,e , n ¢ 1}.

Define
n,lq __t √1n,e,l n,l n˜ __ n,lK Å s ·1(U ú e n ) , l Å 1, 2.(5.9) √ ∑t i £ i

iÅ1n

Since cannot increase on we have from (5.5) that K̆n ,e is strongly majorizedn n,l n,lU [u , £ ] ,s i i

by K̃n ,e Å K̃ n ,e,1 / K̃n ,e,2 , where K̃ n ,e, l Å t ¢ 0), l Å 1, 2. Therefore, it is enoughn,e,l˜(K ,t

to prove that {K̃ n ,e,1 , n ¢ 1} and {K̃ n ,e,2 , n ¢ 1} are each C-tight. By symmetry, we need
only prove that {K̃ n ,e,1 , n ¢ 1} is C-tight.

Let
n,1q __t √1n,e,1 n,1 n

V __ n,1K Å s ·1(U ú e n /2) ,(5.10) √ ∑t i u i

iÅ1n
n,1q __ __t √ √1n,e,1 n,1 n n

P __ n,1 n,1K Å s ·1(U ú e n , U ° e n /2) .(5.11) √ ∑t i £ ui i

iÅ1n

By (5.9) , K̃ n ,e,1 is strongly majorized by KV n ,e,1 / K̂ n ,e,1 , where KV n ,e,1 Å t ¢ 0) andn,e,1
V(K ,t

K̂ n ,e,1 Å t ¢ 0). We prove that {KV n ,e,1 , n ¢ 1} is C-tight and that tends inn,e,1 n,e,1
P P(K , Kt t

probability to 0 uniformly over finite intervals as n r ` . This will conclude the proof of
the lemma.
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We begin with the property of K̂ n ,e,1 . Since there is no service on we haven,1 n,1[u , £ ] ,i i

by (5.11) and (2.11),
n,1q __t √1n,e,1 n,1 n n

P __ n,1 n,1K ° s ·1(S 0 S ú e n /2)√ ∑t i £ ui i

iÅ1n
n,1q __t √1 n,1 n,1 n,1__ n,1 n,1° s ·1(S 0 S ú e n /4)√ ∑ i £ ui i

iÅ1n
n,1q __t √1 n,1 n,2 n,2__ n,1 n,1/ s ·1(S 0 S ú e n /4) ,√ ∑ i £ ui i

iÅ1n

so by (5.8) , for d ú 0, since ° nt ,n,1
n,1uq t

n,1q t / 1 1tn,e,1 n,1
P __P(K ú 0) ° P ú / P sup s ú d

(5.12)

√t iS D S Dn d 1°i°n ( t/1)/d 1 1n
__ __√ √

n,1 n,1 n,2 n,2/ P( sup ÉS 0 S É ú e n /4) / P( sup ÉS 0 S É ú e n /4) .
£ u £ u

u°nt u°nt_ _√ √
0°v0u°d n 0°v0u°d n

The first term on the right of (5.12) goes to 0 as n r ` by (5.7) . The second term tends
to 0 as n r ` by Lemma 3.1 and (2.6) .

Next,

__√
n,1 n,1P( sup ÉS 0 S É ú e n /4)
£ u

u°nt _√
0°£0u°d n

__n,1 n n,1 n √S 0 r n£ S 0 r nu en£ 1 nu 1 n_ _Å P sup 0 / r n (£ 0 u) ú

(5.13)

√ √ 1S Z Z D4u°t_√ n n
0° n (£0u )°d

n,1 n n,1 nS 0 r n£ S 0 r nu en£ 1 nu 1 n_ _° P sup 0 ú 0 r d√ √ 1S Z Z D4u°t,Éu0£É°g n n

en,1 n,1 nÅP sup ÉB 0 B É ú 0 r d ,
£ u 1S D4u°t,Éu0£É°g

where g ú 0 is arbitrary and n is large enough. Since by Lemma 5.1, Bn ,1 converges in
distribution to and since the functional X r 0 XuÉ, X √ D[0, `) ,1/2 1l s W , sup ÉX1 1 £

u°t,Éu0£É°g

is continuous almost everywhere with respect to the Wiener measure (Liptser and Shiryaev
(1989)) , we conclude from (5.13) and (2.3) that

__√
n,1 n,1lim P( sup ÉS 0 S É ú e n /4)
£ u

nr` u°nt _√
0°£0u°d n

e1 1 01/2 01° P sup ÉW 0 W É ¢ l s 0 r d ,
£ u 1 1 1S S DD4u°t,Éu0£É°g
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which goes to 0 as g r 0, if d õ e /4r1 , by the continuity of Brownian motion. We have
thus proved that the third term on the right of (5.12) tends to 0 as n r ` if d is small
enough. A similar argument applies to the last term on the right-hand side of (5.12).
Therefore, since K̂ n ,e,1 is nondecreasing,

n,e,1
Plim P(sup K ú 0) Å 0,s

nr` s°t

as required.
We now prove that {KV n ,e,1 , n ¢ 1} is C-tight. Call a switchover from queue 1 to queue

2 sound if at the time when it starts, the total unfinished work (which at that moment is
the unfinished work at queue 2) is greater than Let be the number of sound

__√
n,1

Ve n /2. q t

switchovers started in [0, nt] . By (5.10),

n,1
Vq t1n,e,1 n,1

V __K Å sV ,(5.14) √ ∑t i

iÅ1n

where is the duration of the i th sound switchover. Note that the soundness of an,1sV i

switchover is determined at its beginning, so the i ¢ 1, are i.i.d. and distributed asn,1sV ,i

the i ¢ 1.n,1s ,i

We have by (5.14), for t ú 0, d ú 0, h ú 0, g ú 0 and L ú 0,

n,e,1 n,e,1
V VP( sup ÉK 0K Éú h)
£ u

u,£°t,Éu0£É°d

__ __√ √
n,1 n,1 n,1

V V V° P(q úL n )/ P( sup Éq 0 q Éú g n )

(5.15)

t £ u
£0d°u°£°t

_√
£ n1 n,1__/ P sup sV ú h .√ ∑ iS Z Z D_√

£0g°u°£°L iÅu n /1n

Now, if 0 Å m , then the amount of work executed by the server at queue 2 inn,1 n,1
V Vq q
£ u

the interval [nu , n£] is no less than (m 0 which takes time (m 0
__ __√ √

1)e n /2 1)e n /2.
Hence (m 0 ° n(£ 0 u) which leads to the estimate 0 °

__ __√ √
n,1 n,1

V V1)e n /2 q q (2 n /e)(£
£ u

0 u) / 1, so that, for all n large enough,

__ __√ √
3 n 3 nn,1 n,1 n,1

V V Vsup Éq 0 q É ° d; q ° t .
£ u t

e e£0d°u°£°t

Taking in (5.15) L Å and g Å we get3 3t d,e e
_√

£ n 1n,e,1 n,e,1 n,1
V V __lim P( sup ÉK 0 K É ú h) ° lim P sup sV ú h ,√ ∑£ u iS Z Z D_√

nr` u,£°t,Éu0£É°d nr` £03d /e°u°£°3t /e iÅu n /1n

where the latter limit, by Lemma 5.1, is zero if (3d /e)d1 õ h. Therefore,

n,e,1 n,e,1
V Vlim lim P( sup ÉK 0 K É ú h) Å 0,
£ u

dr0 nr` u,£°t,Éu0£É°d
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which, since Å 0, proves the C-tightness of n ¢ 1}. The lemma isn,e,1 n,e,1
V VK {K ,0 £

proved. h

We next prove that the two rightmost processes in (5.2) are asymptotically bounded
in probability.

LEMMA 5.3. We have

__ t√
nlim lim P n 1(V Å 0)ds ú A Å 0,(5.16) sS * D

Ar` nr` 0

__ t√
n nlim lim P n 1(V ú 0)b ds ú A Å 0.(5.17) s sS * D

Ar` nr` 0

PROOF. Let

n n n n n,1w Å V 0 V 0 B 0 K .(5.18) t t 0 t t

By (5.3) , (5.2) and the inequality 0 ° ° 1, we have for 0 õ s õ t ,nb t

__ __ __t t t√ √ √
n n n n n nw 0 w Å n 1(V Å 0)du / n 1(0 õ V ° 1)b du ° n 1(V ° 1)du ,t s u u u u* * *

s s s

so, since ¢ / by (5.18),n n nV w Bu u u

__ t√
n n n nw 0 w ° n 1(w ° 1 0 B )du .t s u u*

s

Therefore, by Lemma 1 in Coffman, Puhalskii, and Reiman (1991)

n nw ° sup(1 0 B ) Û 0.t s
s°t

Since the sequence {Bn , n ¢ 1} is C-tight by Lemma 5.1, we conclude that

nlim lim P(w ú A) Å 0.t
Ar` nr`

Since by (5.2) and (5.18)

__ __t t√ √
n n,1 n n nw / K Å n 1(V Å 0)ds / n 1(V ú 0)b ds ,t t s s s* *

0 0

an application of Lemma 5.2 completes the proof. h

We are in need of two more technical lemmas. Introduce the processes

n,lA /1nt1n,l n,l n n,l n n,1 n,2__M Å (h 0 r j ) , l Å 1, 2, M Å M / M ,(5.19) √ ∑t i l i t t t

iÅ1n

and recall that i Å 1, 2, ··· denote arrival times for An , l , l Å 1, 2.n,lt ,i
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LEMMA 5.4. Define the filtration F n Å t ¢ 0) by Å Û Û in n n,1 n,2 n,l(F , F F F s(s ,t t t t i

Å 1, 2, . . . , l Å 1, 2) Û Û N, where Å Å 1 ° j ° i) ,n n,l n,l n,l n,l n,l
n,ls(V ) F G , G s(h , j ,0 t A /1 i j jnt

l Å 1, 2, and N is the family of P-null sets . Then F n is well defined , the i Å 1, 2,n,lt /n ,i

. . . , l Å 1, 2, are F n-stopping times , the processes t ¢ 0), l Å 1, 2, are F n-n,l(A ,nt

predictable and Mn Å t¢ 0) is an F n-locally square-integrable martingale with then(M ,t

predictable quadratic-variation process

1n n 2 n,1 n 2 n,2»M … Å [(s ) A / (s ) A ] .t 1 nt 2 ntn

PROOF. The proof is almost the same as the proof of Lemma 2 in Coffman et al.
(1991). In particular, the martingale property of Mn and the formula for its predictable
quadratic-variation process is deduced from the fact that the processes k n,l(( (hiÅ1 i

0 k ¢ 0), l Å 1, 2, are locally square-integrable martingales which have then n,lr j ) ,l i

predictable quadratic-variation processes k ¢ 0) relative to the respective flowsn 2((s ) k ,l

k ¢ 0). h
n,l(G ,k

Note that the processes Bn , t ¢ 0) and Vn are F n-adapted.n(b ,t

Introduce

n,lA /1n ntr 1ln,l n,l n,l n n,1 n,2__ __ n,le Å j 0 nt 0 h , l Å 1, 2, e Å e / e .(5.20) √ √∑t i A /1 t t tF G nt

iÅ1n n

Let denote the jump of Mn at s .nDMs

LEMMA 5.5. Under the hypotheses of Theorem 2.3, for t ú 0,

P P P
n 2 n 2 2 n»M … r s t , (DM ) r s t , supÉe É r 0,∑t s s

s°t0õs°t

as n r ` .

PROOF. The first convergence follows by the expression for »Mn …t in Lemma 5.4,
Lemma 5.1, (2.1) and (2.7) . For the second, note that since Mn is a process of locally
bounded variation by (5.19), it is a purely discontinuous local martingale (Jacod and
Shiryaev (1987), I.4.14; Liptser and Shiryaev (1989), I.7) , so its quadratic-variation
process ([Mn , Mn]t , t ¢ 0) is the sum of the squares of jumps: [Mn , Mn]t Å (s°t

(Jacod and Shiryaev (1987), I.4.52; Liptser and Shiryaev (1989), I.8) . Byn 2(DM )s

Lemma 5.5.5 in Liptser and Shiryaev (1989), (2.4) , (2.5) and Lemma 5.1 imply that the
convergences [Mn , Mn]t s2t and »Mn …t s 2t are equivalent, so the second convergence

P P
r r

of the lemma is a consequence of the first. The third convergence results from the in-
equalities

n,lA /1nt
n,l n,l

n,l0 ° j 0 nt ° j ,∑ i A /1nt

iÅ1

conditions (2.4) and (2.5) and Lemmas 3.1 and 5.1. h

Let

n n n
VV Å V 0 e .(5.21) t t t

Since Vn is F n-adapted and is by (5.20), VV n Å t ¢ 0) is F n-n n n
Ve F -measurable (V ,t t t

adapted. By (5.1) , (5.2) , (5.19) and (5.20), we get the representation
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__ __ t√ √
n n n n

V VV Å V / n (r 0 1) t / n 1 (V Å 0)dst 0 s*
0

(5.22)
__ t√

n n n n/ n 1(V ú 0)b ds / (M 0 M ) .s s t 0*
0

Now squaring in (5.22), we have by Ito’s formula (Theorem 2.3.1 in Liptser and Shiryaev
(1989)) that

__ __t t√ √
n 2 n 2 n n n n

V V V V(V ) Å (V ) / 2 n (r 0 1) V ds / 2 n V 1 (V Å 0)dst 0 s s s* *
0 0

(5.23)
__ t t√

n n n n n n 2
V V/ 2 n V 1(V ú 0)b ds / 2 V dM / (DM ) ,∑s s s s0 s s* *

0 0 0õs°t

where denotes the left-hand limit of VV n at s .n
VVs0

LEMMA 5.6. The sequences {VV n , n ¢ 1} and {Vn , n ¢ 1} are C-tight .

PROOF. By (5.16), (5.17), the C-tightness of {Bn , n ¢ 1}, and the convergence
V0 , the right-hand side of (5.2) is asymptotically bounded in probability, i.e.,

d
nV r0

nlim lim P(supÉV É ú A) Å 0, t ú 0.(5.24) s
Ar` nr` s°t

Then (5.21) and Lemma 5.5 yield

n
Vlim lim P(supÉV É ú A) Å 0, t ú 0.(5.25) s

Ar` nr` s°t

We now check that, for any T ú 0 and h ú 0, we have that

n 2 n 2
V Vlim lim sup P(supÉ(V ) 0 (V ) É ú h) Å 0,(5.26) t/t t

ndr0 nr` t√S (F ) t°dT

where ST(F n) is the set of all F n-stopping times t not greater than T .
Since the processes

t
n n n 2 n

VV dM , t ¢ 0 and (DM ) 0 »M … , t ¢ 0∑s0 s s tS* D S D
0 0õs°t

are F n-local martingales (Liptser and Shiryaev (1989), Ch. 1, §8, Ch. 2, §2), the Lenglart-
Rebolledo inequality (Liptser and Shiryaev (1989), Theorem 1.9.3) yields, in view of
(5.23), for e ú 0,
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en 2 n 2
V VP(supÉ(V ) 0 (V ) É ú h) °t/t t

ht°d

__ __t/d t/d√ √
n n n n

V V/ P 2 nÉr 0 1É ÉV Édu / 2 n ÉV É1 (V Å 0)du(5.27) u u uS * *
t t

__ t/d√
n n n n n

V/ 2 n ÉV É1(V ú 0)b du / »M … 0 »M … ú e .u u u t/d t* D
t

By (5.25) and the assumed limit 0 1) r c , we have
__√

nn (r

__ t√ en n
Vlim lim P 2 nÉr 0 1É sup ÉV Édu ú Å 0.(5.28) uS * D4dr0 nr` És0tÉ°d s

s°T

By (5.21), we see that Å 0) Å Å 0), so (5.16) and Lemma 5.5n n n n
VÉV É1 (V Ée É1 (Vs s s s

yield

__ t√ P
n n

V2 n ÉV É1 (V Å 0)ds r 0(n r `) , t ú 0.(5.29) s s*
0

Next, for e* ú 0, 0 õ s õ t , we again use (5.21) and obtain

__ t√
n n n

V2 n ÉV É1(V ú 0)b duu u u*
s

__ t√
n n n° 2 n supÉe É 1(V ú 0)b du(5.30) u u u*

u°t s

__ __t t√ √
n n n n n/ 2 n supÉV É 1(V ú e*)b du / 2 n e* 1(V ú 0)b du .u u u u u* *

u°t s s

The first term on the right tends in probability to 0 as n r ` by Lemma 5.5 and (5.17).
The third term tends in probability to 0 as n r ` and then e* r 0 by (5.17). Finally, by
(5.3) , Lemma 5.2 and (5.24), we have for g ú 0,

__ t√
n n nlim lim P 2 n sup ÉV É sup 1(V ú e*)b du ú g Å 0.u u uS * D

dr0 nr` u°T És0tÉõd s
s°T

Thus, by (5.30),

__ t√ en n n
Vlim lim P 2 n sup ÉV É·1(V ú 0)b du ú Å 0.(5.31) u u uS * D4dr0 nr` És0tÉ°d s

s°T

Lemma 5.5 easily implies that
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en nlim lim P sup É»M … 0 »M … É ú Å 0.(5.32) t sS D4dr0 nr` És0tÉõd

s°T

Applying (5.28), (5.29), (5.31) and (5.32) to (5.27) shows that (5.26) holds.
Now, by Aldous’ condition (see, e.g., Liptser and Shiryaev (1989), Theorem 6.3.1) ,

(5.25) and (5.26) imply that the sequence {(VV n)2 , n ¢ 1} and hence {VV n , n ¢ 1} is
tight for the Skorohod topology. By Proposition VI.3.26 in Jacod and Shiryaev (1987),
it remains to prove that

P
n

VsupÉDV É r 0, T ú 0.t
t°T

In view of (5.19),

n1 r ln n n,l n,l
V __ __supÉDV É Å supÉDM É ° max max h / max j√ √t t i iF G

n,l n,lt°T t°T lÅ1,2 1°i°A /1 1°i°A /1nT nTn n

which tends to 0 in probability as n r ` by Lemmas 3.1 and 5.1 and (2.3) , (2.4) and
(2.5) . This proves that {VV n , n ¢ 1} is C-tight. The sequence {Vn , n ¢ 1} is then C-tight
by Lemma 5.5 and (5.21). h

By Prohorov’s theorem, Lemma 5.6 makes it certain that there exists a subsequence
{Vn = , n * ¢ 1} and a continuous process Ṽ such that Vn = Ṽ . The next two lemmas deal

d
r

with implications of this fact.

LEMMA 5.7. We have , for h ú 0,

t
nlim lim P 1(V õ e)ds ú h Å 0.sS* D

er0 nr` 0

In particular , if the law of a process Ṽ Å ( Ṽt , t ¢ 0) is an accumulation point of the
laws of {Vn , n ¢ 1}, then

t

˜1 (V Å 0)ds Å 0 a.s.s*
0

PROOF. Since Vn = Ṽ for a subsequence (n *) , we have, for e ú 0 and h ú 0,
d
r

t t
lim n= ˜P 1(V õ e)ds ú h ¢ P 1(V õ e)ds ú h ,s sS* D S* Dnr` 0 0

and the second assertion of the lemma is a consequence of the first. To prove that, intro-
duce the processes Zn Å t ¢ 0) byn(Z ,t

__ t√
n n n n nZ Å V / B / n 1(V ú 0)b ds , t ¢ 0,t 0 t s s*

0

so that (5.2) is equivalent to
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__ t√
n n nV Å Z / n 1 (V Å 0)ds .t t s*

0

Since is nonnegative and 1 Å 0)ds increases only when equals 0, we
__√

tn n nV n * (V Vt s t0

conclude that Vn Å R (Z n) , where R : D[0, `) r D[0, `) is Skorohod’s reflection map.
In the one-dimensional case it is well known to be equivalently defined by (for C[0, `) ,
the result is in Ikeda and Watanabe (1989), the result for D[0, `) is a special case of a
more general result in Chen and Mandelbaum (1991))

R(X ) Å X 0 inf X Ú 0, t ¢ 0.(5.33) t t s
s°t

Now, if we define

n n n n n
d d dZ Å V / B , t ¢ 0, Z Å (Z , t ¢ 0),(5.34) t 0 t t

and introduce

n n
d dV Å R(Z ) ,(5.35)

then the process Z n 0 Ž n is increasing and (5.33) implies that ¢ t ¢ 0. Hence,n n
dV V ,t t

for e ú 0,

t t
n n

dP 1(V õ e)ds ú h ° P 1(V õ e)ds ú h .(5.36) s sS* D S* D
0 0

Now, by (5.34) and Lemma 5.1, { Ž n , n ¢ 1} converges in distribution to the process Ž
Å (V0 / sWt / ct , t ¢ 0), where V0 and (Wt , t ¢ 0) are independent. By the continuity
of the reflection (Whitt (1980), Theorem 6.4), we then deduce that V̌ n R( Ž ), i.e., by

d
r

(5.36),

t t
n n

dlim limP 1(V õ e)ds ú h ° lim limP 1(V õ e)ds ú hs sS* D S* D
er0 nr` er0 nr`0 0

t t

d d° lim P 1(R(Z ) ° e)ds ¢ h Å P 1(R(Z ) Å 0)ds ¢ h .s sS* D S* D
er0 0 0

Since R( Ž ) is a reflected Brownian motion, the latter probability equals 0. h

The next lemma shows that, ‘‘on average,’’ behaves as substantiating the
__√

n nn b d /Vt t

heuristic argument of §1.

LEMMA 5.8. Under the conditions of Theorem 2.1, for T ú 0,

__ T√
n nlim n b V dt Å dT .t t*

nr` 0

PROOF. We rely heavily on the argument in the proof of Theorem 4.1. The notation
in that proof is used here. Again let a continuous process Ṽ Å ( Ṽt , t ¢ 0) be an accu-
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mulation point of {Vn , n ¢ 1}. By Lemma 5.7, the conditions of Theorem 4.1 hold, so
the results developed in the proof of Theorem 4.1 apply.

As in the proof of Theorem 4.1, it is enough to prove

__ T T√ d
n n n ˜n V b ·1(d ° V ° K)ds r d 1(d ° V ° K)dt(5.37) t t t t* *

0 0

for any d and K , 0 õ d õ K that satisfy (4.2) . To check this, note first that, for h ú 0,

__ T√
n n nlim lim P n V b ·1(V ° d)dt ú h Å 0,(5.38) t t tS * D

dr0 nr` 0

__ T√
n n nlim lim P n V b ·1(V ¢ K)dt ú h Å 0.(5.39) t t tS * D

Kr` nr` 0

Limit (5.38) follows from (5.17). For (5.39), write

__ T√
n n n nP n V b ·1(V ¢ K)dt ú h ° P(sup V ¢ K)t t t tS * D

t°T0

and observe that the latter goes to 0 as n r ` and K r ` by the tightness of {Vn , n
¢ 1}. Theorem 4.2 in Billingsley (1968) then implies the desired result by (5.38), (5.39)
and the fact that, by Lemma 5.7 and the continuity of Ṽ,

T T T

˜ ˜ ˜lim 1(V ° d)dt Å 1 (V Å 0)dt Å 0, lim 1(V ú K)dt Å 0, P 0 a.s.t t t* * *
dr0 Kr`0 0 0

So, we next prove (5.37) assuming (4.2) .
Recall that k) , j¢ 0, are the successive times after i) , when the unfinishedn,1 nk ( i , nt (e,j k

work at queue 1 becomes equal to 0, and is the number of cycles accumulation-servicen,1q i ,k

for queue 1 in i) Ú T , i) Ú T] . We denote the switchover times starting aftern n[t (e, z (e,k k

i) by k) , k) , . . . . Obviously, they are independent and distributedn n,1 n,1nt (e, s ( i , s ( i ,k 0 1

as We introduce a similar notation for queue 2: k) , j ¢ 0, denote the suc-n,1 n,2s . nk ( i ,1 j

cessive times after i) , when the unfinished work at queue 2 becomes equal to 0,nnt (e,k

denotes the number of cycles accumulation-service for queue 2 in i) Ú T ,n,2 nq [t (e,i ,k k

i) Ú T] , k) , k) , ··· denote the switchover times from queue 2 ton n,2 n,2z (e, s ( i , s ( i ,k 0 1

queue 1 that start at k) , k) , . . . . We note again that k) , k) ,n,2 n,2 n,2 n,2nk ( i , nk ( i , s ( i , s ( i ,0 1 0 1

. . . are independent and distributed as n,2s .1

Let vn ,1 (which is in the notation of Lemma 5.2) and v n ,2 (which is in Lemman,1 n,2q qT T

5.2) denote the number of respective switchovers from queue 1 to queue 2 and from queue
2 to queue 1 started in [0, nT] . By the definitions above (recall in particular that Å 0na t

if the server is switching over at t) , for k ¢ 1, 0 ° i ° N ,

n,1 n,2 nq q n (z (e,i)ÚT)i,k i,k k
n,1 n,2 n n,1 n,2s ( i , k) / s ( i , k) ° (1 0 a )dt ° ( max s / max s )∑ ∑j j t j j*

n,1 n,2n 1° j°v 1° j°vn (t (e,i)ÚT)kjÅ0 jÅ0

n,1 n,2q /1 q /1i,k i,k
n n,1 n,2·1(t (e, i) õ T ) / s ( i , k) / s ( i , k) ,∑ ∑k j j

jÅ0 jÅ0

so, since √ [ai (e) 0 e, ai (e) / e] on i) , i)) and Å 1 0 we getn n n n nV [t (e, z (e, b a ,t k k t nt
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n,1 n,2q qi,k i,k1 n,1 n,2__ (a (e) 0 e) s ( i , k) / s ( i , k)√ ∑ ∑i j jS D
jÅ0 jÅ0n

n__ z (e,i)ÚTk√
n n° n b V dtt t*

nt (e,i)ÚTk
(5.40)

1n n,1 n,2__° (a (e) / e)·1(t (e, i) õ T ) ( max s / max s )√i k j j
n,1 n,21° j°v 1° j°vn

n,1 n,2q /1 q /1i,k i,k1 n,1 n,2__/ (a (e) / e) s ( i , k) / s ( i , k) .√ ∑ ∑i j jS D
jÅ0 jÅ0n

Introduce

n,1 n,2
P Pq qi,k i,k1n n,1 n,2˜ __A (e, i) Å (a (e) 0 e) s ( i , k) / s ( i , k) ,(5.41) √ ∑ ∑k i j jS D

jÅ0 jÅ0n

n,1 n,2˜ ˜q /1 q /1i,k i,k1n n,1 n,2˜ __A (e, i) Å (a (e) / e) s ( i , k) / s ( i , k)√ ∑ ∑k i j jS D
jÅ0 jÅ0n

(5.42) n n/ (a (e) / e)·1(t (e, i) õ T )ṽ ,i k

where and are defined by (4.8) and (4.9) respectively, and denote theirn,1 n,1 n,2 n,2˜ P ˜ Pq q q qi ,k i ,k i ,k i ,k

counterparts for queue 2 and

1n n,1 n,2__ṽ Å ( max s / max s ) .√ j j
n,1 n,21° j°v 1° j°vn

It was shown in the proof of Lemma 5.2 (see (5.7)) that P[(vn , l /n) ú (T / 1)/dl] r 0,
l Å 1, 2, as n r ` . Then, using (2.6) and Lemma 3.1, we get

P
nṽ r 0 (n r `) .(5.43)

Also, inequalities (5.40) and (4.10) (an analogue of the latter holds obviously for queue
2 as well) yield

n__ z (e,i)ÚTk√
n n n n˜ PA (e, i) ° n b V dt ° A (e, i) .(5.44) k t t k*

nt (e,i)ÚTk

Next, (4.18), (4.16), and (4.17), and their analogues for queue 2 imply, in view of (4.4)
and Lemma 2.2 in Coffman et al. (1995), that

01
d1 z (e, i) Ú T 0 t (e, i) Ú T 1 1k kn,l˜__ q r / ,(5.45) √ i ,kS D S S D Da (e) 0 e r 1 0 ri l ln 0°i°N, 0°i°N,

k¢1,lÅ1,2 k¢1,lÅ1,2
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01
d1 z (e, i) Ú T 0 t (e, i) Ú T 1 1k kn,l

P__ q r / .(5.46) √ i ,kS D S S D Da (e) / e r 1 0 ri l ln 0°i°N, 0°i°N,
k¢1,lÅ1,2 k¢1,lÅ1,2

Hence, by (5.41) – (5.43), Lemma 5.1, the equality r1 / r2 Å 1 and again Lemma 2.2
in Coffman et al. (1995),

d
n˜ ˜(A (e, i) ) r (A (e, i)) ,(5.47) k 0°i°N, k 0°i°N,

k¢1 k¢1

and

d
n

P P(A (e, i) ) r (A (e, i)) ,(5.48) k 0°i°N, k 0°i°N,
k¢1 k¢1

where

a (e) 0 eiÃ (e, i) Å (z (e, i) Ú T 0 t (e, i) Ú T )r r (d / d ) ,(5.49) k k k 1 2 1 2a (e) / ei

a (e) / ei
PA (e, i) Å (z (e, i) Ú T 0 t (e, i) Ú T )r r (d / d ) .(5.50) k k k 1 2 1 2a (e) 0 ei

Introduce

` N01 ` N
n n n n˜ ˜

P PA (e) Å A (e, i) , A (e) Å A (e, i) ,(5.51) ∑ ∑ ∑ ∑k k

kÅ1 iÅ1 kÅ1 iÅ0

` N01 ` N

˜ ˜ P PA(e) Å A (e, i) , A(e) Å A (e, i) .(5.52) ∑ ∑ ∑ ∑k k

kÅ1 iÅ1 kÅ1 iÅ0

Note that the sums are P-a.s. finite (use (4.3) for the second line) , so that the variables
above are well defined.

Relations (5.47) and (5.48) imply, by the continuous mapping theorem, that for every
M Å 1, 2, . . . ,

M N01 M N01
d

n
P PA (e, i) r A (e, i) ,∑ ∑ ∑ ∑k k

kÅ1 iÅ1 kÅ1 iÅ1

M N M N
d

n˜ ˜A (e, i) r A (e, i)∑ ∑ ∑ ∑k k

kÅ1 iÅ0 kÅ1 iÅ0

as n r ` .
On the other hand, in a manner similar to (4.25),

M N01
n n

P Plim lim P A (e, i) 0 A (e) ú 0 Å 0,∑ ∑ kSZ Z D
Mr` nr` kÅ1 iÅ1
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M N01

P Plim P A (e, i) 0 A(e) ú 0 Å 0,∑ ∑ kSZ Z D
Mr` kÅ1 iÅ1

and Theorem 4.2 in Billingsley (1968) yields

d
n

P PA (e) r A(e) (n r `) .(5.53)

Similarly,

d
n˜ ˜A (e) r A(e) (n r `) .(5.54)

Next, in analogy with the proof of (4.29), we get in view of (4.2) that, as e r 0,

T
P ˜PA(e) r r r (d / d ) 1(d ° V( t) ° K)dt ,(5.55) 1 2 1 2 *

0

T
P˜ ˜A(e) r r r (d / d ) 1(d ° V( t) ° K)dt .(5.56) 1 2 1 2 *

0

Also, it is not difficult to see, using the definitions of i) and i) , thatn nt (e, z (e,k k

n` N01 __ __z (e,i)ÚT Tk√ √
n n n n nn b V dt ° n b V ·1(d ° V ° K)dt∑ ∑ t t t t t* *

nt (e,i)ÚT 0kkÅ1 iÅ1

n` N __ z (e,i)ÚTk√
n n° n b V dt ,∑ ∑ t t*

nt (e,i)ÚTkkÅ1 iÅ0

so by (5.44) and (5.51)

__ T√
n n n n n˜

PA (e) ° n b V ·1(d ° V ° K)dt ° A (e) .t t t*
0

The latter and (5.53) – (5.56) imply (5.37) by Lemma 2.3 in Coffman, Puhalskii, and
Reiman (1995). h

6. Proofs of theorems.

PROOF OF THEOREM 2.1. By (5.23) and (5.21),

__ t t√
n 2 n n 2 n n 2 n n

V V V V(V ) / d Å (V ) / 2 n (r 0 1) V ds / (2d / s ) t / 2 V dM ,(6.1) t t 0 s s0 s* *
0 0

where
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__ __t t√ √
n n n n n nd Å 2 n e ·1 (V Å 0)ds / 2 n e b ·1(V ú 0)dst s s s s s* *

0 0

__ t√
n n 2 n 2/ 2dt 0 2 n b V ds / s t 0 (DM ) .∑s s s*

0 s°t

By (5.16), (5.17), Lemma 5.5 and Lemma 5.8,

P
nsupÉd É r 0(n r `) , t ú 0.(6.2) s

s°t

We denote the left-hand side of (6.1) by Let Xn Å t ¢ 0). We next prove thatn nX . (X ,t t

Xn converges in distribution to X as n r ` . By (6.1) , the process Xn is an F n-locally
square-integrable semimartingale (Jacod and Shiryaev (1987), Ch. II, §2b)) . The process
X as defined by (2.9) is a locally square-integrable semimartingale as well with respect
to the filtration generated by it (Jacod and Shiryaev (1987), III.2.12). We prove the
convergence by applying Theorem IX.3.48 in Jacod and Shiryaev (1987) which gives
conditions for convergence in distribution of a sequence of semimartingales to a semi-
martingale in terms of their predictable characteristics (Jacod and Shiryaev (1987), Ch.
II, §2). Therefore our first step is to identify the characteristics. Let B* n Å t ¢ 0)n(B* ,t

denote the first characteristic without truncation of Xn , let C̃ *n Å t ¢ 0) denote itsn˜(C* ,t

modified second characteristic without truncation and let n n Å (n n(ds , dx)) denote its
predictable measure of jumps (Jacod and Shiryaev (1987), II.2.29, IX.3.25). Then by
(6.1)

__ t√
n n n 2

VB* Å 2 n (r 0 1) V ds / (2d / s ) t ,(6.3) t s*
0

t
n n 2 n˜

VC* Å 4 (V ) d »M … .(6.4) t s s*
0

Define next, for a Å (at , t ¢ 0), an element of the Skorohod space D[0, `) ,

t
1/2 2B (a) Å 2c (a Û 0) ds / (2d / s ) t , t ¢ 0,(6.5) t s*

0

t
2C (a) Å 4s (a Û 0)ds , t ¢ 0,(6.6) t s*

0

n([0, t] , G)(a) Å 0, t ¢ 0, G is a Borel subset of R ,(6.7)

and let B(a) Å (Bt(a ) , t ¢ 0), C(a) Å (Ct (a) , t ¢ 0) and n(a) Å (n(dt , dx)(a )) .
According to the definition of X in (2.9) , its triplet of predictable characteristics is (B(X) ,
C(X) , n(X)) . Since X is continuous, this triplet does not depend on a truncation function;
in particular the triplet without truncation is the same.

Stated in another way, the distribution of X is the unique solution to the martingale
problem associated with (H , X) and (L(X0) ; B , C , n) , in the sense of definition III.2.4
of Jacod and Shiryaev (1987), where H denotes the s-field generated by X0 and L(X0)
denotes the distribution of X0 .
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Define next, as in IX.3.38 of Jacod and Shiryaev (1987), for a ¢ 0,

S (a) Å inf( t : Éa É ¢ a or Éa É ¢ a) ,(6.8) a t t0

n n nS Å inf( t : ÉX É ¢ a or ÉX É ¢ a) ,(6.9) a t t0

where at0 denotes the left-hand limit of a at t . Let also (Var B)t(a) denote the total
variation of B(a) on [0, t] and C1(R) denote the set of continuous bounded functions
g : R r R that are equal to 0 in a neighborhood of 0.

By Theorem IX.3.48 of Jacod and Shiryaev (1987), in order to prove that the Xn

converge in distribution to X , we may check the following conditions (note that since X
has no jumps, in the notation of the theorem, B* Å B and C̃ * Å C) :

( i ) The local strong majorization hypothesis : for all a ¢ 0, there is an increasing
continuous and deterministic function F(a) Å (Ft(a) , t ¢ 0) such that the stopped pro-
cesses ((Var t¢ 0), t¢ 0) and ÉxÉ2n(ds , dx)(a ) ,tÚS (a)aB) (a) , (C (a) , (* *tÚS (a) tÚS (a) Ra a 0

t ¢ 0) are strongly majorized by F(a) for all a √ D[0, `) .
( ii ) The local condition on big jumps : for all a ¢ 0, t ú 0,

tÚS (a)a
2lim sup ÉxÉ 1(ÉxÉ ú b)n(ds , dx)(a) Å 0.* *

br` a√D[0,`) 0 R

( iii ) Local uniqueness for the martingale problem associated with (H , X) and (L(X0) ;
B , C , n) (see Jacod and Shiryaev (1987), III.2) .

( iv) The continuity condition : the maps a r Bt(a) , a r Ct (a) and a r g(x)n(ds ,t* *R0

dx) are continuous for the Skorohod topology on D[0, `) for all t ú 0 and g √ C1(R) .
(v) X0 .

d
nX r0

(vi) [dloc 0 R/] g(x)n n(ds , dx) 0 g(x)n(ds , dx)(Xn) 0 for all
n n PtÚS tÚSa a* * * * rR R0 0

t ú 0, a ú 0 and g √ C1(R) ;
[sup 0 0 0 for all t ú 0, a ú 0;

P
n n

n nb* ] supÉB* B (X )É rloc sÚS sÚSa a
s°t

0 0 0 for all t ú 0, a ú 0;
P

n n˜ n n[g* R ] C* C (X ) rloc / tÚS tÚSa a

(6.9a) ÉxÉ21(ÉxÉ ú b)nn(ds , dx) ú e) Å 0 for all t ú 0, a ú 0 and
ntÚSalim lim P(* *R0

br` nr`

e ú 0.
This last condition is Equation (3.49) in Jacod and Shiryaev (1987).

We now check these 9 conditions in order. We have, by (6.5) – (6.8) , for s õ t ,

1/2 2(Var B) (a) 0 (Var B) (a) ° 2ÉcÉa ( t 0 s) / (2d / s )( t 0 s) ,tÚS (a) sÚS (a)a a

2C (a) 0 C (a) ° 4s a( t 0 s) ,tÚS (a) sÚS (a)a a

tÚS (a) sÚS (a)a a
2 2

ÉxÉ n(du , dx)(a) 0 ÉxÉ n(du , dx)(a) Å 0.* * * *
0 R 0 R

This verifies condition (i) with Ft(a) Å K(a) t , where K(a) is large enough.
Condition (ii ) holds since n Å 0. Condition (iii ) ( local uniqueness) holds by Theorem

III.2.40 of Jacod and Shiryaev (1987) since the equation

t t
1/2 2 1/2Y Å 2c (Y Û 0) ds / (2d / s ) t / 2s (Y Û 0) dW / x ,t s s s* *

0 0
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where W Å (Wt , t ¢ 0) is a Wiener process, has a unique (weak) solution (Ikeda and
Watanabe (1989), Chapter IV, Theorems 1.1, 2.4, and 3.2, Example 8.2) for any x √ R ,
and since one can set, in the conditions of Theorem III.2.40 of Jacod and Shiryaev (1987),
ptB Å B , ptC Å C , ptn Å n Å 0.

Condition (iv) follows from (6.5) – (6.7) by the argument of the proof of Theorem
6.2.2 in Liptser and Shiryaev (1989) since Skorohod convergence implies convergence
at continuity points of the limit.

Condition (v) holds by the assumption V0 , (5.21), Lemma 5.5 and (6.2) .
d

nV r0

Consider condition [dloc 0 R/] under (vi) . Since n Å 0, it is enough to prove that

t
P

n
Ég(x)Én (ds , dx) r 0.* *

0 R

Since, by the definition of C1(R) , for some e ú 0, g(x) Å 0 if ÉxÉ õ e, and g(x) is
bounded, the latter integral converges in probability to zero as n r ` if n n([0, t] , {ÉxÉ
ú e}) 0. By Lemma 5.5.1 in Liptser and Shiryaev (1989), this is implied by

P
r

P
nsupÉDX É r 0(n r `) , t ú 0.(6.10) s

s°t

By the definition of Xn , ° / and (6.10) holds by (6.2) and then n 2 n
VÉDX É DÉV É ÉDd É,s s s

C-tightness of VV n (use Proposition VI.3.26 in Jacod and Shiryaev (1987)) .
Next, we check condition [sup 0 under (vi) . By the definition of Xn , (6.3) andb* ]loc

(6.5) ,

__ t√
n n n n

Vn nsupÉB* 0 B (X )É ° 2É n (r 0 1) 0 cÉ ÉV ÉdssÚS sÚS s*a a
s°t 0

t
n n 2 n 1/2

V V/ 2ÉcÉ ÉV 0 (((V ) / d ) Û 0) Édss s s*
0

__√
n n n 1/2

V° 2É n (r 0 1) 0 cÉt supÉV É / 2ÉcÉt supÉd É ,s s
s°t s°t

and the latter converges in probability to 0 as n r ` , since 0 1) r c , {VV n , n
__√

nn (r
¢ 1} is tight and 0 by (6.2) .

P
nsupÉd É rs

s°t

Now consider condition 0 R/] under (vi) . By (6.4) , (6.6) and the definition of[g*loc

Xn

n n˜ n nÉC* 0 C (X )ÉtÚS tÚSa a

(6.11) s s
n 2 n 2 n 2 2 n

V V° 4 sup (V ) d»M … 0 s (V ) du / 4s t supÉd É.u u u sZ* * Z
s°t s°t0 0

The last term converges in probability to 0 by (6.2) . Since {(VV n)2 , n ¢ 1} is C-tight,
we have, for h ú 0,
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n 2 n 2
V Vlim lim P( sup É(V ) 0 (V ) É ú h) Å 0,u £

dr0 nr` Éu0£Éõd,u,£°t

which, in view of the second assertion of Lemma 5.5, is seen to yield (the idea of the
proof is as in (Billingsley (1968), Problem 8, §2))

s s
P

n 2 n 2 n 2
V Vsup (V ) d»M … 0 s (V ) du r 0.u u uZ* * Z

s°t 0 0

In view of (6.11), this concludes the verification of 0 R/] .[g*loc

Finally, consider condition (6.9a) under (vi) . Define

t
n 2 nL̃ Å ÉxÉ ·1(ÉxÉ ú b)n (ds , dx) , t ¢ 0.t * *

0 R

We have for e ú 0, A ú 0,

t
n n n n˜ ˜

V VP(L ¢ e) ° P(supÉV É ú A) / P 1(V ° A)dL ú e .(6.12) t s s0 sS* D
s°t 0

The first term on the right goes in probability to 0 as n r ` and A r ` by the tightness
of VV n .

Next, letting

1 1n,1 n,1 n,2 n,2g Å t , g Å t ,t n (l t/1) t n(l t/1)n n1 2

we have for the second term on the right of (6.12), since ¢ n(llt / 1) whenn,l n,lA gnt t

õ t , l Å 1, 2,

t
n n˜

VP 1(V ° A)dL ú es0 sS* D
0

1 1 1 1n,1 n,2° P A ú l t / 1 0 / P A ú l t / 1 0nt 1 nt 2S D S Dn n n n

n,1 n,2tÚg Úgt t
n n˜

V/ P 1(V ° A)dL ú e .s0 sS* D
0

Again the first two terms on the right tend to 0 as n r ` by Lemma 5.1. It is thus left to
prove that the last term on the right tends in probability to 0 as n r ` .

Since nn(ds , dx) is the predictable measure of jumps of Xn , by (6.1) the process L̃ n

Å t ¢ 0) is the F n-compensator of the process Ln Å t ¢ 0) defined byn n˜(L , (L ,t t

n n 2 n 2 n n
V VL Å 4 (V ) (DM ) ·1(2ÉV \DM É ú b) .(6.13) ∑t s0 s s0 s

0õs°t

Accordingly, the process ° t¢ 0) is the F n-compensator of the processt n n˜
V(* 1(V A)dL ,s0 s0

° t ¢ 0). Therefore, by (6.13) and, since, by Lemma 5.4, andt n n n,1
V(* 1(V A)dL , gs0 s t0

are F n-stopping times, the Lenglart-Rebolledo inequality implies that, for h ú 0,n,2g t
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n,1 n,2tÚg Úgt t
n n˜

VP 1(V ° A)dL ú es0 sS* D
0

1 b2 n 2 n° h / E sup 4A ÉDM É ·1 ÉDM É ú(6.14) s sS S DD
n,1 n,2e 2As°tÚg Úgt t

b2 n 2 n/ P 4A (DM ) ·1 ÉDM É ú ¢ h .∑ s sS S D D2An,1 n,20õs°tÚg Úgt t

By the definitions of Mn (see (5.19)) and n,1 n,2g , g ,t t

bn 2 nE sup ÉDM É 1 ÉDM É ús sS D
n,1 n,2 2As°tÚg Úgt t

_√6 bn,1 n n,1 2 n,1 n n,1° E sup (h 0 r j ) ·1 Éj 0 r h É ú ni 1 i i 1 iS Dn 4Ai°n (l t/1)1

_√6 bn,2 n n,2 2 n,2 n n,2/ E sup (h 0 r j ) ·1 Éj 0 r h É ú ni 2 i i 2 iS Dn 4Ai°n(l t/1)2

__√bn,1 n n,1 2 n,1 n n,1° 6(l t / 1)E(h 0 r j ) ·1 Éj 0 r h É ú n1 i 1 i 1 1 1S D4A

_√bn,2 n n,2 2 n,2 n n,2/ 6(l t / 1)E(h 0 r j ) ·1 Éj 0 r h É ú n ,2 i 2 i 1 2 1S D4A

which tends to 0 as n r ` by (2.4) and (2.5) . The third term on the right of (6.14) is
not greater than

n (l t/1) __1 √6 b2 n,1 n n,1 2 n,1 n n,1P 4A (j 0 r h ) ·1 Éh 0 r j É ú n∑ i 1 i i 1 iS F S Dn 4AiÅ1

n (l t/1) __2 √6 bn,2 n n,2 2 n,2 n n,2/ (h 0 r j ) ·1 Éj 0 r h w ú n ¢ h ,∑ i 2 i i 2 iS DG Dn 4AiÅ1

which again tends to 0 by (2.4) and (2.5) . Therefore, by (6.14),

n,1 n,2tÚg Úgt t hn n˜
Vlim P 1(V ° A)dL ú e ° ,s0 sS* D enr` 0

which completes the check of (6.9a) since h is arbitrary.
Thus, all the conditions of Theorem IX.3.48 in Jacod and Shiryaev (1987) hold and,

by the theorem, {Xn , n ¢ 1} converges in distribution to X , which by Lemma 2.1 is
distributed as V 2 . Since (5.21), Lemma 5.5, and (6.2) imply

n 2 nP(supÉ(V ) 0 X É ú d) r 0(n r `) , t ú 0, d ú 0,s s
s°t



302 E. G. COFFMAN, JR., A. A. PUHALSKII AND M. I. REIMAN

/ 3904 0014 Mp 302 Wednesday May 06 03:12 PM INF–MOR 0014

we have that (Vn)2 V 2 , and hence that Vn V since all the processes are non-
d d
r r

negative. h

PROOF OF THEOREM 2.2. The theorem follows by Theorem 2.1, Theorem 4.1 and
Lemma 5.7. h

PROOF OF THEOREM 2.3. By (2.12) and the definition of V̆ n , a basic equation for V̆ n

has the form

__ __ __t t√ √ √
n n n n n n n n n˘ ˘ ˘ ˘ ˘V Å V / B / nrV 1(V Å 0)ds / n 1(V ú 0)(rV 0 r ( nV ))ds ,t 0 t s s s* *

0 0

where

n nS 0 rV ntntn˘ _B Å .√t

n

The equation is similar to Equation (5.2) and the proof goes exactly the way it does for
{Vn , n ¢ 1}. We first prove the C-tightness of { V̆ n , n ¢ 1} by following the same steps
as in §5. The only difference is that the Kn ,e are defined this time by

__ __t√ √
n,e n n n n˘ ˘K Å n 1(V ú e)(rV 0 r ( nV ))ds ,t s s*

0

and Lemma 5.2 is trivial because of (r1).
As can be seen from the proof of Theorem 2.1 in §6, after the C-tightness has been

proved, the only additional fact that is needed is the convergence

__ t√ P
n nn V b ds r dt .s s*

0

In the case of V̆ n , this amounts to proving that

__ __t√ √ P
n n n n˘ ˘n V (rV 0 r ( nV ))ds r dt .s s*

0

This turns out to be a simple consequence of (r1), (r2) and an analogue of Lemma 5.7
for V̆ n which is proved in the same way. According to the latter result, for h ú 0,

t
n˘lim lim P 1(V õ e)ds ú h Å 0.(6.15) sS* D

er0 nr` 0

Then, for e ú 0,
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__ __t√ √
n n n n˘ ˘P n V (rV 0 r ( nV ))ds 0 dt ú hs sSZ * Z D

0

__ __t √ √ hn n n n n˘ ˘ ˘° P É nV (rV 0 r ( nV )) 0 dÉ·1(V õ e)ds ús s sS* D20

__ __t √ √ hn n n n n˘ ˘ ˘/ P É nV (rV 0 r ( nV )) 0 dÉ·1(V ¢ e)ds ús s sS* D20

t hn n n˘° P (sup x(rV 0 r (x)) / d) 1(V õ e)ds úsS * D2x,n 0

hn n/ 1( t sup Éx(rV 0 r (x)) 0 dÉ ú ) .2_√
x¢ ne

The probability on the right-hand side tends to 0 as n r ` and e r 0 by (r2) and (6.15),
and the indicator goes to 0 as n r ` by (r1). h
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