
Queueing Systems 38, 125–148, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Call Admission: A New Approach to Quality of Service

MARTIN I. REIMAN
Bell Laboratories, Murray Hill, NJ, USA

ADAM SHWARTZ ∗
Electrical Engineering Technion, Israel

Received 25 March 1999; Revised 10 December 2000

Abstract. Quality of service guarantees are an important and much discussed aspect of ATM network
design. However, there is no standard definition of quality of service. Moreover, some often-used criteria
seem quite crude. We consider call admission to a bufferless ATM multiplexer with on/off sources. A new
criterion for a guarantee on average cell loss is proposed. This criterion represents the quality of service
from the point of view of the user, and is thus more reliable. We calculate the optimal policy that minimizes
blocking subject to the guarantee, when there is only one type of user.

The measure of cell-loss we propose is applicable to a wide range of models. It gives rise to a mathe-
matical programming formulation, which we derive explicitly for our case.
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1. Introduction

Quality of service guarantees are a key issue in the design of modern computer commu-
nications networks. In the context of ATM (Asynchronous Transfer Mode) networks, the
two most obvious performance issues – from the users’ point of view – are call blocking
and cell loss. When statistical multiplexing is used to improve performance, these crite-
ria necessarily take a probabilistic form, such as probability of blocking, or average cell
loss.

The precise meaning of “average cell loss”, however, has not been agreed upon.
Reiman et al. [9] consider the problem of dynamic admission control of an ATM mul-
tiplexer. Two types of QoS (Quality of Service) guarantees on maximal cell loss are
proposed. The conservative QoS guarantee involves a “probabilistic worst case”, in that
it measures the average cell loss in a given state of the system. The aggressive QoS
guarantee is based on a steady state average; see section 5 for details. These are both
common approaches to QoS guarantees in analytic studies. However, in real systems
QoS guarantees are made to individual users, and from the users’ point of view, both
measures are too crude. A specific user may have a pattern of usage that results in
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his/her requiring service in a manner such that the “average” state of the system he/she
sees is different from that of steady state. In addition, one would like to make adherence
to the guarantees as strict as possible, in the sense that little averaging is done, so that the
guarantee is as often met pathwise as possible. On the other hand, an overly conservative
approach to these guarantees would obviate some of the benefits of statistical multiplex-
ing. Nagarajan et al. [8] suggest that short term criteria may be more appropriate for
modern applications: see [8, and references therein] for further discussion of this point.
They analyze a different model – an M/M/1/K queue – and consider criteria such as the
probability that more than a given fraction of cells are lost over a fixed (deterministic)
interval of time. The length of this interval represents the average time of a connection.
We introduce a new type of QoS guarantee, which we consider in the context of the
model of [9]. We say the “individual cell-loss guarantee” is met if the expected number
of lost cells over a call’s duration of service is smaller than a specified fraction of (the
expected number of ) cells that were submitted by all calls during that time. For a precise
definition see (5.12) for the case where all calls are identical, or (8.8) when several call
types are considered. The criteria in [8] are more accurate in that they measure the prob-
ability that more than a given fraction of cells are lost, whereas we compare expected
values. On the other hand, our criterion is more precise in that it follows an individual
call until its completion, rather than considering an average call duration.

The emphasis here is on what a call experiences during its sojourn time in the sys-
tem, that is, while the call is being served. The averaging is only with respect to events
that occur once the call is admitted: if a call is admitted in a given state of the system,
then the average performance given that initial state should be within the guaranteed
limits.

In this paper we investigate dynamic call admission to an ATM multiplexer. We
show how to compute an optimal policy that maximizes call admissions (minimizes
blocking), subject to a guarantee on individual cell loss. One immediate consequence
of our criteria is that the dynamic policies we consider are necessarily stationary, since
all calls entering at the same state should be treated equally. In addition, as in [7], we
restrict our search to non randomized (deterministic) policies (although for constrained
problems of this type, typically optimal policies require randomization).

The paper is organized as follows. Section 2 is based on [9], and describes a model
of dynamic call admission, with on–off sources of several types. A simplification based
on time scale separation (also based on [9]) is delineated in section 3. Section 4 intro-
duces the basic blocking and cell loss measures. In sections 5–7 we consider a single
type of user. Section 5 provids precise definitions of the performance criteria in this
context. In section 6 we prove a basic structural result for the single type case: the new
“individual” criterion leads to a call admission region that is larger than with the worst-
case, but more cautious than the average criterion. We provide an efficient procedure
for calculating this admission region in section 7, and compute optimal thresholds for
several values of the parameters. The derivation of this procedure relies on an analysis
of difference equations with boundary conditions. In section 8 we consider the general
problem, with several different types of users. We show that the solution of our opti-
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mization problem solves a mathematical program. This program is actually applicable
to much more general models. It is typically composed of a linear program, coupled to a
second set of linear constraints, but the coupling is via nonlinear equalities. Both the size
of the problem and the nonlinear equalities make this program essentially impossible to
solve for any realistically sized system. Some background for the mathematical program
is provided in the appendix.

2. Admission to an ATM trunk

We model an ATM link as a fluid “pipe” with transmission capacity R, no buffer, and
J types of calls (connections). Calls of type i, i = 1, 2, . . . , J , arrive according to a
Poisson process of rate λi . If a call of type i is admitted, it alternates (independently
of everything else) between “on” and “off” states as a two state Markov process, with
average “on” period of β−1

i and average “off” period of α−1
i . If a type i call were to stay

forever, the fraction of time it spends in the “on” state would be pi = αi/(αi + βi). Upon
turning off, a type i call departs with probability qi . When on, a type i call generates
cells, modeled as a fluid, with rate νi . When cells are generated at a rate exceeding R,
the excess cells are lost. This is precisely the model considered in [7,9], except that here
we are considering an arbitrary number J of call types, and more general criteria.

As in [9], we consider two aspects of Quality of Service (QoS): cell level QoS and
call level QoS. At the cell level, we want the cell loss ratio of type i to be smaller than fi ,
typically of the order of fi ≈ 10−9. The call level QoS is the call blocking probability.
To allow for different relative importance of blocking different types of calls, we let each
admitted type i call pay a reward wi . We then consider the problem of maximizing the
long run average reward rate, subject to the cell level QoS constraints.

3. Problem reduction using time scale decomposition

The optimization problem described above can be formulated as a Semi-Markov Deci-
sion Process (SMDP) with constraints; for further details, see [9]. Let ki(t) denote the
number of type i calls in progress at time t , and let ni(t) denote the number of type i
calls in the “on” state at time t , i = 1, 2, . . . , J . Denote k = {k1, k2, . . . , kJ }, n =
{n1, n2, . . . , nJ }, k(t) = {k1(t), k2(t), . . . , kJ (t)} and n(t) = {n1(t), n2(t), . . . , nJ (t)}.
Under a stationary admission control strategy {(k(t),n(t)), t � 0} is a Markov process.
As in [9], we use the notion of Nearly Completely Decomposable (NCD) Markov chains
to reduce the dimension of this problem from 2J to J . We present a brief heuristic dis-
cussion; see [9] for more details and justification.

During a call’s “lifetime” it goes through many on/off cycles. Intuitively, when
making a call admission decision, the number of calls of each type in progress is impor-
tant, but the number of calls of each type in the on state is not, because these quantities
oscillate too rapidly. Thus the n component of the state becomes noise and can be ig-
nored for admission control purposes. This part of the state does affect the cell loss rate,
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so it must be “averaged” properly. The n process reaches equilibrium between changes
in the k process. The equilibrium corresponds to fixed k and is given by the binomial
distribution:

ψ(k,n) =
J∏
i=1

(
ki

ni

)
p
ni
i (1 − pi)

ki−ni .

When the total cell arrival rate is

λa = λa(n) =
J∑
i=1

niνi,

the cell loss rate is [λa(n)−R]+. The decision of which cells to discard may, in general,
depend on cell type, as well as on the detailed state (k,n). If we adopt the simple rule
that cell loss is proportional to the number of cells submitted for transmission, then the
average type i cell loss rate in state k is

bi(k) =
k1∑

n1=0

· · ·
kJ∑

nJ=0

ψ(k,n) · [λa(n)− R
]+ niνi

λa(n)
. (3.1)

As indicated above, in the NCD limit the detailed on/off behavior of calls disap-
pears when viewing call arrivals and departures. Calls of type i arrive (as before)
in a Poisson process of rate λi , and have exponential holding times with rate µi =
qiαiβi/(αi + βi) = qiβipi .

4. The criteria

As in [9], we augment the state k with an additional variable, j , indicating an arrival of
a j -type call, or a non-arrival state (in which case j = 0). In the interest of brevity, we
retain the notation of k for this expanded state. For an explicit derivation of the transi-
tions of the ensuing semi-Markov process, see [9]. Denote the transition probabilities
from state k to state k′ when action a is chosen by p(k,k′; a). We are interested in
minimizing the steady-state blocking probability, possibly weighted between different
types, subject to constraints on cell loss. This is formalized as follows.

For each call that we accept in state k (which now includes the arrival type), we
associate a positive reward r(k, a): here a is the action taken, where a = 1 indicates
acceptance of the call, and a = 0 corresponds to blocking (rejection). For example,
in [9], r(k, a) = wj whenever a = 1 and j = 0. The (expected) steady state of the
resulting cost is to be minimized.

In addition, we let gi , i = 1, . . . , J , be cost functions associated with cell-loss by
a type-i call. In section 5, the following two alternatives are used:

g0
i (k, a)= bi(k)− fikipiνi, (4.1)

g1
i (k, a)=

g0
i (k, a)
ki

(4.2)
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with the interpretation that these measure the number of cells lost by type-i calls, as a
fraction of cells submitted for transmission by this type. The cell-loss guarantee entails
that the average of this measure, over the sojourn time of the arriving customer, be kept
below the promised level of service.

5. Admission to an ATM link with identical users

In this section we restrict our attention to the one type version of the problem described
above, so that J = 1. This leads to a one-dimensional problem for which we can prove
structural results and easily perform numerical calculations.

The state of the system at time t is denoted by k(t). For the reasons described in
sections 8 and 6 we only consider stationary, deterministic, threshold policies: Admit a
call if and only if the state immediately preceding its arrival is less than some threshold.

LetK denote the threshold (which we hold fixed and, in the interest of brevity, omit
from the notation). Consider the one dimensional birth–death chain ku(m) “induced” by
this threshold policy. This discrete time Markov chain is obtained by uniformizing the
associated birth–death process. Let {pij , 0 � i, j � K} denote the one-step transition
probabilities for this chain. Then the total event rate is � = λ+Kµ, and

pii+1 =�−1λ, 0 � i < K,

pii−1 =�−1iµ, 1 � i � K,

pii =�−1(�− λ− iµ), 0 � i < K,

pKK =�−1λ,

and pij = 0 otherwise. Let π(k0)

! (m) = P {ku(m) = ! | k(0) = k0} for 0 � !, k0 � K

and m � 0. In addition, let π!, 0 � ! � K, denote the stationary distribution of this
process (so that, by ergodicity, π! = limm→∞ π

(k0)
! (m)). This process is precisely an

Erlang loss model, so that

π! =
[

K∑
m=0

(λ/µ)m

m!

]−1
(λ/µ)!

!! , 0 � ! � K.

Note that, for a fixed !, π! is monotone decreasing in K.
The constraint associated with the conservative view of QoS is defined in [9], as

follows. Let

b(k) =
k∑

n=0

(
k

n

)
pn(1 − p)k−n[nν − R]+ (5.1)

denote the cell-loss rate with k calls in progress (averaged over the stationary distribution
of the number of calls in the on state). Then the conservative QoS constraint is that

b(k) � f kpν, 0 � k � K; (5.2)
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that is, the average cell loss per unit time, when in state k, is at most a fraction f of
the average amount kpν produced, per unit time, in that state. It will be convenient to
rewrite this condition in terms of the function g0

g0 = b(k)− f kpν. (5.3)

Let KC denote the largest threshold allowed by the conservative QoS constraint,
which is defined as

KC = max
{
k: g0(k) � 0

}
. (5.4)

The aggressive QoS constraint [9] is based on steady-state behavior, and can be
written as

K∑
k=0

g0(k)πk � 0. (5.5)

Let KA denote the largest threshold allowed by the aggressive QoS constraint, defined
as

KA = max

{
K:

K∑
k=0

g0(k)πk � 0

}
. (5.6)

The individual call-based QoS constraint is based on the cell loss experienced dur-
ing the life of a “marked” call in the system. To determine this cell loss we need to define
an appropriate absorbing process and associated “taboo” probabilities.

Let {X(m), m � 0} be an absorbing Markov chain on the state space {0, 1, . . . , K}
(with the state 0 as the absorbing state), obtained by modifying the process ku so that it
jumps to state 0 when the marked call departs (note that state 0 for this chain is different
from state 0 for the original chain). Let

aπ
(k0)
! (m) = P

{
X(m) = ! | X(0) = k0

}
, 0 � !, k0 � K. (5.7)

For 0 < ! � K, aπ
(k0)
! (m) is the probability that the “absorbing” system is in state ! at

time m, with the marked call still in the system, given that the initial state is k0 including
the marked call. Conceptually, the marked call arrives at m = 0. However, due to the
exponential service assumption, it suffices to assume that it is in the system at m = 0.

Let {paij , 0 � i, j � K} denote the one-step transition probabilities for this ab-
sorbing chain. Then



paii+1 = �−1λ, 1 � i < K,
paii−1 = �−1(i − 1)µ, 1 � i � K,
pai0 = �−1µ, 1 � i � K,
paii = �−1(�− λ− iµ), 1 � i < K,
paKK = �−1λ and pa00 = 1.

(5.8)
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Note that the “defect” (the probability of jumping to the absorbing state) is �−1µ

for all states 1 � i � K. Let

s
aπ

(k0)
! =

∞∑
m=0

aπ
(k0)
! (m), (5.9)

denote the sum of the marginal probabilities, and define

n
aπ

(k0)
! = s

aπ
(k0)
!

[
K∑
k=1

s
aπ

(k0)
k

]−1

, 1 � k0, ! � K. (5.10)

Note that naπ
(k0)
! is a “normalized” version of the s

aπ
(k0)
! , in that

K∑
!=1

n
aπ

(k0)

! = 1, 1 � k0 � K. (5.11)

Define the individual call-based QoS constraint as

∞∑
m=0

K∑
k=0

g0(k)aπ
(k0)
k (m) � 0, 0 < k0 � K. (5.12)

Note that
∞∑
m=0

K∑
k=0

b(k)aπ
(k0)
k (m) (5.13)

is the expected amount of “fluid” lost over the duration of the marked call, while

pν

∞∑
m=0

K∑
k=0

kaπ
(k0)
k (m) (5.14)

is the expected amount of fluid produced over the duration of the marked call. Thus
the QoS constraint requires that the average loss does not exceed a given fraction of the
average produced, both over the duration of the marked call.

If we let KI denote the largest threshold allowed by the individual call-based QoS
constraint, we can write it as

KI = max

{
K:

K∑
k=0

g0(k)
n
aπ

(k0)
k � 0, 1 � k0 � K

}
. (5.15)

The definitions of KC, KA or KI can be generalized in the following way. Let K!
C

(K!
A or K!

I ) be defined through (5.4) (respectively (5.6) or (5.15)), but with the func-
tion g0 replaced by some g!. Of particular interest is the function

g1(k) =
{

0 if k = 0,
g0(k)

k
if k � 1. (5.16)
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With this definition, we have K1
C = KC. However, the average as well as the individual

thresholds are, in general, different. Since k is the number of calls in progress, the
individual criterion under g1 has a natural interpretation. If we assume that lost cells
are shared equally among all active users, then b(k)/k is the amount of fluid lost by
the marked call, whereas fpν is the amount of fluid produced by that call. So, K1

I is
the largest threshold under which the expected fraction of cells lost by the individual,
marked call is not greater than f .

The class of functions g! we consider is described in the following assumption.

Assumption 1. The function g! satisfies the following: for some finite K!
C > 0,

g!(0)= 0, (5.17)

g!(k)� 0 for all 1 � k � K!
C, (5.18)

g!(k) > 0 and increasing for k > K!
C. (5.19)

Lemma 2. The functions g0, defined in (5.3), and g1, defined in (5.16), satisfy the con-
ditions of assumption 1. The function g0 is strictly convex for k � KC.

Proof. Note that g0 is defined only for integer values of its argument, so that the ap-
propriate definition of convexity needs be applied. Consider the effect of an additional,
distinguished call on the function b, defined in (5.1). This distinguished call is either
active (with probability p), or not producing fluid (with probability 1 − p). Define
n0 = max{n: nν � R}, and

P
=
k = P(n0 calls are active | k calls in progress) (5.20)

P
>
k = P(at least n0 + 1 calls are active | k calls in progress). (5.21)

Then

b(k + 1)− b(k)= (1 − p) · 0 + p(n0ν − R + ν)P=
k + pνP

>
k (5.22)

=p(n0ν − R + ν)
(
P

=
k + P

>
k

)+ p
(
ν − (n0ν − R)

)
P
>
k . (5.23)

However,

P
=
k + P

>
k = P(at least n0 calls are active | k calls in progress). (5.24)

Clearly then, both P
>
k and (P=

k + P
>
k ) are strictly increasing in k as soon as k > n0, and

since (ν − (n0ν − R)) � 0 we conclude that b(k + 1) − b(k) is strictly increasing in k
in this range.

Since g0 is the difference of b and a linear function, it is strictly convex wherever b
is. By definition of KC, this is clearly the case for k � KC. Now by definition, g0(0) = 0
and g0(k) < 0 for k < KC. Since g0(KC+1) > 0 it is necessarily increasing for k > KC.
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By definition, g1(0) = 0 and g1(k) � 0 if and only if g0(k) is. Using the strict
convexity of g0 and g0(0) = 0,

g0(k + 1)

k + 1
= 1

k

(
k

k + 1
g0(k + 1)+ 1

k + 1
g0(0)

)
(5.25)

>
1

k
g0

(
k

k + 1
(k + 1)+ 1

k + 1
· 0

)
(5.26)

= 1

k
g0(k). (5.27)

Thus g1(k) is strictly increasing for k > KC. �

It will be convenient to obtain a different representation of KI, which holds for
any g! that satisfies assumption 1. Let τ denote the time at which the marked call com-
pletes service. Define

V (K, k0) = EK
k0

τ−1∑
m=0

g!
(
X(m)

)
, 1 � k0 � K < ∞ , (5.28)

where EK
k0

denotes the expected value under threshold K with initial state k0. For nota-
tional convenience we define V (K, 0) = 0, 0 � K < ∞. In addition, since the results
below apply for any !, we drop it from the notation (and in particular use K instead of
K!). Since g!(0) = 0, we can write

V (K, k0) =
∞∑
m=0

K∑
k=1

g!(k)aπ
(k0)
k (m) =

K∑
k=1

g!(k)
s
aπ

(k0)
k . (5.29)

By the definition of KI,

V (KI, k0) � 0, 0 < k0 � KI, (5.30)

and

V (KI + 1, k0) > 0 for some k0 ∈ {1, . . . , KI + 1}. (5.31)

Let

V n(K, k0) =
K∑
k=1

g!(k)
n
aπ

(k0)
k , 1 � k0 � K.

Then V (K, k0) � 0 if and only if V n(K, k0) � 0.

6. Identical users: structure of the optimal policies

Our optimization problem is to minimize the call blocking probability, subject to a con-
straint on the individual cell loss. We call a policy feasible if, under the policy, the
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relevant constraints are satisfied, and optimal if it is feasible and, in addition, provides
the lowest possible blocking probability among all feasible policies. The constraint is
to hold for every accepted call, and consequently we must use stationary policies only.
In [9], the authors restrict attention to threshold policies: these policies are characterized
by a single number KT : a call is admitted in state k if and only if k < KT . In the same
vein, below we discuss optimality in the class of threshold policies. Our goal here is
to show how the three thresholds KC, KA, and KI relate. In section 7 we provide an
efficient numerical procedure for calculating KI.

All the results of this section apply for any function g! satisfying assumption 1,
and we shall denote, e.g., by KA the threshold corresponding to the function under con-
sideration. But first, a few comments on these policies.

1. The optimal policy may well be randomized; this is true of both the individual and
the aggressive criteria. The interpretation of randomization when the individual
criterion is used goes as follows. If a call is admitted, then its performance guarantee
should be met: that is, the averaging is done under the condition that the call is
accepted. However, we average with respect to later arrivals to that state. Thus,
the randomization can be used to make the performance guarantee a tight bound,
thereby improving the call blocking part.

2. The average (“aggressive”) bound KA may be infinite: this would be the case if, for
example, the arrival rate is very low. This is not the case for the individual criterion,
as demonstrated by lemma 3 below.

Lemma 3. Let g satisfy assumption 1. For the individual criterion, there exists a number
K I < ∞ so that, under any feasible policy, a call arriving to state k > K I is always
blocked.

Proof. Note that the definitions (5.15)–(5.29) make sense under any stationary policy;
however, they are based on our uniformized process. But when no threshold is imposed,
there is no upper bound on the maximal rate of events. We shall therefore need to work
with the original process k(t), and not with the uniformized process.

So, if g = g0, let V (K, k0) denote the difference between the average amount of
fluid lost, and the allowed loss by the average number of calls in the system, both over the
duration of the “marked” call. This value may be calculated through either the original,
continuous-time process as in (8.2) (although we do not provide the explicit formulas
here) or through the uniformized process. For general g, V (K, k0) would be defined as a
sum if the computation is done for the uniformized process, or the corresponding integral
in continuous time. V (∞, k0) is defined only through the continuous-time process, and
we need to show that V (K, k0) is well defined (including the case K = ∞), and that
V (∞, k0) > 0 for all k0 large enough. That is, unless a threshold is imposed, the
individual cell-loss guarantee for a call which is accepted when the system is very busy
would be violated. We shall in fact establish this under any stationary policy.
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A stationary policy is specified through a sequence η = {η1, η2, . . .}, where ηk is
the probability of accepting a call when there are k calls in the system. So fix a stationary
policy, and an arbitrary state k1 so that KC < k1 < k0. Let τ denote the time that the
marked call leaves (in the continuous time process!), and τk1 the first time the process
enters state k1. Denote g = − infk g(k). Then g is positive and finite, and under any
stationary policy,

V (K, k0) � g(k1)E
K
k0
(τ ∧ τk1)− gEK

k0

(
(τ − τk1)1(τ > τk1)

)
(6.1)

where we used the fact that g(k) � g(k1) for all k � k1. Equation (6.1) holds for all K
including the case K = ∞. Since the second term is bounded by gEK

k0
τ and the first

term is positive, we conclude that V (K, k0) is well defined and bounded below. Now set
K = ∞. Since τk1 increases monotonically to +∞ as k0 → ∞ while τ is not changed,
we have

gEK
k0

(
(τ − τk1)1(τ > τk1)

) → 0 as k0 → ∞ (6.2)

by the monotone convergence theorem, and, in addition, EK
k0
(τ ∧ τk1) → EK

k0
τ . The

result follows since g(k0) is positive for k0 > KC. �

Theorem 4. If g satisfies assumption 1 then KC � KI � KA.

Proof. We prove the two inequalities separately. The first one is trivial: by the defini-
tion of KC,

g(k) � 0, 0 � k � KC,

so that
K∑
k=0

g(k)naπ
(k0)
k � 0, 1 � k0 � K � KC.

It follows immediately from the definition of KI that KC � KI.
The proof of the second inequality requires more effort. Our proof is by contradic-

tion. We assume that KA + 1 is feasible for the individual call based QoS, and show a
contradiction.

With K = KA + 1 feasible we have

V (K, k0) � 0, 1 � k0 � K.

This implies that

K∑
k=1

g(k)naπ
(k0)
k � 0, 1 � k0 � K. (6.3)

Because X(m) = ku(m) for 0 � m < τ we can write

n
aπ

(k0)
k = EK

k0

[∑τ−1
m=0 1(ku(m) = k)

]
EK
k0

[τ ] .



136 M.I. REIMAN AND A. SHWARTZ

The probability that the marked call leaves in the next step does not depend on the state,
so EK

k0
[τ ] does not depend on k0. Thus

n
aπ

(k0)
k = EK

k0

[∑τ−1
m=0 1(ku(m) = k)

]
EK[τ ] .

Consider the following discrete time Markov chain on the state space {1, . . . , K =
KA + 1}. The dynamics of the process are the same as {X(m), m � 1} until τ . At
time τ , instead of being absorbed in state 0 the process jumps to state k ∈ {1, . . . , K}
with probability γk, and one call is chosen as “marked”. (We assume that γk � 0,
1 � k � K and

∑K
k=1 γk = 1.) Let γ = (γ1, . . . , γK), and let ψk(γ ) denote the

invariant (steady-state) probability of this process being in state k. A simple regenerative
argument enables us to write

ψk(γ ) =
∑K

k0=1 γk0E
K
k0

[∑τ−1
m=0 1(ku(m) = k)

]
EK [τ ] =

K∑
k0=1

γk0
n
aπ

(k0)

k , 1 � k � K. (6.4)

There is another way to calculate ψk(γ ), 1 � k � K, namely through the one step
transition probabilities for the Markov chain, which we denote by {rij , 1 � i, j � K}.
Based on the description of the process given above we can write

rii+1 = �−1[λ+ µγi+1] = pii+1 +�−1µγi+1, 1 � i � K − 1,

rii−1 = �−1
[
(i − 1)µ+ µγi−1

] = pii−1 +�−1µ(γi−1 − 1), 1 < i � K,

rii = �−1
[
(�− λ− iµ)+ µγi

] = pii +�−1µγi, 1 � i � K − 1,

rKK = �−1
[
(�−Kµ)+ µγK

] = pKK +�−1µγK,

rij = �−1µγj , otherwise.

This is a finite state, ergodic, aperiodic Markov chain, so (ψ1(γ ), . . . , ψK(γ )) is the
unique solution to

K∑
i=1

ψi(γ )rij = ψj(γ ), 1 � j � K, (6.5)

with
K∑
i=1

ψi(γ ) = 1. (6.6)

Let π (0) = (π
(0)
1 , . . . , π

(0)
K ) be the probability vector obtained from π = (π0, π1,

. . . , πK) by renormalizing:

π
(0)
i = πi

1 − π0
, 1 � i � K.

Set
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γ̂1 = π
(0)
1 + π

(0)
2 ,

γ̂j = π
(0)
j+1, 1 < j � K − 1,

γ̂K = 0.

We now verify that π (0) solves (6.5), with γ = γ̂ , so that ψi(γ̂ ) = π
(0)
i , 1 � i � K.

We have

K∑
i=1

π
(0)
i rij = (1 − π0)

−1
K∑
i=1

πirij

= (1 − π0)
−1

K∑
i=1

πi
(
pij +�−1µγ̂j −�−1µ1{j=i−1}1{j�K−1}

)

= (1 − π0)
−1

[
K∑
i=1

πipij + (1 − π0)�
−1µγ̂j −�−1µπj+11{j�K−1}

]

= (1 − π0)
−1[πj − π0p0j + (1 − π0)�

−1µγ̂j −�−1µπj+11{j�K−1}
]

=


(1 − π0)

−1
[
π1 − π0�

−1λ+�−1µ(π1 + π2)−�−1µπ2
]
, j = 1,

(1 − π0)
−1
[
πj +�−1µπj+1 −�−1µπj+1

]
, 1 < j � K − 1,

(1 − π0)
−1πK, j = K.

For 1 < j � K − 1 and for j = K it is immediate that the expression is equal to π(0)
j .

This same conclusion follows for j = 1 upon noting that π0 = π1µ/λ.
We are now finally ready to display the contradiction. As a consequence of π (0)

satisfying (6.5) with γ = γ̂ , we can write, using (6.4),

π
(0)
k =

K∑
k0=1

γ̂k0
n
aπ

(k0)

k , 1 � k � K. (6.7)

This enables us to write (using g(0) = 0)

K∑
k=0

g(k)πk = (1 − π0)

K∑
k=1

g(k)

K∑
k0=1

γ̂k0
n
aπ

(k0)
k

= (1 − π0)

K∑
k0=1

γ̂k0

K∑
k=1

g(k)naπ
(k0)
k .

By (6.3) we can conclude that

K∑
k=0

g(k)πk � 0,

which contradicts the definition of KA. Thus KI � KA. �
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By definition, in order to compute KI we need to evaluate
∑K

k=0 g(k)
n
aπ

(k0)

k for
1 � k0 � K. It actually suffices to evaluate this for k0 = K, as we now show.

Lemma 5. Assume g satisfies assumption 1. If K > KC and V (K,K) � 0 then
V (K, k0) � 0 for 1 � k0 � K.

Proof. We assume that K > KC throughout the proof. Let

W(K, k0) = EK
k0

(τKC∧τ )−1∑
m=0

g
(
X(m)

)
,

where τKC = min{m: X(m) = KC}. We can write

V (K, k0) = W(K, k0)+ PK
k0
(τKC < τ)V (K,KC). (6.8)

Consider first the case k0 > KC. By assumption, g(k) is positive and increasing when
restricted to k > KC. Thus,

W(K, k0) � W(K, k0 + 1), KC < k0 < K, (6.9)

and W(K,K) > 0. In addition,

PK
k0+1(τKC < τ) � PK

k0
(τKC < τ), KC < k0 < K. (6.10)

Using (6.8) with k0 = K yields

V (K,KC) = V (K,K) −W(K,K)

PK
K (τKC < τ)

. (6.11)

Thus (since we have V (K,K) � 0 by assumption)

V (K,KC) � 0. (6.12)

We can write

V (K, k0)− V (K, k0 + 1)

= W(K, k0)−W(K, k0 + 1)+ [
PK
k0
(τKC < τ)− PK

k0+1(τKC < τ)
]
V (K,KC).

(6.13)

Combining (6.9), (6.10), and (6.12) with (6.13) yields

V (K, k0) � V (K, k0 + 1), KC < k0 < K. (6.14)

By (6.14), the assumption that V (K,K) � 0, and (6.11),

V (K, k0) � 0, KC � k0 � K.

For k < KC, g(k) � 0. Thus

W(K, k0) � 0, 1 � k0 < KC. (6.15)
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Combining (6.8), (6.12), and (6.15) yields

V (K, k0) � 0, 1 � k0 < KC. �

7. Identical users: computation of optimal policies

By theorem 4, KI � KC. By lemma 5, in order to calculate KI, it suffices to compute
V (K,K) for K � KC. Although it is possible to solve for V (K,K) using (5.29) (with
suitable truncation of the infinite sum in (5.9)), there is a substantially more efficient
technique, using difference equations. We first derive a second order difference equation
for V (K, k), and then provide a solution that is simple to evaluate numerically.

Recall that

V (K, k) = EK
k

τ−1∑
m=0

g
(
X(m)

)
.

With the understanding that paKK+1 = 0 and V (K, 0) = 0 we can write

V (K, k) = g(k)+ pakk+1V (K, k + 1)+ pakkV (K, k)+ pakk−1V (K, k − 1). (7.1)

Using equation (5.8), (7.1) becomes

V (K, k)= g(k)+�−1λV (K, k + 1)+�−1(�− λ− kµ)V (K, k)

+�−1(k − 1)µV (K, k − 1), 1 � k < K (7.2)

and

V (K,K) = g(K)+�−1λV (K,K)+�−1(K − 1)µV (K,K − 1). (7.3)

These can be rewritten as

(λ+kµ)V (K, k) = �g(k)+λV (K, k+1)+(k−1)µV (K, k−1), 1 � k � K (7.4)

or

V (K, k + 1)− λ+ kµ

λ
V (K, k)+ (k − 1)µ

λ
V (K, k − 1) = −�

λ
g(k) (7.5)

and

V (K, 0) = 0, (7.6)

V (K,K)− (K − 1)

K
V (K,K − 1) = �

Kµ
g(K). (7.7)

This is a second order linear recursion with boundary conditions. To obtain a solution,
consider a general second-order linear recursion with varying coefficients, of the form

xt+1 + a0
t xt + a1

t xt−1 = b0
t ut + b1

t ut−1, 1 � t � T − 1. (7.8)

Using the vector notation xt = (
xt
xt−1

)
, ut = (

ut
ut−1

)
, write (7.8) in matrix form as
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xt+1 =At · xt + Bt · ut , 1 � t � T − 1, (7.9)

At =
(−a0

t −a1
t

1 0

)
, Bt =

(
b0
t b1

t

0 0

)
. (7.10)

Define the “fundamental matrix” by 0(s, t) = At−1 · At−2 · · ·As . Any solution to (7.9)
must satisfy

xT = 0(1, T ) · x1 +
T−1∑
t=2

0(t, T )Bt−1ut−1 + BT−1uT−1. (7.11)

Returning to our specific equation, we use (7.11) with T = K. We have

Ak =
( λ+ kµ

λ
−(k − 1)µ

λ
1 0

)
, (7.12)

Bkuk =
(−�/λ

0

)
g(k). (7.13)

The solution of (7.5)–(7.7) then satisfies

(
V (K,K)

V (K,K − 1)

)
=0(1,K)

(
V (K, 1)

0

)
+

K−1∑
k=2

0(k,K)

(−�/λ
0

)
g(k − 1)

−
(−�/λ

0

)
g(K − 1). (7.14)

Equations (7.7), (7.14) now give us a system of three linear equations in the three un-
knowns V (K, 1), V (K,K − 1) and V (K,K). The computation of 0(k,K) is straight-
forward as it depends only on known values of the parameters. Note that this generic
calculation is independent of the form of g(k).

Lemma 6. There exists a unique solution to (7.5)–(7.7), which agrees with the unique
solution of the system of equations (7.7) and (7.14).

Proof. By construction, any solution {V (K, k), k = 0, 1, . . . , K} of (7.5)–(7.7) deter-
mines a solution {V (K, 1), V (K,K − 1), V (K,K)} of (7.7) and (7.14). Conversely, a
solution of (7.7) and (7.14) determines a solution of (7.5)–(7.7). Thus we can consider
either, as convenient. To simplify the notation, abbreviate (7.7) and (7.14) as

v(K)− ev(K − 1) = g′, (7.15)(
v(K)

v(K − 1)

)
=
(
a b

c d

)(
v(1)

0

)
+G (7.16)

for appropriate constants a, b, c, d, e, g′ and matrix G. Using (7.15) to eliminate
v(K − 1) from (7.16): denoting by G1, G2 the elements of the vector G,
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v(K)= av(1)+G1, (7.17)

v(K − 1)= cv(1)+G2 (7.18)

= e−1
(
v(K)− g′) (7.19)

and so

v(K)− g′ = ecv(1)+ eG2. (7.20)

Therefore, there exists a unique solution v(1), v(K) to the resulting equation if and only
if ae = c. This is therefore equivalent to existence and uniqueness of solution to (7.15)–
(7.16) but with g′ = 0 and G = 0 (the zero matrix). So, translating back to the original
equations, there exists a unique solution if and only if this holds when g(k) = 0 for all k.

In this case, however, V (K, k) = 0 for all k is a solution to the difference equation.
Assume that it is not unique, at let v0(k) be the postulated nonzero solution. Then
v0(1) = 0, for otherwise the difference equation will dictate v0(k) = 0 for all k. So, to
complete the proof it suffices to show that (ae − c)v0(1) = 0. However, note that when
g′ = 0 and G = 0,

av0(1)= v0(K), (7.21)

cv0(1)= v0(K − 1), (7.22)

so that (ae − c)v0(1) = 0 implies

v0(K) · K − 1

K
= v0(K − 1). (7.23)

However, by (7.15),

v0(K) = K − 1

K
v0(K − 1) (7.24)

which can hold simultaneously only if v0(K) = v0(K − 1) = 0. But in this case,
the recursion equation implies that v0(k) = 0 for all k, contradicting our assumption
on v0. �

The computational procedure is therefore the following. Starting with 0(K,K) =
I (the identity matrix), we calculate (backwards) 0(k,K) = Ak0(k + 1,K), and add
the term 0(k,K)

(−�/λ
0

)
g(k) to the sum in (7.14). After K steps, using the notation

of (7.15)–(7.16), we have computed all the constants of those equations. From (7.17)

v(1) = g′ −G1 + eG2

a − ce
, (7.25)

so we can add the final term of (7.14), and then solve explicitly for v(K) = V (K,K).
The value V (K,K) is then compared to the QoS guarantee, and the calculation

repeats with a new K until the threshold is identified.
We provide numerical examples that correspond to parameters considered in [7,9].

In all cases we take R = 45 and f = 10−9. We first consider µ = 0.1, ν = 6.0 and
p = 0.025. For λ = 1.125 (which corresponds, according to [7], to the largest value of λ
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for which the call blocking probability does not exceed 0.01; this is called λmax in [9]),
we obtain KC = 14, KI = 16 and KA = 20. If we reduce the call arrival rate to λ = 1.05,
then KA = ∞ and KI = 16 (and KC = 14 because it does not depend on λ). The second
case we consider has µ = 1.0, ν = 1.5, and p = 0.1. Taking λ = 94.0 (corresponding
to λmax for these parameters), we obtain KC = 100, KI = 105 and KA = 111. Taking
λ = 85.0 yields KA = ∞ and KI = 107. All of these numbers were calculated in a
fraction of a second on a MIPs 4400/4010 processor running at 150 MHz.

8. Admission to an ATM link: the mathematical program

In this section we outline the derivation of a mathematical program, whose solution
provides an optimal control for a general admission problem. Recall the notation of
sections 2–4. With some abuse of notation (but hopefully no ensuing confusion) we
denote by kn and an also the state (respectively, action) just before the nth transition
occurred. Let N(t) be the number of events (call arrivals and departures) up to time t .
The average reward corresponding to call blocking, under the control policy σ with
initial state k can be written as

V0(k, σ ) = lim inf
T→∞

1

T
E
σ
k

N(T )∑
n=1

r(kn, an). (8.1)

Representing the constraints on cell loss is more involved, for two reasons. First,
unlike call blocking, cell loss depends on the duration of events, since our functions gi
typically represent cell-loss rates. Secondly, our point of view is that of an individual
call: we would like to provide a guarantee in terms of performance during the time a
marked call is in the system. We shall in fact provide a separate constraint for each call
type and for each possible state at which such a call may be accepted. Let

Vtot(k, σ ) = E
σ
k

∫ τ

0
gi(kt , at ) dt, (8.2)

where τ is the time the marked call leaves. This quantity should fall below the guaranteed
level for each state k in which new type i calls are accepted. Since the same guarantee is
offered to all calls accepted in a given state, we must restrict our attention to stationary
policies. Note, however, that we cannot use the standard uniformization approach of the
theory of Semi-Markov Decision processes (SMDP), since our constraints may lead to
randomized policies, under which the uniformization technique does not apply, as shown
by Beutler and Ross [3].

To provide a mathematical program that combines the above objective and con-
straints we use the specific structure of our problem and then apply the general results
of the appendix. In order to formulate the constraint pertaining to a type i call accepted
in state ks , we construct a modified process with transition probabilities ps,i(k,k′; a)
(to avoid cumbersome notation, we use s, i rather than ks , i as subscript or superscript).
Because of the exponential holding time assumption, whenever an event occurs, the
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probability that a specific call of type i (the “marked call”) leaves the system equals the
service rate for that type, divided by the total event rate in that state. Under the modified
transition structure, in place of this event, the process jumps back to the initial state ks ,
a new call of the same type is chosen as “marked”, and the process continues. Thus,
we create a regeneration point for a process that would otherwise terminate when the
marked call leaves.

Let E denote expectation with respect to the modified transition probabilities. Al-
though E depends on the initial state ks, i we omit this dependence from the notation:
assume ks and i are fixed. Let τ! denote the !th time that a marked call leaves the modi-
fied system. Let the random variable N! denote the total number of events until time τ!.
Since we are restricting to stationary policies σ , we have

Vtot(σ )= 1

!
E

∫ τ!

0
gi(kt , at ) dt (8.3)

= 1

!
E

N!∑
n=1

gi(kn, an)τ(kn, an), (8.4)

where τ(k, a) is the expected time for transition out of state k under action a. Since σ is
a stationary policy and by definition of τ!, we have Eτ! = ! · Eτ1. Clearly, if the marked
call is of type i then Eτ1 = 1/µi . So

Vtot(σ )= Eτ1
E
∑N!

n=1 gi(kn, an)τ(kn, an)

E
∑N!

n=1 τ(kn, an)
(8.5)

= lim
!→∞

(1/µi)E
∑!

n=1 gi(kn, an)τ(kn, an)

E
∑!

n=1 τ(kn, an)
(8.6)

which is exactly a ratio-average criterion [5].
We now apply the results of [5] to derive a mathematical program for the optimal

policies for our call admission problem. In the appendix we describe this derivation
by treating a discrete-time problem. Our semi-Markov problem is treated in the same
way, by combining the results of [5] with those of the appendix. Our policy σ will be
determined from the solution z0

ka of the mathematical program as

σ (a | k) = z0
ka∑

a′ z0
ka′

(8.7)

if
∑

a′ z0
ka′ = 0, and is set arbitrarily otherwise so that

∑
a σ (a | k) = 1. As in the

appendix, the mathematical program is derived from the linear program of [5], with the
additional condition that the policies ensuing from each of the constituting variables
must agree. See also [9] for details of a related linear program. Let Bi denote the cell
level quality of service guarantee (bound) to calls of type i; we say that the cell loss
guarantee is met if

Vtot(σ ) � Bi for all ks and i. (8.8)
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As in the appendix, the mathematical program is stated in terms of the variables
{z0

ka,k, a} that arise from the average criterion V0(k, σ ), as well as the variables
{zs,ika ,k, a}, which arise from the Vtot(k, σ ). There is one set of such variables for each
type i, as well as for each initial state ks . A priori, the number of states (as well as initial
states) is infinite. However, applying the proof of lemma 3 below (section 6) to each type
while rejecting all other types gives an upper bound, so that we can limit each type to a
finite number of users. This reduces the problem to a finite state one. The mathematical
program can now be stated as follows.

max
∑
k,a

r(k, a)z0
ka (8.9)

subject to ∑
a

z0
k′a −

∑
k,a

p
(
k,k′; a)z0

ka = 0 for all k′ (8.10)

∑
k,a

τ (k, a)z0
ka = 1, (8.11)

z0
ka � 0 for all k, a (8.12)

and, with ks denoting initial state, subject to∑
a

z
s,i
k′a −

∑
k,a

ps,i
(
k,k′; a)zs,ika = 0 for all i,ks ,k′, (8.13)

∑
k,a

τ (k, a)zs,ika = 1 for all i,ks , (8.14)

z
s,i
ka � 0 for all k, a, i,ks , (8.15)∑

k,a

1

µi

gi(k, a)τ(k, a)z
s,i
ka �Bi for all i,ks , (8.16)

z
s,i
ka∑
a′ z

s,i
ka′

= z0
ka∑

a′ z0
ka′

for all k, a, i,ks . (8.17)

This mathematical program may be theoretically quite satisfying, in that any optimal
solution may be obtained by solving this program (see the appendix). However, from
an implementation point of view, the task is quite formidable: most significant are the
nonlinear constraints (8.17), for which no theory exists. In addition, the size of this
program is quite large: the number of variables zαβ is roughly twice (two actions) the
number of types J times the square of the number of possible states. In addition, the
number of both linear and nonlinear constraints is of the same order as the number
of variables. Nonetheless, we believe that the equivalence between the non standard
SMDP problem and the mathematical program is of interest, and further research into
the consequences of this equivalence is warranted.
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Appendix: Markov decision problems and linear programs

In this appendix we collect some results from the theory of MDPs in order to make the
presentation more self contained. The results herein are either known, or immediate
extensions of known results, but some of the results have not been published. This
appendix serves both to illustrate as well as substantiate the derivation, in section 8, of
the mathematical program.

Consider first the following optimization problem involving a finite state, finite
action (discrete time) Markov decision process. We are given transition probabilities
for the controlled process: p(i, j ; a) is the probability that the next state is j given that
the current state is i and action a is chosen. We are also given immediate costs c(i, a)
incurred when action a is taken in state i. Let σ be a stationary randomized policy:
σ = {σ (a | i)}i,a , where σ (a | i) is the probability of using action a when in state i.
Let xt denote the state at the (discrete) time t and at the action at t . Denote the average
reward under policy σ , with initial state i by

Vav(i, σ ) = lim
T→∞

1

T
E
σ
i

T∑
t=1

c(xt , at ). (A.1)

(The limit exists since the state space is finite, and the policy is stationary.) Assume that
under every stationary policy, the resulting Markov chain contains at most one ergodic
class (and possibly transient states): such a Markov decision process is called unichain.
Then, under any stationary policy and for any initial state i, the limits below exist, are
independent of the initial state i and

Vav(σ )= lim
T→∞ E

σ
i

1

T

T∑
t=1

c(xt , at ) (A.2)

= lim
T→∞

1

T

T∑
t=1

∑
y,a

P
σ
i (xt = y, at = a)c(y, a) (A.3)
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=
∑
y,a

(
lim
T→∞

1

T

T∑
t=1

P
σ
i (xt = y, at = a)

)
c(y, a) (A.4)

=
∑
y,a

zya(σ )c(y, a), (A.5)

where the last equality defines z. The state-action occupation measure z (the {zya} are
also known as the state-action frequencies) depends on the policy σ but, due to the
ergodicity assumption, does not depend on the initial state. Given z we can recover
σ (a | y) from

σ (a | y) = zya∑
a′ zya′

(A.6)

provided
∑

a zya > 0. If
∑

a zya = 0, then σ (a | y) is immaterial and can be selected
arbitrarily, subject to

∑
a σ (a | y) = 1. Conversely, if we let πσ denote the invariant

distribution of the process under policy σ we can compute z by

zya = πσ
y · σ (a | y). (A.7)

We are interested in problems where additional constraints are imposed, of the form

Vm(σ ) = lim
T→∞

1

T
E
σ
i

T∑
t=1

cm(xt , at ) � Cm, m = 1, 2, . . . ,M, (A.8)

for some immediate cost functions cm and bounds Cm. Due to (A.2)–(A.5), the Vm(σ )
can also be written as linear functions of z(σ ). Consequently, we can write a linear
program that corresponds to the Markov decision problem.

Theorem 7 [2,4,6]. Under the unichain assumption, a stationary policy σ is feasible
(optimal among stationary policies) for the Markov decision problem

Max Vav(i, σ ) subject to the constraints (A.8) (A.9)

if and only if {zya} is feasible (optimal, respectively) for the associated linear program:

max
∑
ya

zyac(y, a) (A.10)

such that

zya � 0, all y, a, (A.11)∑
ya

zya = 1, (A.12)

∑
ya

zyacm(y, a)�Cm, m = 1, 2, . . . ,M, (A.13)

∑
a

zsa −
∑
ya

zyap(s | y, a)= 0, all s. (A.14)
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The occupation measure {zya} and the policy σ are related through (A.6), (A.7).

In section 8 we consider some auxiliary processes, that start at a fixed initial
state ks , and are “restarted” when a marked call leaves. More generally, let each Vm(σ )
be defined through a different expectation operator E

m,σ , corresponding to different tran-
sition probabilities pm. Consider now the optimization problem (A.9) where maximiza-
tion is with respect to stationary policies. Applying theorem 7 we see that for each m

there corresponds a zm(σ ), and σ is feasible if and only if zm(σ ) satisfies the appropriate
linear constraints. In addition, any feasible {zm(σ ), m = 1, . . . ,M} must be related
to σ via (A.6), (A.7). Denoting the original transition probabilities p by p0 we have the
following result.

Theorem 8. Under the unichain assumption for each m, a stationary policy σ is feasible
(optimal among stationary policies) for the Markov decision problem

Max Vav(i, σ ) (A.15)

subject to Vm(σ ) � Cm, m = 1, 2, . . . ,M, (A.16)

if and only if {zmya, m = 0, . . . ,M} is feasible (optimal, respectively) for the associated
linear program:

max
∑
ya

z0
yac(y, a) (A.17)

such that

zmya � 0, all y, a, and 0 � m � M, (A.18)∑
ya

zmya = 1, all 0 � m � M, (A.19)

∑
ya

zmyacm(y, a)�Cm, 1 � m � M, (A.20)

∑
a

zmsa −
∑
ya

zmyap
m(s | y, a)= 0 all s and 0 � m � M, (A.21)

zmya∑
a′ zmya′

= z0
ya∑

a′ z0
ya′

all y, a, and 1 � m � M. (A.22)
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