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We analyze three queueing control problems that model a dynamic stochastic distribution
system, where a single capacitated vehicle serves a finite number of retailers in a make-to-stock
fashion. The objective in each of these vehicle routing and inventory problems is to minimize the
long run average inventory (holding and backordering) and transportation cost. In all three
problems, the controller dynamically specifies whether a vehicle at the warehouse should idle or
embark with a full load. In the first problem, the vehicle must travel along a prespecified (TSP)
tour of all retailers, and the controller dynamically decides how many units to deliver to each
retailer. In the second problem, the vehicle delivers an entire load to one retailer (direct
shipping) and the controller decides which retailer to visit next. The third problem allows the
additional dynamic choice between the TSP and direct shipping options. Motivated by existing
heavy traffic limit theorems, we make a time scale decomposition assumption that allows us to
approximate these queueing control problems by diffusion control problems, which are explicitly
solved in the fixed route problems, and numerically solved in the dynamic routing case.
Simulation experiments confirm that the heavy traffic approximations are quite accurate over
a broad range of problem parameters. Our results lead to some new observations about the
behavior of this complex system.

A prototypical example of the inventory-routing
problem (IRP) is the challenge faced by a large oil
company as it distributes gasoline to its various gas
stations: several warehouses hold inventory of a par-
ticular item (gasoline) and serve a set of retailers
(stations) in a make-to-stock fashion; arriving cus-
tomers (automobiles) consume the product at these
retail sites, and a fleet of finite capacity vehicles
(tanker trucks) is used to transport the product from
the warehouse to the various retailers.

The management decisions involved in the design
and operation of such a system are many-fold and
complex. Traditionally, a hierarchical decomposition
of the problem is used to allow for a solvable model

at each of the levels (e.g., SIMCHI-LEVI 1992). At the
strategic level, the managers of this system must
determine the location and number of warehouses
and retailers, as well as the assignment of retailers
to warehouses. At a tactical level, they must decide
on the number of vehicles to operate, and possibly on
the assignment of vehicles to service districts. At the
operational level, the decisions include: whether to
send a particular vehicle out or let it idle, how much
of the capacity of the vehicle to use, which of the
retailers should each vehicle visit, and how much of
its load should a vehicle deliver to each of the retail-
ers on its route.

At the tactical and operational levels, the essence
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of the IRP is the tradeoff between inventory costs
and transportation costs: to reduce inventory levels
at the retail sites without affecting the service level,
more frequent replenishment deliveries are re-
quired, thereby increasing the transportation costs.
In many applications, customer demand (and to a
lesser extent, vehicle travel times) is subject to con-
siderable stochastic variation. In such cases, a sto-
chastic model is required to accurately capture the
inventory costs, and, in this paper, we focus on the
operational aspects of the IRP in a dynamic stochas-
tic setting.

The field of operations research is sometimes crit-
icized because real-world applications have lagged
behind theoretical progress (e.g., ACKOFF 1987). The
IRP is an important counterexample to this percep-
tion: although heuristics for this notoriously difficult
problem have led to some spectacularly successful
industrial applications at both the operational (e.g.,
the Edelman Prize-winning work of BELL et al. 1983,
GOLDEN et al. 1984) and tactical (LARSON 1988) lev-
els, a concomitant mathematical theory for the IRP
in a dynamic and stochastic environment has not
been forthcoming. FEDERGRUEN and ZIPKIN (1984)
analyze a single-period IRP with stochastic demand,
and DROR and BALL (1987) develop a heuristic tech-
nique to reduce the long-run average problem to a
single period problem. Recent studies that consider
the operational aspects of the stochastic IRP include
TRUDEAU and DROR (1992), who develop heuristics
for the case of an external supplier, where retailer
inventories are only observable at delivery times;
MINKOFF (1993), who constructs a decomposition
heuristic for a Markov decision model that dis-
patches vehicles on a prespecified set of itineraries,
where each itinerary is characterized by an inven-
tory allocation to a subset of customers; and KUMAR,
SCHWARZ, and WARD (1995), who develop myopic
static and dynamic strategies for allocating the con-
tents of a vehicle to the various retailers on a pre-
determined tour. CHAN, FEDERGRUEN, and SIMCHI-
LEVI’s (1998) probabilistic analysis of random
instances of the deterministic IRP is useful for ad-
dressing tactical and strategic issues, but has no
bearing on the operational aspects of the IRP with
stochastic demand. Readers are also referred to
BERTSIMAS and SIMCHI-LEVI (1996) for a recent sur-
vey of some related inventory-routing problems and
dynamic vehicle routing problems.

Our system model has one warehouse and one
capacitated vehicle; hence, we effectively assume
that the higher level decisions have been made to
assign a single warehouse and a single vehicle to
serve all retailers in a particular region. An ample
amount of inventory is available at the warehouse,

and the cost of holding this inventory is not included
in the model. Retailer demand and vehicle travel
times are random, unsatisfied demand is back-
ordered, and the objective is to minimize costs due to
holding and backordering inventory (cost rates may
differ by retailer) and operating the vehicle. One of
the crucial decisions in our problem is the vehicle
idling policy: when the vehicle is at the warehouse,
the controller can either send the vehicle out with a
full load or let the vehicle sit idle; because we use a
long-run average cost criterion, if the vehicle does
not idle and the traffic intensity of the system is less
than one, then an infinite amount of retailer inven-
tory will build up over the long run.

Two types of IRPs are analyzed: the first assumes
fixed routing and the second allows dynamic rout-
ing. We consider two variants of the fixed routing
IRP: in the IRP with TSP routing, when a vehicle
leaves the warehouse, it uses a preoptimized tour of
the m retailers, which we refer to as the traveling
salesman problem (TSP) tour. In addition to the
vehicle idling policy, the controller must decide how
many units to deliver to each retailer, and this de-
cision is based on the current inventory levels at all
retailers and on the remaining number of units in
the vehicle. The second variant is the IRP with di-
rect shipping; in this case, each time the vehicle
leaves the warehouse, it delivers all of its contents to
a single retailer, and the controller dynamically
specifies which retailer to visit next. In the IRP with
dynamic routing, the controller decides, based upon
the current inventory levels, whether to use a TSP
tour or direct shipping.

By only allowing TSP tours or direct shipping, we
avoid an assault on the combinatorial aspects of the
embedded routing problem, and model these prob-
lems as queueing control problems. Because these
control problems appear to be analytically intracta-
ble, heavy traffic analysis is used to make further
progress. Guided by the heavy traffic limit theorems
in COFFMAN, PUHALSKII, and REIMAN (1995, 1998),
we assume that a time scale decomposition holds in
the heavy traffic limit. The resulting diffusion con-
trol problems are solved analytically for the fixed
route IRPs and numerically for the dynamic IRP. A
computational study is also carried out that con-
firms the accuracy of the heavy traffic analysis and
allows us to obtain insights into the relative impor-
tance of the various operational decisions (e.g., the
vehicle idling policy, static versus dynamic alloca-
tion, TSP versus direct shipping, fixed versus dy-
namic routing).

In Sections 1 and 2, we analyze the IRP with TSP
routing and direct shipping, respectively. The per-
formance of these two routing schemes is compared
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in Section 3 and the IRP with dynamic routing is
analyzed in Section 4. The computational study is
described in Section 5 and our key findings are sum-
marized in Section 6.

1. THE IRP WITH TSP ROUTING

1.1 Problem Formulation

Consider a system where a single vehicle with
capacity V is used to distribute a standard product
to m geographically dispersed retailers. An infinite
supply of the product is kept at the central ware-
house at no cost. Customers are served from the
retailer inventories in a make-to-stock fashion, and
demand that cannot be served immediately is back-
ordered. When the vehicle is operating, the following
policy is used: the vehicle leaves the warehouse (in-
dexed as station 0) with a full load and then visits all
the retailers in a predefined sequence before return-
ing empty. Alternatively, the vehicle may idle at the
depot. Though the order in which retailers are vis-
ited could be arbitrary, we assume that it is the
solution to the implied TSP, and refer henceforth to
this service scheme as the TSP policy. Without loss
of generality, we assume that retailers are indexed
from 1 through m according to their position in the
TSP tour.

Two sources of variability are considered: cus-
tomer demand and travel times. For i � 1, . . . , m,
customer demand at retailer i occurs according to an
independent renewal process {Di(t), t � 0} with rate
�i and squared coefficient of variation cdi

2 (variance
of the interdemand time divided by the square of the
mean). The cumulative total demand in [0, t] is
denoted by D(t) � �i Di(t), and � � �i �i is the total
demand rate. (In all summations of this paper, the
index runs over the set of retailers {1, 2, . . . , m},
unless explicitly indicated otherwise.) Our results
easily generalize to cases with correlated compound
renewal processes; see Section 6 of REIMAN (1984)
for details. The sequence of travel times between
facilities i and j is given by iid samples of the ran-
dom variable Tij, which has mean �ij and squared
coefficient of variation cij

2 (i, j run from 0 to m).
These travel times are independent of the demand
streams and of each other. Keeping with the conven-
tion in the literature, we assume that pickup and
delivery of units occur instantaneously; in practice,
load/unload times tend to be dwarfed by the travel
times. (Although nonzero load/unload times can be
incorporated in a straightforward manner, the anal-
ysis becomes more tedious and its inclusion would
cloud the basic issues). Hence, the mean and vari-
ance of the total time required to complete the TSP
tour are given by �T � �j�0

m�1 �j, j�1 � �m0 and sT
2 �

�j�0
m�1 �j, j�1

2 cj, j�1
2 � �m0

2 cm0
2 , respectively, where the

subscript T is mnemonic for TSP. For later use, we
define the squared coefficient of variation of the tour
completion time as cT

2 � sT
2/�T

2, and let {ST(t), t � 0}
denote the counting process for TSP tour comple-
tions up to time t assuming the vehicle is continu-
ously active in [0, t].

Because the route is fixed, only two operating
control decisions remain: (i) whether the vehicle
should be busy or idle; (ii) while the vehicle is busy,
how much of the load to leave at each retailer. The
busy/idle control is expressed in terms of the cumu-
lative process BT(t), which represents the amount of
time the vehicle is busy in [0, t]. We do not allow
tours to be interrupted, and so the sequence �k, k �
1, 2, . . . of tour completion epochs is given by �k �
inf{t�ST(BT(t)) � k}. The delivery allocations are
modeled by the m-dimensional control process Li(t),
which represents the cumulative amount delivered
to retailer i up to time t. In anticipation of future
developments, let us express this control in terms of
a nominal delivery size for retailer i, denoted by Vi,
and a dynamic allocation process �i

T(t). We let Vi �
�iV/� for all i, so that the nominal delivery size
corresponds to allocating the vehicle capacity V
among the retailers according to their relative de-
mands. The load allocation process is defined by

� i
T�t� � Li�t� � ViST�BT�t�� for t � 0, (1)

which represents the cumulative deviations from
the nominal delivery size over past tours, plus the
amount delivered during the current cycle for re-
tailer i. Because the tour completion history can be
observed, we need only specify the value of �i

T(t) to
determine the total deliveries to retailer i up to time
t. Notice that deviations from the nominal allocation
cancel out across the retailers and the process
�T(t) � �i �i

T(t) represents the total amount deliv-
ered during the current cycle. Because we assume
that the vehicle leaves the warehouse with a full
load and returns empty, the dynamic load allocation
process must satisfy

� i
T�0� � 0 for all i, (2)

� i
T�t�� � � i

T�t��

only if retailer i is visited at time t, (3)

� i
T�t� � � i

T��k�1�

for t � ��k�1 , �k� and all i, (4)

�T��k
�� � V (5)

and

�T��k� � 0, (6)
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where the superscripts � and � denote the times
just before and after an epoch.

The number of units in inventory (or backordered
if this quantity is negative) at retailer i at time t is
denoted by Qi(t), and the total inventory at the
retailers is Q(t) � �i Qi(t). If we assume that
Qi(0) � 0 (a long-run average cost criterion is being
used, and later we restrict our analysis to a class of
policies that lead to an ergodic system) then the
current inventory Qi(t) equals the cumulative deliv-
eries minus the cumulative demand, which, by Eq.
1, is given by

Qi�t� � ViST�BT�t�� � Di�t� 	 � i
T�t�

for i � 1, . . . , m, t � 0. (7)

Define the cumulative vehicle idle time process I(t)
by

I�t� � t � BT�t� for t � 0, (8)

so that the control policy BT(t), �i
T(t) must satisfy

BT , � i
T are nonanticipating with respect to Q,

(9)

BT is nondecreasing and continuous with

BT�0� � 0, (10)

I is nondecreasing with I�0� � 0. (11)

Our objective function includes transportation
costs and inventory holding and backordering costs.
The travel cost rate per unit of time traveled, which
includes vehicle depreciation, fuel, and driver cost,
is r. Note that these costs can be combined because
we are ignoring the load/unload times (only the
driver, but not the vehicle, is busy while loading and
unloading). Inventory costs are assumed to be piece-
wise-linear, with the holding cost rate (per unit in
inventory per unit time) at retailer i denoted by hi
and the backorder cost rate by bi. Because travel
costs are incurred whenever the vehicle is busy, the
travel cost rate r can be equivalently treated as a
reward for exerting idleness. Hence the problem re-
duces to finding a control policy (BT(t), �i

T(t)) to
minimize

lim sup
T3�

1
T E� �

0

T �
i

�hi	Qi�t�
�

	 bi	Qi�t�
�� dt � rI�T�� (12)

subject to Eqs. 2–11, where the � and � denote the
positive and negative parts.

The dynamic stochastic IRP, as formulated in Eqs.
2–12, does not seem to be tractable. Even under
Markovian assumptions for the underlying random
processes, the action space is enormous and the
state space has m � 2 dimensions: the inventory/
backorder level at each retailer and the location and
total contents of the vehicle. To gain further under-
standing of the problem, we analyze it when the
system operates in the heavy traffic regime.

1.2 Heavy Traffic Normalizations

We begin our heavy traffic development by center-
ing the service completion and demand processes;
define the centered processes �T(t) � ST(t) � �T

�1t
and �(t) � D(t) � �t. It is convenient to define the
process


�t� � � V
�T

� �� t 	 V�T�BT�t�� � ��t�; (13)

we refer to this quantity as the netput process, al-
though it does not correspond precisely to the netput
processes constructed in the heavy traffic analysis of
conventional queueing networks (e.g., PETERSON
1991). Summing the inventory evolution Eqs. 7 over
all retailers and substituting the relevant defini-
tions yields

Q�t� � 
�t� �
V
�T

I�t� 	 �T�t�. (14)

In heavy traffic analysis, one typically constructs
a sequence of systems indexed by the heavy traffic
parameter n. Even though no weak convergence
proofs will be undertaken here, because some of the
scalings that we introduce are nontraditional, we
index quantities with n (in an appropriate place) to
make the scalings clear. This indexing will be con-
fined to this subsection; for the rest of the paper, we
leave off the index, with the understanding that we
are considering a single system that has an associ-
ated value of n. The parameter n can be thought of
as a large integer (e.g., 100) but (as is typically the
case) the policy recommendations that emerge from
our heavy traffic analysis are independent of n. The
parameter n is used to normalize the various pro-
cesses according to standard heavy traffic conven-
tions (notice that only the process BT undergoes a
fluid scaling):

Wi
�n��t� �

Qi
�n��nt�

�n
for all i,

(15)

W �n��t� � �
i

Wi
�n��t� �

Q �n��nt�

�n
,
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Y �n��t� �
I �n��nt�

�n
, 
̂ �n��t� �


 �n��nt�

�n
,

�̂T
�n��t� �

�T
�n��nt�

�n
,

(16)

�̂ �n��t� �
� �n��nt�

�n
, �̂T

�n��t� �
�T

�n��nt�

�n

and (17)

B̂T
�n��t� �

BT
�n��nt�

n .

The processes W(n) and Y(n) represent the normal-
ized inventory and idleness, respectively. To reduce
the amount of notation, the normalized versions of
the remaining processes contain a hat (ˆ). Using
these scalings in Eqs. 13 and 14 yields expressions
for the normalized netput process


̂ �n��t� � �n�V �n�

�T
�n� � � �n�� t

	 V �n��̂T
�n��B̂T

�n��t�� � �̂ �n��t�, (18)

and the normalized inventory process

W �n��t� � 
̂ �n��t� �
V �n�

�T
�n� Y �n��t� 	 �̂T

�n��t�. (19)

To obtain a nontrivial control problem in heavy
traffic, we normalize the system parameters in a
particular fashion. The demand and inventory cost
parameters are not scaled, and the other parameters
are normalized as follows:

V̂ �n� �
V �n�

�n
, (20)

�̂T
�n� �

�T
�n�

�n
, (21)

�T
�n� � �n�V �n�

�T
�n� � � �n�� � 0, (22)

ĉT
2�n� � �n cT

2�n�, (23)

r̂ �n� �
r �n�

n . (24)

We assume that all the quantities on the left side of
definitions 20–24 converge to finite and positive lim-
its as n 3 �. Eqs. 20–24 are the heavy traffic
conditions and they specify, in a unified manner via
the heavy traffic parameter n, the relative magni-
tudes of the various system parameters. These con-

ditions are more extensive than those enforced in
traditional queueing systems, and therefore war-
rant some discussion. Because the natural definition
of the traffic intensity is �T � ��T/V, condition 22 is
the traditional heavy traffic condition, which re-
quires that �T be close to, but less than, unity.

Now we turn to conditions 20–21. Because the
state space is compressed by a factor of �n in the
heavy traffic normalization, the vehicle capacity, in
terms of scaled inventory units, is V(n)/�n. Hence, if
V(n) were O(1), it would vanish in the limit, and our
system would reduce to a variant of the multiclass
make-to-stock queue analyzed in WEIN (1992). Al-
though such a model would be tractable, a limit that
uses infinitesimal vehicle sizes fails to capture the
essence of the behavior of the original system.
Therefore, we enforce condition 20, so that V(n) is
O(�n), and the bulkiness of the retailer deliveries
is retained in the limit. However, because the de-
mand rate �(n) is unscaled, we need to also scale the
tour lengths according to Eq. 21 to ensure that the
ratio V(n)/�T

(n) converges to a finite and positive
limit.

Turning to Eq. 23, note that, because the vehicle
capacity is O(�n), if cT

2(n) is not scaled, then a
standard calculation shows that the variance term
for the normalized netput process 
̂(n) is O(n) and,
hence, approaches infinity in the heavy traffic limit.
Because sT

2(n) � cT
2(n)�T

2(n), by Eqs. 21 and 23, we
obtain sT

2(n) � �nŝT
2(n), where ŝT

2(n) � �̂T
2 ĉT

2(n).
Thus, by enforcing condition 23, we assume that the
variance of the tour completion time is O(�n); in
contrast, this quantity would be O(n) if travel times
were simply multiplied by �n. One way to achieve
Eq. 23 is to assume that the travel time of the tour
is the sum of �n iid finite variance travel times.
This construction could arise by superimposing the
warehouse and retailer locations on a two-dimen-
sional map with a fine grid, in such a way that the
tour passes through approximately �n grid points.
However, this modeling artifice is problematic (be-
cause adjacent travel times would not likely be in-
dependent and the necessary data would be tedious
to collect) and is not pursued here; see RUBIO (1995)
for further details.

Finally, as is standard for heavy traffic optimiza-
tion problems, we need to normalize the cost param-
eters to account for distortions in the relative mag-
nitudes of the transportation and inventory costs
that result from the heavy traffic scaling. The ap-
propriate scaling is to allow the travel cost rate r(n)

to be approximately n times larger than the inven-
tory cost rates, as in condition 24; see Rubio for a
detailed explanation.

In summary, although there may be alternative
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heavy traffic conditions that can be constructed, we
use the set of conditions that naturally arise as a
consequence of retaining the bulkiness of retailer
deliveries in the heavy traffic limit. The heavy traf-
fic conditions assume that the vehicle must be busy
the great majority of the time to meet average de-
mand, the vehicle capacity must be large, the tour
completion time must be large and nearly determin-
istic, and the travel cost rate must be very large
relative to the inventory cost rates. The computa-
tional study in Section 5 reveals that our results are
rather insensitive to these conditions. Finally, al-
though we assume that the system is heavily loaded
and the vehicle capacity is large, our analysis explic-
itly accounts for the capacity restriction and the fact
that the vehicle occasionally idles; in fact, our pro-
posed policy is expressed in terms of the traffic in-
tensity �T and the vehicle capacity V.

1.3 System Behavior in Heavy Traffic

This subsection considers the limiting behavior of
Eqs. 18–19. Following HARRISON (1988), we replace
B̂T(t), which is the fluid-scaled busy time process, by
�Tt; the justification for this substitution is that any
policy that does not utilize the vehicle for a fraction
�T of the time over a sufficiently long time interval
will generate extremely large inventory costs. In
addition, we consider the normalized netput process
embedded at tour completion epochs. Without some
embedding or averaging, the limit of the normalized
netput process would not exist because it varies
(after normalization) by O(1) on a time of length
O(1/�n). The process we consider is thus defined as


̃�t� � �n� V
�T

� �� �k�1 	 V�̂T��T�k�1� � �̂��k�1�

for t � ��k�1 , �k�.

With this definition, the standard tools of weak con-
vergence (the functional central limit theorem for
renewal processes, the random time change theorem
and the continuous mapping theorem; see BILLINGS-
LEY 1968) can be used to show that the normalized
netput process embedded at tour completion epochs

̃ is well approximated by a Brownian motion X with
drift �T and variance 
T

2 � �(cd
2 � VcT

2).
Now we turn our attention to the process �̂T. This

process equals zero at tour completion epochs and
has jumps of size O(1) whenever a delivery occurs
and at the end of the cycle. In addition, because the
tour length is O(�n) by Eq. 21, a tour takes only
O(1/�n) time units under the heavy traffic normal-
ization (where time is compressed by the factor n);
hence, tours occur instantaneously in the heavy traf-
fic limit. Consequently, neither �̂T(t) nor the m-di-

mensional normalized inventory process converge to
a limit in the usual sense. However, if we start with
the heavy traffic normalization and expand time by
a factor of �n, then a fluid scaling is obtained,
where both time and space are compressed by the
factor �n. At this faster time scale, the Brownian
motion X remains constant, and the individual in-
ventory levels move in a deterministic fashion, de-
creasing at a finite rate between the jumps at deliv-
ery epochs. The process �̂T traverses through many
tours before X changes value, and equals zero at
each tour completion epoch.

This is similar to the state of affairs in the heavy
traffic results of Coffman, Puhalskii and Reiman
(1995). In their exhaustive polling system, the total
queue length process behaves as a one-dimensional
diffusion under the slow time scale associated with
the heavy traffic scaling, and the individual queues
move as a fluid under the faster time scale associ-
ated with the fluid limit. This time scale decompo-
sition gives rise to a heavy traffic averaging princi-
ple (HTAP) that implies the following: for purposes
of calculating performance measures for the individ-
ual queues, one can analyze the deterministic fluid
cycle for each fixed value of the diffusion process.

There are three key differences between the
HTAP in the polling system and in the IRP. First,
the time scale decomposition in the polling system
emerged as a consequence of the standard heavy
traffic normalization, whereas, in the IRP, it follows
from the scaling assumptions 20–23. Second, the
fluid trajectories are different. In the polling prob-
lem, the fluid paths look like those for the economic
production quantity model: they go up and down at
a finite rate. In the IRP, the paths look like those
from the economic order quantity model: they go
down at finite rate but jump up at delivery epochs.
The third key difference relates to the issue of con-
trol. In the polling system, the exhaustive discipline
guarantees that, whenever the server switches from
a queue, that queue is empty. This exerts a type of
control that keeps the multidimensional process
well behaved. There is no such natural mechanism
in the IRP, and we must introduce a dynamic allo-
cation scheme to keep the multidimensional process
well behaved.

The proof of the HTAP in the polling context is
difficult, involving a threshold queue. A proof for the
IRP would not need the threshold queue, but would
have to deal with the dynamic allocation scheme.
Although we conjecture that the HTAP holds for the
IRP, we do not attempt a proof. Rather, we con-
struct, in Section 1.5, a dynamic class of allocation
policies and assume that the HTAP holds for this
class of policies.
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1.4 The Limiting Control Problem

Under this HTAP assumption, the analysis of our
limiting control problem decomposes onto two time
scales as described above. On the slow time scale
associated with the diffusion limit, we can average
out the effects of the controlled allocation process �̂T
and choose the vehicle idling policy. This policy is
generated by the normalized cumulative idleness Y,
which we assume is nondecreasing and right contin-
uous. Let Z(t) � X(t) � (V/�T)Y(t); this is the
process that would be obtained if one were to ob-
serve the total inventory only at tour completion
epochs. We refer to this process as the total embed-
ded inventory process, to differentiate it from W.

At the faster time scale, where the total embedded
inventory is fixed at Z(t) � x and the individual
inventories behave as a fluid, we must find the op-
timal allocation policy that minimizes inventory
costs per unit time. The limit cycle associated with
an allocation policy can be viewed as a closed m-
dimensional path (see Section 1.5), and the optimal
allocation policy reduces to the problem of optimally
placing a deterministic cycle in Rm. Let g(x) repre-
sent the inventory cost per unit time that is achieved
by optimally locating a cycle when Z(t) � x.

We can now state the limiting stochastic control
problem for the IRP with TSP routing: (i) find the
optimal cycle placement for a given total embedded
inventory level Z(t) � x, and its corresponding in-
ventory cost rate g(x); and (ii) choose the nonde-
creasing right continuous process Y to minimize

lim sup
T3�

1
T E� �

0

T

g�Z�t�� dt � r̂Y�T�� (25)

subject to Z�t� � X�t� �
V
�T

Y�t�. (26)

The cycle placement problem is a nonlinear program
and problem 25–26 is a singular control problem for
Brownian motion; these two problems are solved in
the next two subsections.

1.5 Optimal Cycle Placement and Dynamic
Allocation

To optimally place the limit cycle, we follow the
approach used in MARKOWITZ, REIMAN, and WEIN
(1999) for the stochastic economic lot scheduling prob-
lem (ELSP). Let us fix Z(t) � x, and denote the indi-
vidual fluid inventory levels by W� i(t) � Qi(�nt)/�n
(an overbar will be used to denote quantities intro-
duced for the fluid limit). The cycle placement can be
defined in many ways, and we choose to specify it by

the vector (x1, x2, . . . , xm), where xi represents the
lowest point during the cycle of W� i(t).

The choice of optimal (x1, . . . , xm) is a con-
strained optimization problem: we want to choose
(x1, . . . , xm) to minimize the inventory cost rate
subject to consistency with the total embedded in-
ventory level. The inventory cost rate will come from
the averaging principle to be described below. We
first deal with the consistency issue.

To establish the relationship between the cycle
placement variables xi and the total embedded inven-
tory level x, we need to introduce some new notation.
Denote the mean travel time along the TSP path be-
tween any two sites i, j � 0, 1, . . . , m by �ij

TSP; in terms
of the intersite mean travel times �ij, these quantities
are defined by � ij

TSP � �k�i
j�1 �k,k� for j 
 i and �ii

TSP � 0.
Because time is compressed by a factor of �n in the
fluid limit, define the corresponding travel times for
the fluid model by ��ij

TSP � �TSP
ij /�n. If we measure time

over a cycle so that the vehicle leaves the warehouse at
t � 0, then W� i(0) is related to its corresponding cycle
placement value xi by (see Fig. 1) W� i(0) � xi � �i��0i

TSP

for i � 1, . . . , m. Summing these inventory levels over
all retailers, we obtain

�
i

xi � x � �
i

� i�� 0i
TSP . (27)

Given a vector (x1, . . . , xm) satisfying Eq. 27, we
use the time scale decomposition assumption to de-
termine the associated inventory cost rate. Long
term stability requires that, in the long run, the
average amount delivered to retailer i per cycle be
Vi � �iV/�; under the diffusion and fluid scalings,
this delivery size is given by V̂i � Vi/�n. Viewing
the fluid inventory of retailer i in isolation with a
delivery of V̂i on each tour cycle, we see a fluid
starting out at xi � V̂i immediately after delivery,
decreasing at a constant rate until xi is reached just
prior to the next delivery (see Figure 1). The inven-

Fig. 1. The fluid inventory evolution at retailer i during a
nominal allocation cycle.
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tory cost component associated with retailer i can
then be calculated by considering the normalized
inventory process Wi to be uniformly distributed on
the interval [xi, xi � V̂i]. It is important to note that
a dynamic (state-dependent) delivery size is needed
to keep the long-run average cost finite. Simply de-
livering V̂i to retailer i on every visit will result in an
infinite long-run average cost because this allocation
leads to a null recurrent process. To see this, note
that, under this simple allocation scheme, the drift
of Wi(t) does not depend on Wi(t) and equals zero,
because the inventory arrival rate V̂i/�̂T equals the
demand rate �i when �T � 1; with �T � 1, a similar
result is generated with the effective arrival rate
being �TV̂i/�̂T. With a zero drift, central limit theorem
arguments indicate that the inventory or backlog will
grow as �t. In fact, similar arguments can be used to
explain some numerical results in FEDERGRUEN and
KATALAN (1996) and Wein (1992), where a state-inde-
pendent policy performs poorly in a stochastic setting.

A simple dynamic allocation policy avoids this
difficulty. We determine delivery sizes at the ware-
house as follows. Given a fluid inventory level
(w1, . . . , wm) when the vehicle is at the warehouse,
the fluid limit of the inventory immediately before
delivery is wi � �i�� 0i

TSP. If possible, we would like to
deliver di � xi � V̂i � wi � �i�� 0i

TSP to retailer i to
bring the fluid inventory level immediately after
delivery to xi � V̂i. If di � 0 for i � 1, . . . , m, then
this delivery allocation is feasible. If di � 0 for some
i, then, because �i di � V̂, we must have
�{i:di
0} di 
 V̂. This is a transient state for the fluid
limit; within a finite number of cycles we will have
di � 0 for all i. This transient interval has no effect
on the long-run average inventory cost, which is our
heuristic justification for assuming that an averag-
ing principle holds under this dynamic allocation
scheme. In summary, the essence of the averaging
principle here is that, under this dynamic allocation
scheme, when Z(t) � x, Wi(t) can be treated as if it
is uniformly distributed between xi and xi � V̂i.

The average inventory cost per unit time is equal
to the cost incurred over a cycle divided by the cor-
responding cycle length. The cost at retailer i may be
obtained by simple geometric arguments for any
cycle placement xi. When the cycle placement is
sufficiently high (low) so that the inventory remains
positive (negative) for the duration of the cycle, the
cost is simply the holding (backordering) rate mul-
tiplied by the absolute value of xi � V̂i/2, which is
the average inventory level over a cycle. When the
inventory changes sign during the cycle, the total
holding (backordering) cost over a cycle equals the
area of one of the triangles above (below) the time
axis multiplied by hi (bi). To obtain the time aver-

age inventory cost when there is a sign change, we
sum the areas of these two triangles and divide by
the cycle length. In the heavy traffic limit, the
amount of fluid delivered per cycle, V̂, equals the
amount demanded per cycle, which is ��̂T; hence, we
set the cycle length in the fluid model equal to V̂/�,
rather than �̂T. In summary, we have the following
expression for retailer i:

gi� xi� � 	 hi� xi 	
V̂i

2 � if xi � 0

hi 	 bi

2V̂i

xi
2 	 hixi 	

hiV̂i

2 if �V̂i � xi � 0

�bi� xi 	
V̂i

2 � if xi � �V̂i .

(28)

Notice that gi(xi) is a convex function of xi. With Eq.
28 in hand, the cycle placement problem is to mini-
mize �i gi(xi) subject to Eq. 27.

Let us make the innocuous assumption that bi �
hi for all i, and define the labeling conventions h� �
h � mini hi and bp � b � mini bi, where � � p is
allowed. A closed-form solution to the cycle place-
ment problem is found by using constraint 27 to turn
the problem into one of unconstrained optimization
over m � 1 variables; readers are referred to an
analogous optimization in Markowitz, Reiman and
Wein (1995) for further details. The solution yields
the vector of optimal placements x*i and g(x), the
inventory cost as a function of the total embedded
inventory x. Not surprisingly, g(x) is quadratic with
linear edges in the inventory level x.

PROPOSITION 1. The solution to the cycle placement
problem is

Region 1:

x � �̂T � �
i

� i�� 0i
TSP � �

i

b 	 hi

bi 	 hi
V̂i ,

x*i � �
b 	 hi

bi 	 hi
V̂i for i � p,

x*p � x � �
i

� i�� 0i
TSP 	 �

i�p

b 	 hi

bi 	 hi
V̂i ,

g� x� � �bx 	 â1 ,

â1 � b �
i

� i�� 0i
TSP 	

1
2 �

i

hiV̂i

�
1
2 �

i

�b 	 hi�
2

bi 	 hi
V̂i ;
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Region 2:

�̂T � x � �̂T � �
i

� i�� 0i
TSP � �

i

hi � h
bi 	 hi

V̂i ,

x*i �
2â2V̂i

hi 	 bi
� x � �

k

�k�� 0k
TSP � �

k

�hi � hk�V̂k

bk 	 hk
� ,

g� x� � â2x2 	 â3x 	 â4 ,

â2 �
1
2 � �

i

V̂ i

bi 	 hi
� �1

,

â3 � 2â2� �
i

hiV̂i

bi 	 hi
� �

i

� i�� 0i
TSP� ,

â4 � â2� �
i

hiV̂i

bi 	 hi
� �

i

� i�� 0i
TSP� 2

�
1
2 �

i

bihiV̂i

bi 	 hi
;

Region 3:

x � �̂T ,

x*i � �
hi � h
bi 	 hi

V̂i for i � �,

x*� � x � �
i

� i�� 0i
TSP 	 �

i

hi � h
bi 	 hi

V̂i ,

g� x� � hx 	 â5 ,

â5 � �h �
i

�i��0i
TSP 	

1
2 �

i

hiV̂i �
1
2 �

i

�h1 � h�2

bi 	 hi V̂i

.

In the region where the total inventory is much
greater (smaller) than zero, the optimal cycle holds
(backorders) most of the inventory at retailer � (p),
where it is cheapest to do so, while the cycle for the
rest of the retailers remains close to zero. The exact
level for each site depends upon two factors: the
difference between its holding (backordering) cost h
(b) and its nominal delivery size (or equivalently,
the proportion of demand that the particular retailer
represents). In the region where the total inventory
is close to zero, the cycle placement at each retailer
varies linearly with the embedded inventory in the
system.

1.6 Optimal Base Stock Level

Now that g(x) is known, we can proceed with the
solution to the one-dimensional Brownian control

problem. The following proposition is proved in Ap-
pendix A of RUBIO (1995).

PROPOSITION 2. The optimal solution to Eqs. 25–26
is Y*(t) � sup0�s�t{X(s) � z*T}� for some base stock
level z*T.

Hence, the optimal solution is the local time of the
Brownian motion at the barrier z*T, and the opti-
mally controlled process Z is a reflected Brownian
motion (RBM) on (��, z*T] (see Section 2.2 of HAR-
RISON, 1985 for a definition). The remainder of this
subsection is devoted to the derivation of z*T, which
can be found by using two well known facts regard-
ing a reflected Brownian motion on (��, z]. First,
for Y defined in Proposition 2, we have limt3� t�1

Ex[Y(t)] � �T�T/V for �T 
 0, which is independent
of the base stock level z. Hence, the transportation
cost does not affect the selection of z, and the prob-
lem simplifies to minimizing lim supT3� (1/
T)E[�0

T g(Z(t)) dt] subject to Eq. 26.
The steady-state density for Z is given by pZ(x) �

�̂Te�̂T(x�z) if x � z and pZ(x) � 0 if x 
 z, where �̂T �
2�T/
T

2 
 0. Therefore, the optimal base stock level
can be found by minimizing

F̂T� z� � �
��

�̂T

��bx 	 â1��̂Te �̂T�x�z� dx

	 �
�̂T

�̂T

�â2x2 	 â3x 	 â4��̂Te �̂T�x�z� dx

	 �
�̂T

z

�hx 	 â5��̂Te �̂T�x�z� dx

for z � �̂T , (29)

and

F̂T� z� � �
��

�̂T

��bx 	 â1��̂Te �̂T�x�z� dx

	 �
�̂T

z

�â2x2 	 â3x 	 â4��̂Te �̂T�x�z� dx (30)

for �̂T � z � �̂T. The constants in Eqs. 29 and 30
have the same definitions as in Section 1.5. Note
that, while the optimal base stock level z*T always
satisfies z*T 
 �̂T (this is easily seen by the fact that
g(x) is linear and has a negative slope for x � �̂T), it
need not be larger than �̂T.

The following proposition is derived by using in-
tegration by parts on Eqs. 29 and 30, and then

369DYNAMIC STOCHASTIC INVENTORY ROUTING /



taking the first two derivatives of F̂T(z) with respect
to z.

PROPOSITION 3. The value that minimizes F̂T(z) is

z*T � �
1
�̂T

ln� � h
b 	 h� � �̂T��̂T � �̂T�

e �̂T��̂T��̂T� � 1� � 	 �̂T

if z*T � �̂T ; (31)

otherwise, z*T is the solution to

2â2

�̂T
e��̂T�zT��̂T� 	 2â2zT 	 â3 �

2â2

�̂T
� 0. (32)

Furthermore, the predicted optimal cost is F̂T(z*T) �
hz*T � â5 if z*T � �̂T, and F̂T(z*T) � â2(z*T)2 � â3z*T �
â4 otherwise.

One can show (from the fact that F̂T(z) is convex
and continuously differentiable) that there is a
unique optimum base stock level; that is, either
there exists a solution z*T to Eq. 31 that satisfies
z*T � �̂T or a solution z*T to Eq. 32 that satisfies z*T �
�̂T, but not both.

1.7 The Proposed Policy

In this subsection, we map the solution of the
approximating heavy traffic control problem into a
policy for the original IRP with TSP routing. The
control concerns two decisions: whether the vehicle
should be busy or idle, and how to assign the load
among the retailers during a tour. We address the
load allocations first.

Because the system evolves dynamically in time,
the decision of how much of the load to leave at each
retailer is best delayed until the vehicle arrives at
the site. Let t0 correspond to the epoch at which the
vehicle leaves the warehouse with a full load, and
consider the epoch ti

� 
 t0, which is the point in
time just before the vehicle arrives at retailer i. At
time ti

�, the state of the system is given by the
inventory levels at the retailers, (Q1(ti

�), . . . ,
Qm(ti

�)), and the size of the remaining load, L(ti
�).

The mapping from heavy traffic solution to proposed
policy is straightforward: the proposed policy at-
tempts to track the heavy traffic solution (in partic-
ular, the optimal cycle placement) as closely as pos-
sible. The key issue to be addressed is that the heavy
traffic solution is expressed in terms of normalized
space and time and in terms of the total embedded
inventory process, whereas the proposed policy must
be expressed in terms of (Q1(ti

�), . . . , Qm(ti
�),

L(ti
�)).

Recall that Eq. 27 relates the scaled cycle place-
ment vector xi and the normalized total embedded
inventory Z(t) � x. Because the load allocation de-

cision is taken when each retailer is reached, we
first establish a relationship between the current
total system inventory Q(ti

�) � �j Qj(ti
�) and the

corresponding embedded inventory level. Because
we need to reverse the scalings in the solution to the
heavy traffic control problem, let us define the un-
scaled embedded inventory q � �nx and the un-
scaled cycle placement vector qi � �nxi. In keeping
with the behavior predicted by the heavy traffic
averaging principle, we develop this relation under a
deterministic evolution for the retailer inventories
over the course of a cycle. If the vehicle leaves the
warehouse at time t0, then it arrives at retailer i at
time ti

�, where ti � t0 � �0i
TSP. Therefore, the retailer

inventories relate to the cycle placement parameters
by Qj(ti

�) � qj � �j�ij
TSP for j � i and Qj(ti

�) � qj �
Vj � �j�ji

TSP for j � i. Summing over all retailers, we
get

Q�ti
�� � � i 	 �

j

qj , (33)

where �i � �j�i (Vj � �j�ji
TSP) � �j�i �j�ij

TSP is an
epoch locator constant for retailer i.

Making the substitutions qi/�n � xi, q/�n � x
and �ij

TSP/�n � �� ij
TSP into Eq. 27 yields the unscaled

version of constraint 27,

�
i

qi � q � �
i

� i�0i
TSP . (34)

Using Eqs. 33 and 34, we can express the total
inventory at time t0 (i.e., when the vehicle was at the
warehouse) as a translation of the inventory vector
at time ti

�:

Q�t0� � q � �
j

Qj�ti
�� � � i 	 �

j

� j�0j
TSP

for i � 0, . . . , m. (35)

This equation maps the current inventory levels
Qj(ti

�) into the one-dimensional quantity q that is
required to interpret the heavy traffic results. In
particular, for a given value of q, we can find q*i �
�n x*i, the corresponding optimal (unscaled) cycle
placement parameters, by reversing the normaliza-
tions in Proposition 1. In particular, if we make the
substitutions qi/�n � xi, q/�n � x, Vi/�n � V̂i,
and �ij

TSP/�n � �� ij
TSP in Proposition 1, then the

scaling parameter n vanishes and the solution q*i in
terms of the state q is given by Proposition 1 with q*i,
q, Vi, and �ij

TSP in place of x*i, x, V̂i, and �� ij
TSP,

respectively.
We can now use these results to determine the

delivery size at retailer i. Under the deterministic
inventory evolution for the optimal cycle placement,
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Qi(ti
�) (i.e. the inventory level at retailer i just after

the delivery is made) satisfies

Qi�ti
�� � q*i 	 Vi . (36)

If we deliver di units to retailer i, then the actual
inventory after the delivery is made is Qi(ti

�) � di;
equating this quantity to Eq. 36 yields the desired
delivery size,

di � q*i 	 Vi � Qi�ti
��. (37)

Because we cannot allocate more than the available
load and do not want to make negative deliveries,
the proposed delivery size is given by

d*i � max�di , 0� 	 min�0, L�ti
�� � di�

for i � 1, 2, . . . , m � 1. (38)

Finally, to guarantee that the vehicle returns to the
warehouse empty, we set

d*m � L�tm
��. (39)

We could, in principle, allow negative deliveries as
long as there is inventory available at retailer i and
the total amount of load the vehicle carries as it
leaves this retailer is kept under its total capacity.
However, because the vehicle returns empty, the
items accrued from negative deliveries would most
likely be shifted to the last few retailers of the tour,
which will not necessarily bring the state of the
system closer to the optimal cycle; hence, we disal-
low negative deliveries.

To recapitulate, the proposed dynamic delivery
allocations are derived by the following procedure:
(i) observe the current inventory levels (Q1(ti

�), . . . ,
Qm(ti

�)) and compute the unscaled embedded inven-
tory q using Eq. 35, (ii) use the unscaled version of
Proposition 1 to derive the optimal unscaled cycle
placement parameters q*i, and (iii) observe the cur-
rent remaining load L(ti

�) and compute the pro-
posed delivery size using Eqs. 37–39.

We now turn our attention to the busy/idle policy,
which has decision epochs when the vehicle is at the
warehouse. At these points in time, the vehicle
starts a new tour if the total inventory level �j Qj(t)
is below the unscaled aggregate base stock level
w*T � �n z*T; otherwise, it idles. If we define �T �
2(1 � �T)V/[��T(cd

2 � VcT
2)] then substituting w*T, �T,

and FT(w*T) into Proposition 3 (and using the un-
scaled version of Proposition 1) yields the optimal
unscaled base stock level w*T and the predicted op-
timal cost FT(w*T) solely in terms of the original
problem parameters.

We have completely characterized a dynamic con-
trol policy that depends exclusively on the original

system parameters. The policy specifies the two con-
trollable aspects of the system: the aggregate base
stock level defined by the unscaled version of Prop-
osition 3 determines the vehicle idling policy, and
the delivery sizes d*i defined in Eqs. 38–39 charac-
terize the allocation of units to retailers.

2. THE IRP WITH DIRECT SHIPPING

THE ONLY DIFFERENCE between the direct shipping
(DS) case and the TSP case is the routing scheme
used when the vehicle is operating. We retain all
notation from Section 1, occasionally using the sub-
script D (for direct shipping) in place of the subscript
T (for TSP). Moreover, because the procedure is very
similar in both cases (as before, it is assumed that
the HTAP holds for a certain class of policies), we
omit nearly all of the details for the DS case, describ-
ing only the distinctive aspects of the analysis. The
most significant difference between DS and TSP is
that the DS case does not have a cyclic structure.
This has several consequences, one of which is that
the results are not as theoretically solid as in the
TSP case.

2.1 Heavy Traffic Analysis

In the DS case, the vehicle always leaves the
warehouse with a full load, visits a single retailer,
and returns empty, so that, every time a retail site is
visited, its inventory level increases by V units. As
before, it is convenient to express the dynamic allo-
cation as deviations from a nominal policy. The nom-
inal policy we consider is not achievable: we assume
that, under the nominal policy, an amount Vi is
delivered to retailer i in every delivery. We let SD(t)
denote the number of DS deliveries made by a con-
tinuously active vehicle during [0, t]. We then let
�i

D(t) be defined by the analog of Eq. 1 obtained by
replacing T by D. Then, �D(t) � �i �i

D(t) is the total
amount delivered during the current trip. These pro-
cesses satisfy Eqs. 2–6. Equation 7 still holds as
well, once Ts are replaced by Ds. The problem for-
mulation is thus nearly identical to Eqs. 2–12.

The DS case lacks the natural cyclic structure of
the TSP. Tour times in the TSP are i.i.d., and each
tour results in the delivery of V units. The DS case
would have a cyclic structure if the sequence of
retailers visited followed a cyclic pattern (such as a
polling table), or had a regenerative structure (such
as a Markov chain). Neither of these can be used in
the DS case for exactly the same reason that fixed
delivery sizes could not be used in the TSP case:
inventory costs would be infinite over the long run.
A dynamic policy, described in Section 2.2, is used.
For this policy, the fraction of total shipments that
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go to retailer i does not vary over times of order n.
To satisfy average demand at all retailers, this frac-
tion must be �i/� for retailer i. The traffic intensity
for the DS system is thus �D � 2 �i �i�0i/V.

We use the same heavy traffic normalizations as
in Section 1.2. The heavy traffic conditions are given
by Eqs. 20–24, with Eqs. 21 and 23 understood to
hold, respectively, for �0i and c0i

2 , 1 � i � m, and
Eq. 22 replaced by

�D � �n � �V
2 � i � i�0i

� �� � 0. (40)

As mentioned above, the DS case does not have the
cyclic structure of the TSP case. Thus, we cannot use
functional central limit theorems based on renewal
processes to prove convergence to a Brownian mo-
tion. In the DS case, the parameter corresponding to
sT

2 in the TSP case, sD
2 , is given by sD

2 � ��1

�i �i�0i
2 c0i

2 . This expression would clearly arise if the
next retailer were chosen in an i.i.d. manner. It can
be shown to hold for any policy where the fraction of
times that a retailer is visited does not vary over
times of order n using the random time change the-
orem.

The lack of a cyclic structure makes it impossible
to consider an embedded normalized netput process.
Indeed, if we embed at epochs during which the
vehicle is at the warehouse, we will not obtain a
meaningful process. We must thus average the nor-
malized netput process to obtain a meaningful limit.
By arguments similar to those in Section 1.3, this
averaged normalized netput process is well approx-
imated by a Brownian motion X with drift �D and
variance


D
2 � �� cd

2 	
�V � i � i�0i

2 c0i
2

2�� i � i�0i�
2 � .

The averaged total inventory process is defined by

Z�t� � X�t� �
�V

2 � i � i�0i
Y�t�. (41)

Now, we slow down time by a factor of �n and
turn to the fluid model. Again we face the problem of
optimally placing the limit cycles for the determin-
istic evolution of the retailer inventories in Rm. In
contrast to the TSP case, an approximation is intro-
duced to facilitate this optimization. We motivate
this approximation by use of an example. Suppose
that V � 60, �1 � 3, �2 � 2 and each retailer was
exactly six time units away from the warehouse.
Then a continually busy vehicle using the polling
table (12121) could visit, on average, retailer 1 every

20 time units and retailer 2 every 30 time units,
thereby satisfying average demand. Although opti-
mally placing a limit cycle for a small polling table
such as this one is manageable, the optimization
problem gets unwieldy very quickly as the size of the
table grows. Our approximation assumes the exis-
tence of an idealized policy that would make a de-
livery to retailer i every V/�i time units in the fluid
model; in the context of our example, we assume
that retailer 1 (retailer 2) receives a delivery exactly
every 20 (30) time units, even though the (12121)
polling table cannot achieve such perfect regularity
in the fluid model.

Hence, our approach is to optimally place an ide-
alized fluid cycle at the fast time scale, and then
track this cycle as closely as possible with our pro-
posed policy. Because deliveries are perfectly regu-
lar in the idealized cycle, the use of this approxima-
tion causes us to underestimate the inventory cost
incurred over a cycle; however, simulation results in
Section 5 show that the heavy traffic analysis incor-
porating this approximation appears to be very ac-
curate, at least for the five-retailer cases considered
there. Moreover, the use of an idealized cycle allows
us to avoid the task of determining the actual be-
havior of the individual inventory levels on the fluid
time scale. This task is more than just tedious: due
to the lack of a cyclic structure it appears to be
extremely difficult.

Now we turn to the optimal placement of the ide-
alized cycle. We still define the cycle placement by
the vector (x1, x2, . . . , xm), where xi represents the
lowest point during the cycle of the fluid inventory
level at retailer i. Under the idealized policy, the
fluid inventories are similar to the TSP paths pic-
tured in Figure 1; the only differences are the deliv-
ery size (in this case we deliver a full load of V̂ units
on each visit to a retailer) and the visit frequency,
which equals V̂/�i to maintain a balanced flow.

The next step is to establish the relationship be-
tween the cycle placement variables xi and the av-
eraged total inventory level Z(t) � x. The constraint
related to consistency between individual and total
inventory levels takes the form that the averaged
total inventory equals the sum of the average indi-
vidual inventory levels. The average fluid inventory
at retailer i over an idealized cycle is xi � V̂/2.
Hence, when the averaged total inventory Z(t) � x,
the cycle placement parameter must satisfy

�
i

xi � x �
mV̂

2 . (42)

Because the fluid delivery size equals V̂ under the
DS case, the inventory cost function gi(xi) is given as
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in Eq. 28, except that V̂i is replaced by V̂. Compar-
ing constraints 27 and 42, it is clear that the optimal
cycle placement is precisely the solution given in the
TSP case, except that we replace V̂i by V̂ and
�i �i�� 0i

TSP by mV̂/2.
The computation of the optimal vehicle idling pol-

icy is identical to that in Section 1, except that the
parameter of the exponential stationary density of
the RBM is �̂D � 2�D/
D

2 . Hence, Proposition 3 char-
acterizes the optimal base stock level for the DS
case, with �̂D replacing �̂T, and with the substitu-
tions described above in the corresponding defini-
tions of the constants âi and the thresholds �̂ and �̂.

2.2 The Proposed Policy

The mapping from heavy traffic solution to pro-
posed policy uses the same philosophy as in the TSP
case. We begin by establishing a relationship be-
tween the total inventory in the system at the cur-
rent decision epoch and the cycle placement param-
eters. Although there are several possible ways to do
this, we keep track of the vector process (r1(t), . . . ,
rm(t)), which specifies the time of the most recent
visit to each retailer. Hence, if we denote the current
time by t, then t � ri(t) represents the elapsed time
since the vehicle last visited retailer i. The inven-
tory at retailer i at time t relates to the unscaled
cycle placement parameter qi � �n xi via

Qi�t� � qi 	 V � � i�t � ri�t��. (43)

Because stochastic effects can lead to unusually long
intervisit periods, it is possible to have V � �i(t �
ri(t)) � 0, which would make the cycle placement of
the retailer higher than the current inventory level,
thereby contradicting the definition of qi. Because
one would expect that Qi(t) � qi � �i�0i, we modify
Eq. 43 to Qi(t) � qi � max[V � �i(t � ri(t)), �i�0i];
this modification leads to considerable improve-
ments in system performance in the simulation
study. Summing over all retailers, we obtain �i qi �
Q(t) � u(t), where u(t) � �i max[V � �i(t � ri(t)),
�i�0i]. Combining this equation with the unscaled
version of Eq. 42 yields

q � �
i

Qi�t� � u�t� 	
mV
2 , (44)

which relates the unscaled averaged inventory q
(this quantity represents the unscaled average total
inventory in the DS case) to the current inventory
level. Once again, the heavy traffic parameter n
vanishes when the heavy traffic normalizations are
reversed, and the formulas for the unscaled optimal
cycle placement vector q*i given q can be obtained by

substituting q, q*i, V and mV/2 for x, x*i, V̂i and
�i �i�� 0i

TSP, respectively, into Proposition 1.
We use this cycle placement as an ideal m-dimen-

sional inventory state for a given q and u(t), and
choose the next retailer to bring the current inven-
tory vector as close as possible to this ideal state. Let
t0 be the time epoch at which the vehicle is ready to
depart from the warehouse, and consider the inven-
tory evolution over the next delivery trip. Under a
deterministic inventory evolution, the vehicle will
reach retailer i (if it chooses to go there next) at time
ti � t0 � �0i. In the deterministic tour correspond-
ing to the optimal cycle placement, the retailer in-
ventory levels right after a delivery is made to re-
tailer i is given by Q*i(ti

�) � q*i � V and

Q*j�ti
�� � max�q*j 	 V � � j�t0 	 �0i � rj�t0��,

q*j 	 � j��0i 	 �0j�] for j � i,

where the maximization makes the adjustment for
long intervisit times as discussed above. In contrast,
under the deterministic evolution, the actual inven-
tory vector after a delivery to retailer i is given by
Qi(ti

�) � Qi(t0) � V � �i�0i and Qj(ti
�) � Qj(t0) �

�j�0i for j � i. Therefore, the resulting Euclidean
distance between the ideal and actual inventory vec-
tors after a delivery to retailer i is �(i) �
��j (Qj(ti

�) � Q*j(ti
�))2. The proposed control sends

the vehicle to retailer k, where k � arg mini �(i).
Finally, as in the TSP case, the busy/idle control is

found by unscaling the heavy traffic results. The
only added complexity is that, for the DS case, the
vehicle visits the warehouse after every delivery and
so has many possible idling decision epochs. By Eq.
44, our proposed policy idles a vehicle at the ware-
house whenever Q(t) � u(t) � mV/2 
 w*D, where
w*D � �n z*D is the unscaled idling threshold. As in
the TSP case, if we define �D � (1 � �D)�V/[
D

2

�i �i�0i] then substituting w*D, �D, and FD(w*D) into
Proposition 3 (and using the unscaled DS version of
Proposition 1) yields the optimal unscaled base stock
level w*D and the predicted optimal cost FD(w*D) in
terms of the original problem parameters.

3. COMPARISON OF TSP AND DS ROUTING

IN THIS SECTION, we compare the relative perfor-
mance of the two fixed routing schemes (TSP and
DS). The predicted cost functions FT, FD derived in
Sections 1 and 2 represent only the inventory com-
ponent of the system cost. Denote a generic fixed
routing scheme by � � {TSP, DS}, and by C(�) the
total cost for the system under this scheme. The
total system cost is obtained by adding the transpor-
tation cost (or equivalently, subtract the idleness
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reward) to the inventory cost; that is, we set C(�) �
F�(w*�) � r(1 � ��).

A crucial observation is that �D � �T; this fact (see
Rubio (1995) for a proof) is a simple consequence of
the triangle inequality. Although trivial to prove,
this inequality has several important implications.
First, the DS policy achieves lower transportation
costs than does the TSP policy. This is quite inter-
esting because, at first glance, one might expect the
converse to hold. However, minimization of the
steady-state transportation cost in the IRP context
is equivalent to maximizing the amount of items
delivered per unit time traveled; hence, full-load
direct shipping provides the highest transportation
efficiency of any fixed routing scheme. More impor-
tantly, for any given problem instance, the demand
rate can be increased until �T � 1 and �D � 1; that
is, there exist some demand levels where the DS
policy would be stable while the TSP policy would
not. We should note that �� � 1 is a necessary
condition for stability of any fixed routing scheme �
but it is not sufficient. In particular, having �� � 1
will keep the total inventory stable but, in the ab-
sence of adequate dynamic load allocation, it is pos-
sible to accumulate inventory at one retail site while
backorders grow without bound at another. Hence,
DS will dominate TSP routing as �T 3 1 as long as
some form of stable dynamic allocation is used in the
DS case.

The remainder of this section investigates the rel-
ative performance of the DS and TSP schemes as a
function of the cost parameters r and b. However,
readers should keep in mind that, although the
qualitative statements below are true, these results
are not exact (even if the HTAP assumption is valid),
because our calculation of FD(w*D) is approximate
and represents a slight underestimate of the true
heavy traffic cost under the DS policy. The inequal-
ity �D � �T implies that DS is preferred to the TSP
policy if the transportation cost is high enough. In
particular, the DS policy achieves a lower overall
cost for any r 
 (FT(w*T) � FD(w*D))/(�T � �D).
Although the value of this threshold cost may be
found numerically for any particular problem in-
stance, a more precise characterization requires a
better understanding of the relationship between
the inventory costs in both systems. Unfortunately,
it is hard to make simple inventory cost performance
comparisons for the different routing schemes, pri-
marily because the base stock levels, and hence the
predicted inventory costs, are not in closed form (see
Proposition 3).

To study the relative inventory cost performance
of the TSP and DS schemes, let us consider the case
where the inventory costs at the retailers are sym-

metric (i.e., hi � h and bi � b for all i) and b
becomes large. Because the values of w*T and w*D in
the unscaled version of Proposition 3 are increasing
in b/h, one expects that there exist some critical
values bT, bD such that, if b is increased above them
(while leaving h fixed), the optimal base stock is
given in closed form. These critical values indeed
exist and, for the case of symmetric costs, have the
following closed form expressions:

bT � h� �TVe�TV

e�TV � 1 � 1�
and

bD � h� �DmVe�DmV

e�DmV � 1 � 1� .

For b 
 max{bT, bD}, the inventory cost difference
FT(w*T) � FD(w*D) can be expressed as

h� �D � �T

�D�T
ln�1 	

b
h� 	

1
�T

ln� e�TV � 1
�TV �

�
1
�D

ln� e�DmV � 1
�DmV � 	

�m � 1�V
2 � . (45)

As b 3 �, the value of Eq. 45 is dominated by the
term (�T

�1 � �D
�1) ln(1 � b/h), whose sign will be the

same as the sign of �D � �T. Define the critical value

bc � h� e�TV � 1
�TV � �D/��T��D�

� � e�DmV � 1
�DmV � �T/��D��T�

exp� �D�T�m � 1�V
2��T � �D� � � h,

where exp[x] � ex. Then for b 
 max{bT, bD, bc}, the
DS policy achieves the lower inventory cost if and
only if �D � �T 
 0, where �� is the exponential
parameter for the steady-state distribution of the
RBM associated with routing scheme �. Because
�D � �T, the condition 
D

2 
 
T
2 is required for the

TSP policy to be preferred. For the case of determin-
istic travel times, it follows that 
D

2 � 
T
2, and so DS

dominates in the high backorder case. Moreover, if
both �D and �T are finite, then the difference in
mean distance traveled must be O(n�1/2); see Eq.
51. Hence, in the heavy traffic limit, we actually
have 
D

2 � 
T
2.

This result is somewhat counterintuitive: because
the TSP policy makes smaller and more frequent
deliveries to each retailer, it might be expected to
outperform the DS scheme in terms of inventory
cost. However, for large backorder penalties, the
TSP policy sacrifices efficiency over the long run
through its smaller drift, and causes the total inven-
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tory to spend too much time in the expensive back-
order regions.

4. THE IRP WITH DYNAMIC ROUTING

CONSIDER NOW a situation where, once the vehicle is
loaded at the warehouse, it can embark on either a
full load TSP tour or a direct shipment to some
retailer. All other aspects of the problem (e.g.,
sources of uncertainty, cost structure) remain the
same as in the fixed routing cases. Because the
formulation of the dynamic problem is a natural
extension of the two fixed routing problems de-
scribed earlier, we only briefly summarize our ap-
proach, using the notation introduced earlier. Read-
ers are referred to REIMAN, RUBIO, and WEIN (1997)
for a sketch of the arguments and to Rubio (1995) for
a detailed treatment.

We start by defining the limiting dynamic control
problem. The heavy traffic conditions are a union of
the conditions for the two fixed routing problems.
Let �(t) � {TSP, DS} denote the routing mode that
is used at time t in the limiting control problem, and
let �̂(t) � BD(nt)/(BT(nt) � BD(nt)) denote the
cumulative fraction of busy time that the DS service
has been used. Define the diffusion process
X(t, �(t)) with control-dependent drift and variance
given by

����t�� � 
 �D if ��t� � DS
�T if ��t� � TSP

and


2���t�� � 
 
D
2 if ��t� � DS


T
2 if ��t� � TSP,

respectively. Then the averaged total inventory level
for the system is given by

Z�t, ��t�� � X�t, ��t��

� � V
�T

�1 � �̂�t�� 	
�V

2 � i � i�0i
�̂�t��Y�t�. (46)

If we assume that the time scale decomposition
holds for the dynamic IRP, then the problem decom-
poses into: (i) given Z(t) � x and routing mode
�(t) � {TSP, DS}, use the results in Sections 1 and
2 to determine the optimal cycle placement and the
corresponding inventory cost function g�(t)(x); (ii)
choose the nonanticipating control (Y(t), �(t))
(where Y is nondecreasing and right continuous) to

minimize

lim sup
T3�

1
T E� �

0

T

g��t��Z�t, ��t��� dt � r̂Y�T�� ,

(47)

subject to Eq. 46.
The diffusion control problem, Eqs. 46–47, ap-

pears to be difficult to tackle for two reasons: the
coefficient in front of the control Y(t) in Eq. 46
depends upon the routing control �(t), and the con-
trol-dependent cost function g�(x) is very complex.
We analyze this problem in two ways. First, we use
the Markov chain approximation procedure pio-
neered by KUSHNER (1977) (see KUSHNER and DU-
PUIS 1992 for a recent account) to numerically com-
pute the optimal solution. We also derive the
optimal policy within a class of triple threshold pol-
icies that is described in Section 6. Computational
results for the dynamic IRP also appear in Reiman,
Rubio and Wein (1997), and the main observations
from these results are summarized in Section 6.

5. COMPUTATIONAL RESULTS

THIS SECTION CONTAINS a description of a series of
computational experiments aimed at assessing the
accuracy of the heavy traffic analysis and determin-
ing what aspects of the control policy are most im-
portant for good system performance. A discussion
of these results appears in Section 6.

The Monte Carlo simulation experiments per-
formed in this subsection consider systems that
have five retailers and Poisson demand processes.
We also set the transportation cost rate r equal to
zero and concentrate on the inventory cost. The total
arrival rate � is varied to obtain different utilization
rates; however, the fraction of demand represented
by retailer i is fixed so that �1 � �/5, �2 � �/10, �3 �
�/10, �4 � �/5, and �5 � 2�/5. The travel time ran-
dom variables Tij are i.i.d. second-order Erlang. The
mean travel times are adjusted so that 10�T � V
always holds; this allows us to consider several ve-
hicle sizes while maintaining the traffic intensity at
�T � 0.1�.

We perform four simulation experiments aimed at
various aspects of system performance.

EXPERIMENT 1. The first set of simulation runs
quantifies the cost improvement obtained under the
TSP policy by recalculating the cycle placement at
each retailer, as opposed to determining these val-
ues only once per cycle (i.e., when the vehicle is at
the warehouse). We let bi � b � 5, hi � h � 1 for
i � 1, . . . , 5 and consider the mean travel times
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�01 � �50 � �T/10, �12 � �23 � �34 � �45 � �T/5. These
travel times are consistent with a pentagon struc-
ture, where the five retailers are placed at the ver-
tices of a pentagon, and the warehouse is located
midway between stations 1 and 5.

We consider nine different scenarios, which are
generated by the different combinations of three
vehicle sizes (100, 10, 5) and three traffic intensities
(0.5, 0.7, 0.9); notice that some of these scenarios
grossly violate the heavy traffic conditions. For all
cases with �T � 0.7, we simulated three replications
of 36,000 time units (starting with an empty system
and discarding the first 2000 time units) with cycle
placement recalculation at the retailers and three
more with calculation only at the warehouse; for the
�T � 0.9 instances, the length of each replication was
increased to 240,000 time units (discarding the first
20,000 time units). This simulation design was used
throughout our study and allowed us to keep the
standard deviation of the cost estimate under 1% of
its mean.

Table I summarizes the results of the experiment.
The entries in the table represent the increase in the
average inventory cost when delivery sizes are cal-
culated only at the warehouse, and not adjusted over
the course of the tour. All subsequent TSP simula-
tions use the cycle placement recalculation at the
retailers.

EXPERIMENT 2. The second simulation experiment
assesses the accuracy of the heavy traffic analysis by
comparing the cost incurred under the derived base
stock levels with the cost incurred under the best
possible base stock level. We maintain the same
set-up as in the first experiment, except that asym-
metric cost cases are also considered, where the
holding rates are (1, 1, 2, 2, 2) and the backorder
rates are (5, 10, 5, 10, 5) for the five retailers, re-
spectively. For each of these 18 cases (three vehicle
sizes, three traffic intensities, and two cost struc-
tures), we performed an exhaustive search in a se-
ries of simulations (each consisting of three replica-
tions with the length described in Experiment 1) to
find the base stock level that provides the lowest
system cost. Table II summarizes the results; each
entry represents the suboptimality (within the class

of base stock policies) of the cost incurred by using
the derived base stock level instead of the optimal
base stock level found by exhaustive search.

EXPERIMENT 3. Now we study the performance of
the direct shipping policy, and compare it to the
performance of the TSP policy on the same system.
As before, this is done by comparing the average cost
obtained under the derived base stock levels with
that under the optimal base stock level found by
exhaustive search. Because the DS policy has a huge
drift advantage over the TSP policy in the pentagon
topology used for Experiments 1 and 2, this experi-
ment uses the travel times �0i � 0.45�T for i �
1, . . . , 5 and �12 � �23 � �34 � �45 � �T/40, so that
�T � 0.1� and �D � 0.09�. This case will be referred
to as the wedge topology, because these travel times
are consistent with such a shape. In practice, TSP
tours are often generated by placing the warehouse
at the center of the pie, dividing the pie into wedges
and solving a TSP on each wedge; see Figure 1 of
Bell et al. (1983) and Figure 3 of FEDERGRUEN and
SIMCHI-LEVI (1992). The other problem parameters
remain as in the symmetric cost scenarios in Exper-
iment 2, except for the fact that we also simulate the
DS policy for the case when � � 10. The TSP policy
is not simulated for this case because it corresponds
to �T � 1, and the system is not stable under this
scheme. Hence, we consider 12 cases (four traffic
intensities and three vehicle sizes) for the DS policy
and nine cases for the TSP.

Tables III and IV summarize the results of this
experiment. The entries in Table III compare the
performance of the proposed base stock level to the
cost obtained under the best base stock level for the
same policy. Table IV presents a comparison of the
average inventory cost for the DS and TSP policies.
The percentage difference between the TSP cost and
the DS cost is given by

TSP cost � DS cost
DS cost � 100%.

TABLE I
Cost Increase when Placement Calculation is Only at Warehouse

�T � 0.5 �T � 0.7 �T � 0.9

%

V � 100 4.0 5.0 1.1
V � 10 7.4 18.6 0.7
V � 5 7.3 18.1 1.1

TABLE II
Cost Suboptimality of Derived Base Stocks for Pentagon TSP

�T � 0.5 �T � 0.7 �T � 0.9

%

V � 100
Symm. 0.0 0.9 2.6
Asym. 0.6 2.2 0.0

V � 10
Symm. 19.1 4.3 1.7
Asym. 6.7 2.2 1.8

V � 5
Symm. 14.6 1.1 1.5
Asym. 11.6 1.1 0.6
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The entries labeled “Sim.” in Table IV represent
the percentage difference in inventory cost when
base stock levels are found by exhaustive search.
The entries labeled “Pred.” represent the difference
in inventory costs as predicted by the heavy traffic
analysis. Recall that the percentage differences in
Table IV only assess the inventory costs, and the DS
policy will always incur lower transportation costs
than the TSP policy. Hence, the desired policy is a
function of the transportation cost rate r.

EXPERIMENT 4. The last experiment in this subsec-
tion measures the increase in cost incurred by using
a base stock level different from the one proposed in
the heavy traffic analysis. We already have the re-
quired data for this analysis from the exhaustive
search performed in the simulation experiments
above. Figure 2 plots three examples of the cost
increase with respect to the proposed policy, as a
function of the base stock level (expressed in units of
vehicle size). These three cases correspond to the DS
system on the wedge topology for V � 100 and � �
{5, 7, 9}. The behavior illustrated here is typical of
all other instances analyzed in our simulation ex-
periments.

6. SUMMARY AND CONCLUSIONS

THE IRP IS ONE of the more challenging problems in
operations research, especially when considered
from a dynamic and stochastic viewpoint. We focus
on the operational aspects of the problem and con-
sider a system with a single capacitated vehicle that
operates out of a single warehouse and services a
finite set of retailers. By restricting an outgoing
vehicle to deliver full loads to either a single retailer
(direct shipping or DS) or along a prespecified (TSP)
tour, we avoid the combinatorial complexities inher-
ent in the problem and maintain a sharp focus on
the crucial tradeoff between inventory costs and
transportation costs that lies at the heart of the IRP.
Our modeling of the dynamic stochastic IRP as a
queueing control problem offers a new perspective
on the problem: rather than view the IRP as a vari-
ant of the vehicle routing problem, we see it as a
variant of a production/inventory control problem
(where the capacitated vehicle plays the role of the
production system); as such, this paper is a natural
descendant of WEIN (1992) and MARKOWITZ, REIMAN
and WEIN (1999), which consider more conventional
production/inventory control problems.

By assuming that the system is operating in the
(suitably defined) heavy traffic regime and that a
heavy traffic time scale decomposition holds, we ap-
proximate the queueing control problem by a diffu-
sion control problem. When only TSP tours are al-
lowed, this modeling approach allows us to fully
characterize the solution to the diffusion control
problem, thereby generating an operating policy for

TABLE III
Cost Suboptimality of Derived Base Stocks for Wedge Topology

�T � 0.50
�D � 0.45

�T � 0.70
�D � 0.63

�T � 0.90
�D � 0.81

�T � 1.00
�D � 0.90

%

V � 100
TSP 2.41 5.31 6.10 N.A.
DS 4.13 2.42 1.74 0.52

V � 10
TSP 11.04 0.00 3.67 N.A.
DS 4.30 3.01 2.43 0.08

V � 5
TSP 17.48 0.00 1.19 N.A.
DS 3.70 1.75 1.40 0.00

TABLE IV
Inventory Cost Comparison (TSP � DS)/DS: Wedge Topology

�T � 0.50
�D � 0.45

�T � 0.70
�D � 0.63

�T � 0.90
�D � 0.81

�T � 1.00
�D � 0.90

%

V � 100
Sim. �80.2 �72.5 �29.1 N.A.
Pred. �78.4 �71.8 �22.1 �

V � 10
Sim. �66.5 �58.6 �3.0 N.A.
Pred. �76.7 �65.0 2.5 �

V � 5
Sim. �56.7 �64.5 12.6 N.A.
Pred. �74.3 �57.8 25.2 �

Fig. 2. Sensitivity of inventory cost to base stock level.
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the original system. By assuming the existence of a
fixed sequence of retailer visits that can achieve
constant interdelivery times to each retailer in the
fluid limit, we perform a similar analysis for the DS
case. The control policy in both cases is character-
ized by a vehicle idling policy, which dictates
whether a vehicle at the warehouse should sit idle or
set out with a full load, and a dynamic allocation
policy, which specifies how many units to leave off at
each retailer under a TSP scheme, and which re-
tailer to visit next in the DS scheme.

We also consider the case where dynamic route
selection (either TSP or DS) is allowed. The diffusion
control problem is solved numerically and a class of
triple-threshold policies is analyzed. Finally, a se-
ries of simulation studies is performed to comple-
ment the heavy traffic analysis.

Our key findings can be summarized as follows:

● The inventory component of the total long-run
average cost depends on the stochastic charac-
teristics of the system, whereas the transporta-
tion component for a fixed routing scheme is
determined solely from first-moment informa-
tion. Moreover, for the two fixed routing IRPs,
the proposed solution is independent of the
transportation cost rate because all base stock
policies incur the same long-run average trans-
portation cost.

● The vehicle idling policy is characterized by an
aggregate base stock level: the vehicle idles at
the warehouse whenever the total retailer in-
ventory exceeds a certain threshold level. Al-
though the existing IRP literature does not typ-
ically address the vehicle idling issue, our
simulation results show that system perfor-
mance is quite sensitive to the value of the base
stock level, deteriorating rapidly when the base
stock level differs from the optimal value by
more than the vehicle capacity. Moreover, sim-
ulation results also confirm that the system cost
under our derived base stock levels are typically
within several percent of the cost achieved by
the best (found by exhaustive search using sim-
ulation) base stock level, unless the heavy traf-
fic conditions are grossly violated (e.g., traffic
intensity � 0.5 and vehicle capacity � 10 units).

● The allocation of load among the retailers is
dictated by the desire to concentrate most of the
total inventory (backorders) at the site with the
smallest holding (backorder) cost rate.

● Dynamic (i.e., state-dependent or closed-loop)
delivery allocations greatly outperform their
static (state-independent or open-loop) counter-
parts in a stochastic environment. In fact, cen-

tral limit theorem arguments indicate that
static delivery allocations lead to unbounded
costs over the long run.

● The relative advantage of recalculating the load
allocation at each retailer within a TSP tour, as
opposed to setting it once at the beginning of
each tour, decreases as utilization increases,
and vanishes in the heavy traffic limit. This
observation complements those in Kumar,
Schwarz, and Ward (1995), who focus on this
issue (calculating delivery allocations once per
cycle or at each retailer) using a much different
model.

● The policy that achieves the lowest transporta-
tion cost is the one that delivers the largest
amount per unit time traveled (subject to meet-
ing average demand). Therefore, direct shipping
is the most transportation-efficient routing
scheme. This fact helps highlight the basic cost
tradeoff in the IRP: DS leads to smaller trans-
portation costs, but TSP routing, by making
smaller and more frequent deliveries, may lead
to smaller inventory costs. This result also im-
plies that DS has a larger stability region than
TSP; that is, for any given problem instance, one
can increase the demand rates to a level where
the TSP routing scheme has a traffic intensity
greater than or equal to one and the DS scheme
has an intensity less than one.

● Heavy traffic analysis shows that, for cost-sym-
metric systems with sufficiently high backorder
costs, DS will be preferred to TSP routing.

● Simulation results show that there is often a
large difference in performance between the DS
and TSP policies. Although the traffic intensity,
backorder costs and transportation costs all
play a significant role, the topology probably
plays the largest role in the relative attractive-
ness of each policy. For systems with relatively
high loads, it appears that TSP could only be a
desirable alternative when the tour is wedge-
shaped, as is often the case in practice.

● The heavy traffic analysis accurately predicts
the relative cost of using the fixed DS or fixed
TSP schemes. Hence, our procedure can be used
as an aid in higher-level decisions, as discussed
at the end of this paper.

● If one can dynamically choose between the DS
and TSP options, we conjecture that the most
general form of the solution is a triple-threshold
policy characterized by w1 � w2 � w3: if the
total retailer inventory is less than w1, then DS
is preferred; if it is in the interval [w1, w2), then
TSP is preferred; and if it is in the interval
[w2, w3), where w3 is the idling threshold, then
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DS is preferred. Our rationale is as follows: if
the absolute value of the total retailer inventory
is large, then the routing scheme may have little
effect on the rate at which inventory costs are
incurred. In these cases, DS may be preferable
because it incurs smaller transportation costs.
In addition, the efficiency of DS has a tendency
to increase the total inventory level relative to
TSP (in the diffusion control problem, the DS
option has a larger drift than the TSP option),
and so DS will be even more attractive when the
total inventory is much less than zero, because
it will help to decrease future backorders. How-
ever, when the total inventory is in the interval
[w1, w2), which should contain zero in the non-
degenerate case, the frequent deliveries of TSP
lead to less backorders and smaller inventory
costs, making it the more attractive alternative.
Finally, because the effective penalty for using
the inefficient TSP policy decreases when the
total inventory is large, we believe that, in most
cases, the optimal solution will be no more com-
plex than a double threshold policy, where w2 �
w3. This state of affairs is somewhat analogous
to the stochastic economic lot scheduling prob-
lem with setup times analyzed in Markowitz,
Reiman and Wein (1995), where large (small) lot
sizes correspond to DS (TSP).

● We computed the numerical solution to the dif-
fusion control problem corresponding to the dy-
namic IRP for a number of instances, and the
results were consistent with our conjectures: the
most general optimal policy was of the triple-
threshold form, and, in most cases, a degenerate
form of the policy was optimal: either the fixed
DS case (w1 � w2 � �� or w1 � w2 � w3), the
fixed TSP case (w1 � ��, w2 � w3) or the
double-threshold policy (w2 � w3). Moreover, in
our limited simulation experiments, we did not
find a numerically computed triple threshold
policy that outperformed the analytically de-
rived double-threshold policy (although we did
not search beyond the computed triple-thresh-
old values). By performing many exhaustive
searches using simulation, we also found that
the best double-threshold policy differed from
the better of the two fixed routing policies in
only a narrow range of system parameter space;
in this range, the best TSP and DS policies
achieve fairly similar performance. Hence, cou-
pling this observation with a previous one sug-
gests that finding the best fixed route policy is
very important, whereas allowing for dynamic
routing provides a much less substantial bene-
fit; this is particularly true in light of the in-

creased complexity of implementing a dynamic
routing scheme.

In summary, the important operational levers for
the IRP include the aggregate base stock level, the
dynamic allocation policy and the choice of fixed
routing scheme, but not the dynamic routing policy.
Moreover, these key decisions are interrelated and a
unified stochastic control model, such as the one
considered here, is required for achieving reliable
system performance.

Two topics for future research naturally come to
mind. The first is to extend the dynamic routing
scheme to allow K different types of routes (where
K 
 2) and/or to consider cyclic routes that use a
combination of DS and TSP (e.g., a cycle could con-
sist of a TSP tour through retailers 1, 2, and 3,
followed by a direct shipment to retailer 2). Al-
though, in theory, these extensions could be incor-
porated and system improvements could be
achieved, the analysis would be tedious.

Another area for future research would be to de-
velop the necessary steps for a hierarchical ap-
proach to the general (multi-vehicle, multi-ware-
house) IRP; such an approach would be similar in
spirit to the vehicle routing analysis performed by
Simchi-Levi (1992), but would also incorporate the
inventory cost component. Our results for fixed
route policies provide estimates for the operating
cost for any system given a particular assignment of
retailers to vehicles and vehicles to warehouses. Mo-
tivated by our observation that the best fixed route
policy performs nearly as well as the best dynamic
policy over a broad range of parameters, the first
level up in the hierarchy could implement an opti-
mization algorithm (e.g., a k-opt algorithm as used
in the deterministic vehicle routing literature) to
find the best such route. Higher levels in the hier-
archy could then be used to select the best possible
assignment of vehicles and retailers, and the total
number of vehicles to have in the system. At an even
higher level, these results could be used to decide on
the number and location of warehouses.
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