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Abstract

We describe an interprocedural technique, called dynamic

resolution, for the automatic parallelization of procedures
that destructively manipulate dynamic DAGs. Dynamic res-
olution dynamically detects shared data and correctly co-
ordinates access to this data at run time. In pointer-unsafe
languages (e.g., C), dynamic resolution requires programmer
identi�cation of acyclic data structures and the use of dy-
namic resolution's macros for pointer manipulations; paral-
lelization is then automatic. In pointer-safe languages (e.g.,
ML), cyclicity can often be automatically inferred by the
compiler and parallelization via dynamic resolution is com-
pletely automatic.

This paper empirically studies the performance of dy-
namic resolution. Our study reveals that dynamic paral-
lelization can readily outperformoptimized sequential C pro-
grams on fast contemporary hardware. In particular, im-
plementations of two general problems (DAG rewrite and
in-place list quicksort) using dynamic resolution and three
processors already outperform their sequential counterparts.
Dynamic resolution is the �rst technique that can automat-
ically and e�ectively parallelize DAG rewrite and list quick-
sort. For both problems, the absolute performance of dy-
namic resolution steadily improves as processors are added.
We �nd that in the presence of some shared structure, dy-
namic resolution can still o�set its run-time overheads.

1 Introduction

Parallelization of irregular computations involving mu-
table dynamic data structures is di�cult for program-
mers and compilers alike. Programmers must reason
about shared substructures in a program's dynamic data
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to correctly synchronize parallel access to shared state;
parallelizing compilers, moreover, must statically infer
structure sharing and produce a safe evaluation and
synchronization schedule [7, 17]. The di�culty lies in
the dynamic nature of irregular computations|shared
structure appears (and disappears) dynamically. Hence,
the available parallelism, and its attendant synchroniza-
tion requirements, necessarily vary during program ex-
ecution.

This paper describes the design and implementation
of an interprocedural dynamic-parallelization technique
called dynamic resolution. Dynamic resolution (dr) can
automatically parallelize program procedures that de-
structively manipulate directed acyclic graphs (DAGs).
The dr technique dynamically detects and dynamically
schedules potentially con
icting DAG modi�cations; it
preserves the program's sequential semantics by resolv-
ing con
icts at run time.

Static pointer analyses [4, 14, 9, 17, 7, 28, 15] can not
provide precise parallelization information in the pres-
ence of dynamic structure sharing|such analyses must
conservatively assume that if sharing can occur, then it
always occurs. Only a dynamic approach can parallelize
programs that may share structure when in fact they do
not dynamically share structure. Dynamic resolution is
a run-time approach that �nds and exploits parallelism
necessarily obscured by all static approaches.

We have implemented dynamic resolution for two
general DAG problems (destructive DAG rewrite and
destructive quicksort) on a fast contemporary shared-
memory multiprocessor. Dynamic resolution is the �rst
technique that can automatically and e�ectively paral-
lelize these problems. Given a small number of pro-
cessors (two or three), dynamic resolution already out-
performs fully-optimized sequential C code even though

dynamic resolution requires run-time support. We fur-
thermore observe continued performance improvements
as processors (up to our machine's maximum) are added
to the problem.

To be completely automatic, dynamic resolution re-
quires language support in the form of strong typing
and garbage collection (such as provided by ML [22,
23]); such support ensures pointer integrity, i.e. point-
ers can never point to unallocated storage. However,
with minor programmer intervention, dr may also be
used with C programs. For C, the programmer must
�rst statically identify the program's acyclic and cyclic
data since dr can only parallelize procedures that oper-



ate on acyclic structures. Secondly, the C programmer
must use dr's C pointer-manipulation macros when con-
structing or modifying dynamic data. That is because
drmust dynamically associate sharing information with
heap-allocated data.

The purpose of this paper is threefold. First, we de-
scribe the compile-time analyses (static component) and
the run-time support (dynamic component) required for
dynamic resolution in the context of pointer-safe ML.1

Second, we empirically evaluate dynamic resolution on
two nontrivial DAG problems: destructive DAG rewrite
and destructive (in place) list quicksort. Experimen-
tal comparisons of the dr versions of these problems to
their sequential C and unsafe2 parallel C versions reveal
dr's run-time costs. With respect to unsafe paralleliza-
tion, run-time overhead is low and readily surmountable
(with eight processors, overhead is 13% for DAG rewrite
and 17% for list sort). Third, we study the impact of
sharing on dynamic resolution. It is our assumption
that sharing occurs in programs, but does so only infre-
quently. Note that static techniques must conclude that
if sharing can occur, then it always occurs whereas dr
adapts to the actual sharing present at run time. Empir-
ical evidence suggests that dr can tolerate some sharing
(4% of nodes shared) and still outperform a sequential
implementation.

The next section is an overview of the problem dy-
namic resolution addresses; it provides the main exam-
ple used throughout the paper. Section x3 provides def-
initions and notation. Section x4 explains the idea un-
derlying dynamic resolution. Sections x5 and x6 respec-
tively describe dynamic resolution's static and dynamic
components. Section x7 describes the implementations
and reports results. Related work is in x8.

2 Overview

Parallel evaluation of program expressions that read
(get) and modify (set) shared data|data that mul-
tiple expressions may concurrently access|must pre-
vent read/write and write/write con
icts from violating
the sequential semantics of the program. A program's
data-sharing characteristics, however, depend on the
program's dynamic data structures which often depend
on the program's input. Not surprisingly, dynamic data
structures are di�cult to precisely analyze at compile
time [15, 3, 18, 28, 10, 13, 4].

For example, a compiler may statically deduce that
a list l of mutable items (called reference values in ML)
may contain the same element amore than once (thereby
sharing a). This forces the compiler to perform oper-
ations on individual elements of l sequentially because,
at compile time, it is not known when (at run time)
or where (in l) such shared elements exist. For a given
dynamic instance of l, however, l's elements may be dis-
joint so that their concurrent access and modi�cation is

1Our exposition of dynamic resolution uses ML because it ab-
stracts pointer operations and is hence a succinct vehicle for de-
scribing dynamic resolution's static analyses. Our experiments,
on the other hand, use C because the dynamically-parallel ver-
sions produced by dr can be meaningfully compared to optimized
sequential implementations (also in C).

2An unsafe program may exhibit indeterminate behavior in
the presence of sharing.

safe. Furthermore, even if some elements of l are iden-
tical (shared), others can still be safely modi�ed con-
currently if sharing detection and expression scheduling
are dynamic. Dynamic resolution performs such sharing
detection and expression scheduling at run time.

The incnode function of Figure 1 further illustrates
the problem and serves as the example of automatic
parallelization using dynamic resolution. The incnode
function operates on dynamic data of the tree datatype.
Function incnode's single parameter has type int tree;
that is, internal nodes contain integer reference values
in addition to two subtrees. When supplied a leaf node,
the incnode function does nothing. Otherwise, when
supplied an internal node, incnode �rst increments the
integer reference value at that node and then recursively
descends into the node's left and right subtrees.

The sequential semantics of the ML language re-
quires that all modi�cation (with set) of a reference
value r by the expression (incnode left) occur be-
fore expression (incnode right) accesses r. Similarly
(incnode right) may not set r until (incnode left)
completes its last access of r. Parallel evaluation of
(incnode left) and (incnode right) is however safe
when (incnode left) and (incnode right) access dis-
joint sets of reference values; i.e., when the dynamic
data bound to left and right do not share structure.
Static detection of this parallelism, however, requires
the compiler to ascertain whether (and where) sharing
exists in incnode's argument.

Static extraction of parallelism from incnode is di�-
cult because the tree datatype can be used to construct
directed cyclic graphs and DAGs as well as trees;3 e.g.,
the expression

let val n = Node(ref 0,n1,n2)
in Node(ref 0,n,n) end

creates a DAG with sharing using the tree datatype.
Figure 2 depicts valid arguments4 to incnode with and
without sharing: a tree and a DAG (the one constructed
in the above let expression). A naive parallel ver-
sion of incnode that simply evaluates (incnode left)
and (incnode right) concurrently without coordinat-
ing internal-node accesses cannot ensure correct results
in the references. Because of race conditions, concur-
rent get and set operations to shared structure may
produce indeterminate values. With naive parallel eval-
uation, for example, incnode applied to the � node in
the DAG of Figure 2 may produce indeterminate results
since expressions can concurrently modify the same ref-
erence values|the reference value in and below the �
node.

Even when a data structure contains sharing, it is
still possible to (dynamically) discover and utilize par-
allelism in expressions that access portions of the struc-
ture that are not shared; e.g., incnode can safely modify
the nodes of disjoint trees that are subgraphs within a

3Although it may be the programmer's intent to only con-
struct trees with the � tree datatype, a compiler must con-
sider all structures that a datatype can produce. Hendren [9]
and Hummel et al. [14, 13] describe programmer annotations
for dynamic datatype de�nitions that express such intent to the
compiler.

4Cyclic structures cannot be arguments to incnode since
ML's type system prohibits the introduction of a cycle into a
structure of type int tree.
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datatype � tree = Leaf | Node of (� ref � � tree � � tree)

fun incnode Leaf = ()
| incnode (Node(x,left,right)) = (set x (1 + (get x)); incnode left ; incnode right)

Figure 1: The tree datatype and the incnode function. A tree is a Leaf or a Node. Leaf is a nullary constructor; Node is a ternary

constructor. A Node contains a mutable reference of type � and two subtrees. Note that DAGs can also be constructed from this

datatype. Dynamic resolution can safely evaluate expressions (incnode left) and (incnode right) in parallel since it detects con
icts,

due to potential sharing in incnode's argument (of type int tree), dynamically.

Tree DAG

Figure 2: Possible structures of type � tree.

DAG (such as the structure below the � node in Fig-
ure 2). Since static methods that approximate the struc-
ture of a program's dynamic data can, in general, only
do so imprecisely, it is possible to design a program us-
ing incnode that a given static technique cannot paral-
lelize: incnode applied to a DAG whose size and shape
(i.e., connectivity) exceeds the static technique's limit
of precise approximation (see x8). As another exam-
ple of such a program, consider the tree and DAG of
Figure 2 both reaching an application of incnode via a
conditional whose predicate is statically unknown|in
this case, static techniques forgo parallelism in incnode
since they must conservatively approximate incnode's
argument as always containing shared nodes.

The dynamic-resolution technique of this paper can
automatically extract parallelism from incnode. We be-
lieve incnode to be representative of a large class of
database-like functions.

3 Preliminaries

ML datatype constructors build dynamic values; that is,
reference values, tuples, and recursive data structures
created with (non-nullary) data constructors are values
that reside in dynamically-allocated storage in the pro-
gram's heap. Denote the heap as H. Implementations
represent a program's dynamic values as nodes in H. A
node h 2 H, representing a dynamically-allocated value,
contains basic values directly (e.g., integers and nullary
constructors) and links to other nodes in H. For exam-
ple, the expression Node(ref 0,Leaf,Leaf), given the
tree datatype of Figure 1, creates the structure

Ref(0)

Node(    ,Leaf,Leaf)

in H that consists of two nodes and one link. The heap
H is a directed graph with nodes as its vertices and links
as its edges. A node h's in-degree, in-degree(h), is the

number of links incident on h.

De�nition 1 (Simple Node) A node h 2 H is a sim-
ple node if in-degree(h) � 1.

De�nition 2 (Join Node) A node h 2 H is a join
node if in-degree(h) > 1.

Join nodes will serve as indicators of potentially-shared
dynamic data.

De�nition 3 (Path) A path of length n in H is a se-

quence of nodes, hh1; : : : ; hni 2 H where n � 1, such
that 8i, 1 � i < n, there exists a link from hi to hi+1.

Denote the existence of a path from h 2 H to h0 2 H
as h =) h0. The nonexistence of a path from h to h0 is
noted h 6=) h0. If h =) h0, then node h is said to reach
node h0.

De�nition 4 (Simple Path) A simple path of length

n in H is a sequence of nodes, hh1; : : : ; hni 2 H where
n � 1, such that 8i, 1 � i < n, there exists a link from

hi to hi+1, and 8i, 1 � i � n, node hi is simple.

Denote the existence of an simple path from h 2 H to
h0 2 H as h �! h0. The notation h 6�! h0 denotes that
no such path exists. If h �! h0, then node h is said to
simply reach node h0.

The relations =), 6=), �!, and 6�! collectively
comprise the reaching relations for nodes.

De�nition 5 (Acyclic Node) A node h 2 H is an
acyclic node if all paths from h to h have length 1.

That is, h is acyclic when it does not lie on a cycle
in H. Dynamic resolution's static component deter-
mines when a dynamic value is always represented by
an acyclic node.

Identi�cation of the free variables of an expression
that can bind dynamic values or functions will also be
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necessary. As usual, let FV(e) be the set of free variables
in e. The free dynamic variables of an expression e are:

FDV(e) = f x 2 FV(e) jx can bind a dynamic value g

In ML, an identi�er's type indicates whether it can bind
dynamic values. The free function variables of an ex-
pression e are:

FFV(e) =
�
f 2 FV(e) j f can have type � ! �

0
	

That is, a free variable f in e is a free function variable
if it can be used as a function (i.e., can be applied).
Finally, characterize a function f as true if all dynamic
values accessible in f are either created in f or are pa-
rameters to f . Otherwise, f is untrue.

De�nition 6 (True Function) A function f � (�x:e)
is a true function if FDV(f) = ; and if 8g 2 FFV(f)n ffg
the function g is a true function.

That is, f is a true function when f does not contain
free dynamic variables and does not apply free functions
that contain free dynamic variables. For example, in the
function de�nition

fun f (x::xs) =
let fun g y = (y+1)::xs
in g x end

f is true since FDV(f) = ; and FFV(f) = f::; +g, where
f denotes the �-abstraction bound to f. The in�x list
constructor (::) and integer addition (+) are true func-
tions. Function g is an untrue function since it accesses
the dynamic value bound to xs (i.e., FDV(g) = fxsg,
where g is the �-abstraction bound to g).

4 Dynamic Resolution Property

In this section we describe the basic idea underlying
dynamic resolution.

To safely evaluate two expressions e and e0 that up-
date a dynamic data structure (e.g., a DAG) in parallel,
it is necessary to identify the dynamic data that is po-
tentially reachable by both expressions, and to correctly
coordinate the accesses to this data. Initially, evalua-
tion of the two expressions can proceed in parallel with e

having priority over e0 in the following sense. Upon de-
tection of an access to any shared data by e0, all further
evaluation occurs sequentially; i.e., e0 must suspend5

on an access to shared data and may not restart until
e completes. Suspending e0 on access to shared data is
a means of preserving the language's sequential seman-
tics. Note that in the absence of shared data, dynamic
resolution will evaluate both expressions completely in
parallel.

The detection of shared data and the coordination
of the accesses to this data (i.e., deciding which ex-
pression to suspend) occurs dynamically. A dynamic-
resolution compiler can automatically insert code into
the program text to detect potential sharing at run time;
the dr run-time system governs which expressions may

5When a processor suspends an expression's evaluation it
need (and must) not idle, but should rather evaluate other
runnable threads.

h h’

a

b

Figure 3: The nonexistence of simple paths from nodes h to

h
0 and from h

0 to h imply that the shared structure reachable

from h and h
0 (boxed region) is always guarded by a join node

(node a). Dynamic resolution detects potentially sharing at run

time by detecting join nodes.

access shared data. Static analysis is used to select ex-
pressions for parallel evaluation whose shared reachable
data can always be detected at run time. This analysis
relies on the following property concerning paths and
nodes.

Property 1 Let h; h0 be nodes in heap H. If h 6�! h0

and h0 6�! h, then for all h00 2 H such that h =) h00

and h0 =) h00, the following relations hold: h 6�! h00

and h0 6�! h00.

That is, if all paths from h to h0 and from h0 to h contain
a join node, then all paths from h or h0 to any shared
node h00 (accessible from both h and h0) must contain
a join node. This property enables the static selection
of program expressions for which all shared data can be
detected dynamically.

Figure 3 illustrates the above property. If it is known
that node h cannot simply reach h0 (and vice versa),
then all shared structure reachable from h and h0 is
always delimited by a join node (node a in the diagram).
Note that simple nodes (e.g, node b) as well as join nodes
may be shared; however, evaluation of an expression will
always traverse a join node before encountering a shared
simple node, thereby providing a means for detecting
sharing dynamically.

Statically, dynamic resolution locates program iden-
ti�ers that always bind nodes h; h0 2 H such that the
above property (h 6�! h0 ^ h0 6�! h) holds. Suppose that
the only dynamic values accessible to expression e are
those reachable from h. Similarly, suppose that the
only dynamic values accessible to expression e0 are those
reachable from h0. Furthermore, assume e and e0 are
candidates for parallel evaluation, but potentially con-

ict (due to read/write or write/write con
icts). If the
sequential semantics requires evaluation of e before e0,
then e and e0 may be safely evaluated in parallel with
the following restriction: e0 may not access any join
node until e completes (e, however, may access all|join
or simple|nodes that it can reach).

When e and e0 do not share structure (e.g., 6 9h00 2 H
such that h =) h00 ^ h0 =) h00) then it is possible for e
and e0 to completely evaluate in parallel with dynamic
resolution. Otherwise, evaluation of e0 must suspend
upon access to a join node|a node potentially shared
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with e|until e's evaluation completes. Note that in the
presence of sharing, some of the evaluation of e0 may still
be concurrent with that of e.

Dynamic resolution's static component identi�es pro-
gram identi�ers that satisfy the conditions of the above
property, and uses this information to select expressions
for parallel evaluation. The dynamic component de-
tects join nodes and dynamically schedules (suspends
and restarts) expressions as necessary.

5 Static Component

Here we �rst informally describe dr's static component.
Sections x5.1{x5.4 supply the technical detail.

Informally, the goal of dynamic resolution's static
component is to �nd two expressions e and e0 whose safe
parallel evaluation is impeded by set operations to dy-
namic data potentially shared by both expressions. The
static component ensures that all shared nodes reach-
able by e and e0 can be detected dynamically. That is,
it infers if the dr property holds. For such expressions,
access to shared data can be detected and correctly co-
ordinated at run time.

Static dr parallelization occurs at the function level.
For a function f , the static component �rst identi�es
the data constructors in f 's patterns6 that always (dy-
namically) bind acyclic nodes (x3). Static classi�ca-
tion of a datatype constructor as acyclic (i.e., it only
matches acyclic nodes) enables|in turn|static infer-
ence of the reaching relations among a pattern's vari-
ables. In particular, static classi�cation of a data con-
structor as acyclic allows the static inference (x5.2) of
strong (i.e., 6�!) reaching relations among the construc-
tor's variables. Such reaching relations permit dr paral-
lelization because shared structure accessible from these
variables can be dynamically detected by dr's dynamic
component (x6). Given such reaching relations, expres-
sions are statically selected and restructured (x5.3) for
concurrent dr evaluation. Finally, the static component
places checks into the program that examine a node's
status (join or simple) in expressions that can access its
contents (x5.4).7

We �rst describe how to statically determine whether
a data constructor in a pattern matches only acyclic
nodes, and then how to use this information to infer the
reaching relations among a function's variables. Lastly,
we describe how to select candidate dr expressions and
where, in the program text, to place the checks that
detect sharing.

5.1 Data-Constructor Classi�cation

A dr compiler must statically classify data constructors
in patterns as cyclic or acyclic depending on whether
the nodes that the constructor dynamically matches
can lie on cyclic structures in the heap. Acyclic con-
structors admit dr parallelization; cyclic constructors

6Patterns (see, e.g., [23]) match dynamic values against
datatype constructors, constants, and variables. A pattern gives
information about the reaching relations among its variables;
it is a positional notation that reveals the position of a pat-
tern's variable with respect to the pattern's other variables and
constructors.

7Note that the contents of a node can be accessed only by
matching (deconstructing) it in a pattern.

Cons(   ,Nil)

T( )

Figure 4: A cyclic list constructed with the conventional Cons

constructor.

inhibit dr parallelization because the shared structure
reachable from a cyclic constructor's variables can not
always be dynamically detected. For simplicity, we �rst
assume all patterns in the program contain at most
one data constructor|this restriction is relaxed below
(x5.2). The form of such a pattern is

p � C(x1; : : : ; xn)
where C is a data constructor and the xi, 0 < i � n,
are variables8 that are bound when p is matched. For
example, the pattern Node(x,left,right) of the tree
datatype (Figure 1) contains the data constructor Node
and variables x, left and right.

For a pattern p of the form above, dr's static compo-
nent classi�es p's constructor C as cyclic or acyclic. We
describe two possible methods of attaining this classi�-
cation: from static type information (inferred automat-
ically in ML) or from programmer-supplied assertions.

5.1.1 Classi�cation From Static Type Information

Identi�cation of a datatype constructor in pattern p as
acyclic is often possible from p's type. In a call-by-
value language, cyclic data structures arise only from
the re-assignment of a reference value that resides in
a dynamic data structure. Furthermore, to introduce
a cycle, the contents of this reference value must be
a dynamic value; i.e., the reference value must have a
dynamic-value type. A pattern's type, therefore, indi-
cates whether the data it can match contains reference
values. Hence, type information can identify a pattern's
constructors that always match acyclic nodes.

For example, the pattern p � (Node(x,left,right))
in the incnode function (Figure 1) has type int tree
since the contents of x is used in an integer addition.
Pattern p's dynamic variables (left and right) also
have type int tree. This type information insures that
p always dynamically matches an acyclic node in the
heap (i.e., p is acyclic) since the reference values in a
structure of p's type can only contain integers.

5.1.2 Classi�cation From Programmer Assertion

In a language with polymorphic datatypes (as here),
static determination of whether a constructor only builds
acyclic nodes is not always possible. Constructors in
patterns that cannot be classi�ed as acyclic inhibit par-
allelization with dynamic resolution because the com-

8The language's constants (e.g., integers) may also appear
in patterns. However, since they are not dynamic values they
cannot reach shared data and hence require no special treatment.
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Cons(   ,   ) Cons(   ,   ) Cons(   ,Nil)

Figure 5: An acyclic list suitable for dr. An element of an

acyclic list may reach tail elements, list elements may themselves

be cyclic structures, and multiple list elements may reach shared

structure.

piler will not be able to infer strong (i.e., 6�!) reaching
relations for the variables of cyclic constructors (x5.2
below). For example, the Cons constructor of the con-
ventional list datatype declaration
datatype �list = Nil | Cons of (� � �list)

can create cyclic nodes. The program

datatype t = T of t list ref | S

let val x = T (ref [S])
val (T y) = x

in set y [x]; get y end

returns a list l whose single element (of type t) contains
a reference value with contents l (e.g., the list in Fig-
ure 4). A compiler cannot generally infer that the list
Cons constructor matches acyclic nodes. For example,
l is a valid argument to the standard map function (see,
e.g., [23] for its de�nition)|accordingly, map's pattern
does not contain acyclic constructors, and dynamic res-
olution cannot parallelize the map function.

A programmer-supplied assertion can be used to iden-
tify acyclic constructors in the presence of polymor-
phism. Programmers are typically aware of cyclic data
since precautions must be taken when traversing it|
lists, tuples, trees, and DAGs can often be identi�ed as
acyclic by the programmer. We introduce the acyclic
quali�er for programmer assertion that a datatype's con-
structors are used only to create acyclic nodes.

Declaration of the acyclic list datatype
acyclic datatype �list' =

Nil' | Cons' of (� � �list')

states that the list nodes constructed with the (acyclic)
Cons' constructor will not lie on a cycle in the heap.
This restricts the spine of a list thus constructed from
containing cycle nodes. Elements of an acyclic list, how-
ever, may be cyclic structures; elements may also share
structure (Figure 5). The list of Figure 4, however, is
not a valid acyclic list since it violates the declaration
of acyclic. Note that the compiler can not in general
detect such violations; incorrect usage of an acyclic
datatype can cause indeterminate program behavior.

The function map' of Figure 6 is an acyclic version
of map that can only be applied to lists of type � list'.
The dynamic-resolution technique can be applied here
because Cons' may only bind acyclic nodes. Hence, the

fun map' f Nil' = Nil'
| map' f (Cons'(x,xs)) = Cons'(f x,map' f xs)

Figure 6: The map' function for acyclic lists.

compiler can infer strong reaching relations for its vari-
ables (x 6�! xs and xs 6�! x). Even if the higher-order
parameter f performs imperative get and set opera-
tions it may still be possible to evaluate the expressions
in map' in parallel (cf. [21, 11]).

5.2 Reaching-Relation Inference

Static classi�cation of the data constructors in patterns
as acyclic allows the automatic inference of reaching re-
lations among a pattern's variables. When data con-
structor C in pattern p is acyclic, the nodes dynamically
bound to C's variables xi, 0 < i � n, cannot reach one
another via simple paths. That is, when C is acyclic,
the compiler can safely infer that xj 6�! xk for all pairs
of C's variables xj and xk, where 0 < j; k � n and
j 6= k. Proof of this follows. Let h; h0 2 H denote the
nodes bound to two of C's variables xj and xk (where
0 < j;k � n and j 6= k) when p matches dynamically.
When h and h0 are the same node (h = h0) then h

(and h0) are join nodes due to the two links from C's
node. Alternately, when h 6= h0 a simple path cannot
exist from h to h0 (i.e., h 6�! h0). Suppose a simple
path from h to h0 exists. Node h0 then has at least two
links: one from C's node and one from the node preced-
ing h0 on the path from h to h0 (this path cannot pass
through C's node since C's node is acyclic; hence this
path cannot use links from C's node). Since h0 has at
least two incident links, it must be a join node. This,
however, contradicts the supposition. Therefore, a sim-
ple path cannot exist from h to h0. Similarly, a simple
path cannot exist from h0 to h (i.e., h0 6�! h).

Figure 7 depicts the relationship between an acyclic
node a (corresponding to an acyclic constructor) and
the nodes xi and xj directly accessible from a. If xi can
reach xj via any path, then that path must contain a
join node (xj). Since the constructor node a is acyclic,
the path from xi to xj cannot pass through a and hence
cannot include the link from a to xj.

Reaching relations that assert the nonexistence of
simple paths between pattern variables enable dynamic
resolution|sharing in the structure bound to these vari-
ables can be detected at run time because a join node
is always encountered before an expression reaches any
shared structure.

In Section 5.1 the program's patterns were restricted
to contain at most one data constructor. Relaxing this
restriction is straightforward and doing so admits nested
data constructors in patterns. Without loss of general-
ity, if the constructors C and C 0 in the pattern

p � C(x1; : : : ; xn as C 0(y1; : : : ; ym))
are acyclic, the reaching relations

xj 6�! xk 0 < j; k � n ^ j 6= k
xj 6�! yk 0 < j < n ^ 0 < k � m

xn =) yk 0 < k � m

can be inferred. Any path from a variable xj to a vari-
able yk cannot be simple because C is acyclic; however,
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x xji

a (declared acyclic)

Figure 7: Node a is an acyclic data-constructor node. Nodes

xi and xj are directly reachable|via a single link|from a. Any

path from xi to xj is not simple because it always contains a join

node (xj). Such a path cannot use the link from a to xj since a

is acyclic. Black nodes are join nodes; gray nodes represent any

(simple or join) node.

a simple path can exist from variable xn to a variable
yk because the nodes (dynamically) corresponding to
the constructors C, C 0, and to variables yk may all be
simple. This occurs, for example, when p matches an
unshared tree.

5.3 Expression Selection

Static analysis propagates the reaching relations induced
by a pattern into the pattern's scope. Static selection of
expressions for parallelization with dynamic resolution
then commences.

Two expressions, e and e0, whose safe parallel eval-
uation is constrained only by read/write or write/write

con
icts, are candidates for parallel evaluation using dy-
namic resolution if they meet three criteria:

1. 8x 2 FDV(e) and 8x0 2 FDV(e0) the relations
x 6�! x0 and x0 6�! x hold.

2. 8f 2 FFV(e), f is a true function; and, 8f 0 2
FFV(e0), f 0 is a true function.

3. 8x 2 FDV(e), x does not contain untrue functions;
and, 8x0 2 FDV(e0), x0 does not contain untrue
functions.

The �rst criterion requires that all dynamic values bound
to the free variables in e cannot reach, via a simple path,
dynamic values bound to the free variables in e0. It
thereby ensures that all shared data accessible to both
e and e0 can be detected dynamically x6. The second
criterion restricts the functions in e and e0 to not have
access, through their free variables, to dynamic values
other than those available in e and e0 (due to the �rst
criterion). The last criterion requires e and e0 to not
apply untrue functions contained in their accessible dy-
namic data; it prohibits access to (arbitrary) dynamic
values through the free variables of higher-order untrue
functions stored in dynamic data. A free dynamic vari-
able's type indicates whether structure bound to it can
contain functions.

The incnode function contains two expressions that
can safely evaluate concurrently using dynamic resolu-
tion: e � incnode left and e0 � incnode right. The
pattern p � (Node(x,left,right)) in incnode induces
the set fx 6�! y j x; y 2 fx;left;rightg ^ x 6= yg of re-
lations for p's corresponding function body. Thus, since
FDV(e) = fleftg and FDV(e0) = frightg, expres-
sions e and e0 meet the �rst criterion. Furthermore,

since e and e0 do not apply untrue functions (incnode
is a true function) and do not have access to data con-
taining untrue functions (left and right cannot con-
tain functions), expressions e and e0 also meet the sec-
ond and third criteria. Figure 8 re
ects the selection
of (incnode left) and (incnode right) for parallel
evaluation provided that all shared data is dynamically
detected and access to this data dynamically coordi-
nated. This detection and coordination is performed by
dynamic resolution's dynamic component (x6). The se-
quence separator ;jjdr speci�es parallel evaluation with
sharing detection of the expressions it separates.

5.4 Check Placement

The last responsibility of dynamic resolution's static
component is the identi�cation, in the program text,
of all heap-node accesses so that sharing can be dynam-
ically detected. In particular, a check to determine if
a node is a join node (and hence potentially accessi-
ble to other concurrent expressions) is placed immedi-
ately before a datum is deconstructed when it matches
a datatype constructor (both cyclic and acyclic) in a
pattern. Recall that only patterns can be used to de-
construct (access) a dynamic value's contents. Plac-
ing a check on every dynamic-value access ensures that
sharing (i.e., join nodes) is dynamically detected along
any path in the dynamic data that the program may
take. These checks examine the status (join or sim-
ple) of the node matching the constructor. In Figure 8,
the (de)constructor Node must check the status of the
nodes it matches before it accesses any of their �elds.
The result (join or simple) of this check governs the pro-
gram's subsequent behavior; the full dynamic operation
of these checks is discussed below (x6.3).

6 Dynamic Component

Dynamic resolution's dynamic component detects join
nodes in the heap at run time. It also maintains a total
order of all concurrently-evaluating expressions which
re
ects the evaluation order required by the language's
sequential semantics. An expression is dynamically sched-
uled for concurrent evaluation as a thread. Before ac-
cess to potentially-shared data, an expression examines
its position in the total order of threads to determine
whether it may access the data or must wait for the
evaluation of other expressions (threads earlier in the
order) to complete.

6.1 Join-Node Detection

Reference counts are used to dynamically distinguish
join nodes from simple nodes. The reference count of
a node h counts the number of links from other nodes
incident on h|thereby, reference counts reveal informa-
tion about the heap's structure. A non-link pointer to a
node h (e.g., a variable bound to h) is not included in h's
reference count because it does not reveal information
about the connectivity of the data structure in which

7



fun incnodeDR Leaf = ()
| incnodeDR (Node(x,left,right)) = (set x (1 + (get x)) ;

(incnodeDR left ;jjdr incnodeDR right))

Figure 8: The restructured incnode function. The expressions (incnodeDR left) and (incnodeDR right) are evaluated in parallel

using dynamic resolution. An overlined constructor requires a check for sharing of the matched heap node before any access to its

components.

h resides.9 A node with a reference count of zero10 or
one is simple; a node with reference count > 1 is a join
node. A join node is an indicator of potential sharing
because concurrent threads may potentially access the
same nodes from a join node. Therefore, coordination
of accesses to join nodes is necessary to preserve the
program's semantics.

If a thread has access to a simple node, no other
thread has concurrent access to this node. Expression
selection (x5.3), in cooperation with dr's dynamic com-
ponent, establishes this invariant. Recall that the static
component selects expressions e and e0 for parallel eval-
uation using dynamic resolution only when the evalu-
ation of e and that of e0 will always encounter a join
node before reaching shared data accessible to either
expression.

Building new data (e.g., consing an element onto a
list) increments reference counts. An assignment to a
reference value increments the count of the (dynamic)
value being assigned; assignment also decrements the
count of the (dynamic) value being overwritten with the
following proviso: reference counts are sticky|a refer-
ence count of two never changes. That is, a join node
never becomes simple. Sticky reference counts circum-
vent the following problem: Suppose an expression e

makes a local binding to the contents v of a dynamic ref-
erence value r and then reassigns r's value. This would
violate the invariant that a simple node is accessible
to at most one concurrent thread because the thread
evaluating e has access to v (through the local binding)
and|if reference counts are not sticky|another thread
may now also have (uncoordinated) access to v since the
assignment to r removes a link to v and can therefore
make v simple. Not decrementing reference counts that
are > 1 prevents a thread from inadvertently granting
a concurrent thread access to its simple nodes.11

Atomicity is not necessary for the reference-count
increment and decrement operations. This is because
of the invariant that simple nodes are not concurrently
accessible. Since the reference counts of join nodes are
never decremented12 (i.e., join nodes never become sim-
ple), changing the reference count on a join node also
requires no synchronization.

9The reference-counting scheme required by dynamic resolu-
tion is similar to that used for Deutsch-Bobrow deferred refer-

ence counting [5].
10A program can have access to a node with a reference count

of zero through pointers (e.g., from local variables) to that node
since non-link pointers are not included in the node's reference
count.
11 [11] describes a method that uses the garbage collector to

reconstitute a node's reference count that has become imprecise.
12Note that a reference count that is greater than the actual

number of links incident on a node is conservative|such a count
may indicate sharing where none exists, but it cannot admit
incorrect uncoordinated access to a join node.

6.2 Parallel-Thread Linearization

Dynamic resolution's run-time system imposes a total
order on the program's concurrently evaluating expres-
sions (threads). A linked list of thread descriptors forms
a linearization that implements this order on threads.
This linearization dictates which thread may access join
nodes and which threads must suspend on access to join
nodes.

A thread descriptor has three �elds: the thread, the
thread's run state, and a pointer to the next thread
descriptor. A thread can be in one of three run states:
active, suspended , or �nished. The dr run-time system
also maintains a single global pointer to the head of the
linearization (the head thread).

Threads are inserted into the linearization as follows.
A thread t evaluating the expression (e ;jjdr e0) creates
a new thread t0 to evaluate e0. Thread t continues with
the evaluation of e. A descriptor is created for t0 that is
inserted into the list directly behind the descriptor of t
in the linearization. This will force t to complete before
t0 may access mutable shared state. Upon creation, a
thread descriptor's run-state �eld is set to active.

The linearization is a concurrent data structure|
insertions of thread descriptors by di�erent threads oc-
cur in parallel without synchronization. As such, the
linearization does not unnecessarily sequentialize the
program.

6.3 Expression Scheduling

The head thread in the linearization may freely access
any node (join or simple) that it can reach. Non-head
threads later in the linearization, however, must sus-
pend on access to a join node since it|and all nodes
accessible from it|are potentially shared with other
concurrent threads. A thread t may not access a join
node until it is the head thread; i.e., until all prior
threads have completed. On access to a join node a
non-head thread sets the run-state �eld in the its asso-
ciated thread descriptor to suspended and then suspends
itself.13 A non-head thread that completes without ac-
cessing a join node sets its descriptor's run-state �eld
to �nished. When the head thread completes, the next
uncompleted (run state 6= �nished) thread in the lin-
earization becomes the head thread. If this thread is
suspended, it is restarted and may now access any join
node it can reach|if it is computing, it continues to
do so. Since the head thread always makes progress,
deadlock cannot occur.

This scheduling scheme preserves the language's se-
quential semantics because, in an expression (e ;jjdr e0),
it allows e (and threads created by e) to access all data

13The processor that suspends a thread can now proceed to
evaluate other (non-suspended) threads.
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Incnode(Tree of 221 Internal Nodes)

SC 1.36 { { { { { { {
UP 1.96 0.97 0.67 0.52 0.48 0.42 0.39 0.36
DR 2.27 1.16 0.77 0.59 0.48 0.40 0.35 0.33

1 2 3 4 5 6 7 8
Processors

Quicksort(List of 106 Random Integers)

SC 26.2 { { { { { { {
UP 29.6 18.5 18.2 15.1 13.6 11.6 11.1 10.7
DR 38.3 23.2 23.3 18.4 16.7 14.8 13.6 12.6

1 2 3 4 5 6 7 8
Processors

Figure 9: Timing results in seconds for incnode and quicksort.

SC is sequential C, UP is unsafe-parallel C, and DR is dynamic

resolution.

potentially shared with e0 (and threads created by e0)
before it allows e0 access to this data. In the absence
of sharing, e and e0 evaluate concurrently without syn-
chronization under dynamic resolution.

7 Implementation and Results

We have implemented dynamic resolution for two prob-
lems coded in C|for the incnode program of this paper
and for a destructive list quicksort|on an SGI Chal-
lenge machine with one gigabyte of shared memory and
eight 150Mhz R4400 processors.

The programs were written mostly in C (compiled
-O).14 A few synchronization functions were written
in assembler. We compare three versions of each pro-
gram: a sequential version, an unsafe-parallel version
that operates correctly only on data guaranteed not to
contain shared structure, and a dynamic-resolution ver-
sion that correctly handles sharing. For the sequen-
tial programs, recursive and non-recursive implementa-
tions were compared|the results of the faster imple-
mentation are reported here. The unsafe-parallel and
the dynamic-resolution versions both use a simple work-
queue scheme (e.g., [27, 24]) to distribute work. Each
processor has a thread queue into which it inserts the
new threads that it creates. When a processor exhausts
the work in its queue, it steals work from other pro-
cessors if possible. The dynamic-resolution versions of
the programs di�er from the unsafe-parallel versions
in three respects. The dr versions maintain reference
counts on dynamic data, they linearize all threads using
a linked-list of thread descriptors, and, when necessary,
they conditionally suspend threads on access to poten-
tially shared data (i.e., they check reference counts).
This extra work constitutes the overhead of dynamic
resolution.

The �rst program measured is incnode (Figures 1
and 8) applied to a balanced tree with 221 internal

14Although our measurements are of C programs, it is not clear
that the requisite analyses for dynamic resolution's static com-
ponent are practically feasible for dynamic resolution of C. In
contrast, ML's pointer safety, strong typing, and pattern match-
ing requires only simple, mostly local, analyses.

Percentage of Shared Nodes
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%
0.50 0.64 0.80 0.96 1.05 1.22 1.27 1.38

Figure 10: Timing results in seconds for incnode with varying

degrees of sharing in the argument DAG on 6 processors.

nodes. The absolute execution times in Figure 9 show
that dr already outperforms the sequential version with
only two processors. Speedup is plotted in Figure 11.
With four processors dr achieves a speedup of 2:3. Fur-
thermore, the additional overhead with respect to unsafe-
parallel is only 13%. Note that with more than �ve pro-
cessors dynamic resolution outperforms unsafe-parallel.
This is because termination detection with dr is trivial.
A dr computation is complete when the head of the lin-
earization becomes empty. Unsafe-parallel, on the other
hand, has no thread linearization so it must reach agree-
ment that all processors have no more work|the time
required to reach agreement seems to be a function of
the number of processors.

Figure 10 contains the absolute execution times for
the dynamic-resolution version of incnode applied to a
DAG d of 221 internal nodes using six processors. Shar-
ing was simulated by selecting nodes of d at random and
setting their reference count to two. Since the choice of
which nodes to share can greatly in
uence performance,
the reported numbers are the mean of ten trials, each
selecting a di�erent set of random nodes. We believe
that these numbers will improve for the �nal version of
the paper since our current implementation moves much
more data than necessary when suspending a thread.

The second program we measured is a destructive
(in place) quicksort for lists. This is another program in
which dynamic resolution automatically �nds expression-
level parallelism.15 The timing results for the three ver-
sions (sequential, unsafe-parallel, dynamic-resolution)
are in Figure 9. Again, dynamic resolution outperforms
the sequential program with two processors. At four
processors, dr incurs overhead of 21% relative to the
unsafe-parallel version; at eight processors, this over-
head is 17%.16

It is interesting to note that dynamic-resolution over-
head (from counting references, linearizing threads, and
checking for shared data) is itself \parallel"; that is, its
cost distributes over the available processors.

8 Related Work

Dynamic resolution was �rst suggested in [12] and fur-
ther developed in [11]. The early ML implementations
were however not e�ective since they did not outperform
sequential C. In this paper we validate dynamic res-
olution as e�ective by demonstrating that C programs
implemented with dynamic resolution surpass|in abso-
lute performance|their optimized sequential counter-
parts.

15See [11] for a listing of this program.
16For quicksort, unlike incnode, the unsafe-parallel version

need not spend time reaching agreement for termination since
the quicksort function returns a value (the sorted list). Unsafe-
parallel can terminate as soon as this value is produced.
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Dynamic Resolution

Figure 11: Parallel speedup for dynamic resolution and unsafe-parallel applied to a tree of depth 22. The text explains why dynamic

resolution outperforms unsafe-parallel on more than �ve processors.

Work related to the parallelization of languages with
dynamic data structure falls into two classes: static{
dynamic techniques and solely static techniques.

Tinker and Katz propose to model a Scheme im-
plementation as a database in their ParaTran system
[26, 16]. Concurrent reads and writes are concurrent
transactions under this model. Evaluation in Paratran

proceeds optimistically. Upon dynamic detection of a
con
ict, the computation must be rolled back to a point
where the linear access order is intact. Reversing large
computations is expensive. By contrast, our dynamic-
resolution technique suspends a con
icting expression
and can immediately evaluate other pending work. The
amount of run-time information required by dynamic
resolution is also small (reference counts, thread de-
scriptors) in comparison to the complex time-stamps
Paratran maintains for heap objects. Paratran has not
produced e�ective speed-up.

Lu [19], and Lu and Chen [20], describe run-time
methods for parallelizing loops with indirect array ac-
cesses (in Fortran and C) and (restricted) pointer ac-
cesses (in C). Their methods pre-execute a loop nest
at run time to �nd data dependences between program
statements in the loop. The compiler, using static anal-
ysis, generates a scheduler for the loop's iterations. At
run time, this scheduler dynamically records references
to dynamic data and, using the reference patterns thus
collected, allocates loop iterations to individual proces-
sors for parallel evaluation. Unlike dynamic resolution,
their method does not handle procedure calls, modi�-
cation of existing data structure links, or the allocation
of new data. Their method also depends on extensive
pointer analysis (e.g., [17]) that has been shown to be
expensive in practice [17].

Harrison's PARCEL system [7, 6] and Larus's Cu-
rare [17] seek parallelism in sequential Scheme programs
using static analyses. Both systems compute bounded
approximation information intended to allow paralleliza-
tion of non-interfering imperative expressions. For large,
irregular data, such bounded approximation leads to

overly conservative parallelization|if sharing can occur
dynamically, PARCEL and Curare assume that it al-
ways occurs. In the presence of sharing, therefore, some
of the parallelism that dynamic resolution �nds must
elude these systems.

Hendren [9, 8] addresses the problem of parallelizing
programs with recursive data structures with an algo-
rithm for estimating the relationships between accessi-
ble nodes in a dynamic data structure. Relationships
thus attained are then used to (statically) detect in-
terference between program statements. Her analysis
�nds parallelism when it can statically determine that
trees, rather than DAGs, always reach a given program
point. Therefore, this analysis cannot discover paral-
lelism in DAGs|the type of parallelism that dynamic
techniques �nd. Hendren's analysis also detects when a
set of handles (pointers) into a dynamic data structure
cannot reach common structure. Relationships between
handles are similar to the reaching relations that dy-
namic resolution obtains from pattern matching (x5.2).
Hendren's analysis can potentially perform the task of
dynamic resolution's static component in languages that
do not support patterns.

Many approaches to the general problem of static
pointer analysis have been designed (e.g., [15, 3, 18,
10, 28, 4]). These approaches usually use a variety
of bounded approximations (of the heap itself, of the
store of heap variables, or a combination of the two).
Bounded approximations are conservative|they must
account for all possible con�gurations of the program's
dynamic data. In contrast, dynamic techniques adapt to
individual instances of individual dynamic structures at
run time. Static pointer analyses also require expensive
interprocedural analyses that curtail their practical use
(cf. [17, 25]). With dynamic resolution, interprocedu-
ral information (i.e., sharing information) dynamically
propagates into functions at run time.
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9 Conclusion

We have described a run-time technique called dynamic
resolution. Dynamic resolution extracts parallelism from
program procedures that destructively manipulate DAGs
(that is, for procedures that modify a DAG's edges or
update the contents of its vertices). Dynamic resolution
is the �rst parallelization technique that can automat-
ically and e�ectively parallelize the destructive DAG
rewrite and destructive list quicksort problems. On
a contemporaneously-fast shared-memory parallel ma-
chine, the run-time overhead of this technique is small
relative to unsafe parallelization. Furthermore, dynamic
resolution provides signi�cant speedup over the sequen-
tial implementations.

Used in the context of a pointer-safe language such
as ML, dynamic resolution can �nd such parallelism au-
tomatically while preserving the language's sequential
semantics. In unsafe languages such as C, additional
programmer assertions are necessary for safe dynamic
resolution. We believe that dynamic parallelization in
general, and dynamic resolution in particular, are viable
approaches for language parallelization.
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