
Evolution of Astable Multivibrators in Silico

Lorenz Huelsbergen1 and Edward Rietman1 and Robert Slous2

1 Bell Laboratories, Lucent Technologies???
2 Xilinx Inc.y

Appears in 1998 International Conference on Evolvable Systems

Abstract. We use evolutionary search to �nd automatically electronic circuits that toggle an output
line at, or close to, a given target frequency. Recon�gurable hardware in the form of �eld-programmable
gate arrays|as opposed to circuit simulation|computes the �tness of a circuit which guides the evo-
lutionary search. We �nd empirically that oscillating circuits can be evolved that closely approximate
some of the supplied target frequencies. Our evolved oscillators alias a harmonic of the target frequency
to satisfy the �tness goal. Frequencies of the evolved oscillators were sensitive to temperature and to
the physical piece of silicon in which they operate. We posit that such sensitivities may have nega-
tive implications for demanding applications of recon�gurable hardware and positive implications for
adaptive computing.

1 Introduction

Complex entities|biological and arti�cial, for example|are in part governed by systolic processes. In many
animals, hearts beat at (perhaps variable) frequencies to distribute uids. Circuits in machines coordinate
information ow in step with a local or global clock. Biological oscillation arose from primitive components
(molecules) in an environment (physics) via the process of natural selection. Mechanical oscillation arose
in computers, and in many other machines, through human design. We seek to understand if evolution can
be harnessed to design pieces of computing machines. Toward this end, we are conducting experiments to
\evolve" circuits|oscillators (astable multivibrators) in particular|from primitive logic components. Our
goals are twofold: The exploration of the capabilities of in Silico evolution and the investigation of whether
computational circuits based on oscillators can thus be constructed.

The genetic algorithm (GA) [4] is a form of evolutionary search. GAs have been shown to perform well
as a general optimization technique across a broad range of domains (see Goldberg [2] for examples). The
GA maintains a population of individuals (bit strings) over a series of generations. The initial population
is random. Using an externally supplied �tness function (environment), the GA selects promising individ-
uals for the next generation. Some such selected individuals are then paired and, with random substrings
interchanged, placed in the next generation.

Evolutionary search|most recently in the form of GA-based genetic programming (GP)|has been used
to evolve computer software (e.g., [6]). In this context, the bit string comprising an individual is interpreted
as a (perhaps variable length) sequence of instructions written in a computer language. Distance, in some
metric space, between the result of evaluating a GP individual and the desired target result constitutes an
individual's �tness. It is well known that digital software and hardware are computationally equivalent. This
suggests that application of software evolution techniques may also be fruitful in a hardware realm [8, 3, 1, 12].
With evolvable computational structures, the programming onus shifts from providing an algorithm (circuit
or program) for solving the task at hand to crafting a function that assigns an accurate �tness measure to
partial and complete solutions. Search|taking the form of a GA for this paper|can then automatically
perform algorithm discovery.

The recent experiments of Thompson [8] in particular demonstrate that recon�gurable logic in the form
of �eld-programmable gate arrays (FPGAs) can serve as a viable substrate for gate-level hardware evolution.
Thompson evolved discriminator circuits that, when presented with one of two possible input tones (frequen-
cies), would correctly classify their input. Our system for in Silico evolution is similar to Thompson's. Our

??? florenz,earg@bell-labs.com
y robert.slous@xilinx.com

study however concerns circuits with fundamentally di�erent characteristics than input-sensitive frequency
discriminators|we are evolving computational components, namely oscillators, that function as stand-alone
clocks.

Our result is the automatic generation of oscillators at speci�ed target frequencies from primitive electronic
components. Given only a target frequency f , our system can produce|from logic gates (such as \not")
and wires to connect them|a circuit whose single output oscillates between the logic states low and high
with frequency f (or a harmonic multiple thereof). Note that the circuit undergoing evolution receives no
input in general and no clock signal in particular. It completely synthesizes oscillation.

Fig. 1.: A manually designed ring oscillator constructed from three inverters. The output oscillates due to gate and
signal propagation delays. A genetic algorithm can �nd circuits with similar behavior|but not necessarily of similar
structure|that oscillate at prede�ned target frequencies.

One route to such oscillation is exploitation of gate and signal propagation delays along with feedback.
The manually designed ring oscillator of Figure 1 illustrates this basic principle. This oscillator's frequency
depends on the speed of the substrate's implementation technology.5 Note that the oscillator's frequency may
be reduced by inserting additional inverters into the ring. It is di�cult, even for skilled designers, to craft
feedback circuits with speci�ed characteristics (e.g., frequency) solely from logic gates. In practice, therefore,
oscillators are usually constructed from (relatively expensive) analog components.

Though most often deployed in digital circuits, transistors are analog ampli�ers. Since gates are con-
structed from transistors, circuit evolution is free to exploit their analog behavior to satisfy its goal. Further-
more, since electronic components are physical devices that operate electromagnetically, e�ects such as cross
coupling are also available to evolution. As we will discuss (x5), and Thompson considers at length [10, 9],
exploitation of such \features" poses new engineering concerns that must be addressed. On the other hand,
we observe functional portability of evolved circuits from one piece of silicon to another which discounts the
wide-spread exploitation of such chip-speci�c peculiarities.

We report results of in Silico oscillator evolution for ten target frequencies in three cell-array sizes (6x8,
8x8, and 16x16). Considering all three cell-array sizes, our system discovered quite accurate oscillators|over
97% of their pulses correct|for �ve of the ten frequencies and required only a small number of GA runs.
Our empirical results are statistically reproducible. Random search con�rms that the directed search of the
GA in the space of oscillator circuits is e�ective; that is, the evolutionary search is directed and does not
\blindly stumble" upon solutions.

2 Related Work

Although all experiments on hardware evolution are recent, the idea [12, 1] spans at least two decades. To
date a few groups have used software simulation (digital and analog) to provide circuit �tness measures
[3, 5]. Aside from the work of this paper, one other experiment [8] used recon�gurable logic to directly, in
real time, to evolve circuits in Silico. We now provide further details on the prior work.

Wolfram [12] and Atmar [1] are among the �rst to describe frameworks based on (evolutionary) search
to create computational hardware. Wolfram posits that it may be possible to �nd a realization of simple
combinational circuits using genetic search and, thereby, to mitigate the complexities of hardware design. In
his thesis, Atmar considers hardware that admits rapid evolution of �nite state machines. Since the design
and construction of such hardware was relatively expensive at that time, Atmar simulated his approach in
software. Though slow, the simulation was applied with some success to the task of character recognition.

5 Gates in contemporaneous o�-the-shelf FPGAs typically switch in nanoseconds.

2

The most signi�cant experimental result to date is that of Thompson [8]. He used a recon�gurable
hardware device (FPGA) to evolve a binary frequency discriminator that classi�es its input signal into
one of two frequencies. His search was also GA based and obtained, as we do here, its �tness measures in
real time from the FPGA. Thompson identi�ed the phenomenon of evolution exploiting the device's analog
nature (i.e., the physics of its immediate environment) in �nding solution circuits [9] (see also Section 5
below). Earlier, Thompson et al. [11] simulated oscillator evolution in a software model of an FPGA. They
report evolving pulse trains with frequencies much lower than speeds of the simulated logic gates, but not
at the target frequency. Because of simulation overheads, circuit evaluation times were limited to 10ms;
our experience reveals that times an order of magnitude longer are necessary to yield stable oscillators in
practice. Our work di�ers from Thompson et al.'s [11] in three respects: (1) our evolved oscillators function
in an actual recon�gurable device; (2) their frequencies are very close to a multiple of the target frequency;
and, (3) they are stable over time (i.e., for many hours).

Others have coupled GAs to electronic and electrical circuit simulators as sources of �tness measures.
Koza et al. (e.g., [5]) coopted genetic programming of software to evolve instead descriptions of analog
electrical circuits. They however do not report on the conversion of evolved descriptions to actual hardware.
It has not been demonstrated that analog circuits evolved via simulation are implementable in practice.
In Silico evolution, on the other hand, assures that solution circuits function in at least the device (and
environment) in which they originally evolved. Higuchi et al. (e.g., [3]) similarly use simulation of, in their
case, digital circuits to guide evolution. They do test and verify their evolved circuits in an FPGA, but
only after evolution is complete. In Silico evolution|Thompson's [8] and our approach|can speed circuit
evolution since evaluation is in hardware proper. The in Silico approach also provides evolution the ability
to exploit analog circuit characteristics whereas digital simulation abstracts this physics. Higuchi et al. [3]
describe various means by which hardware evolution can be extended; by performing the genetic search in
hardware instead of software, for example.

3 System for in Silico Evolution

Our custom system for in Silico gate-level evolution consists of a hardware component coupled with a GA
implementation. We �rst describe the hardware and then the software; further details of the hardware are
available elsewhere [7].

3.1 Hardware: FPGA and PC

The hardware consists of two pieces: an FPGA used exclusively for assigning �tness values to circuits and
a general purpose computer (PC) that services the FPGA and executes the search algorithm. Figure 2 is a
block diagram of this system.

Fig. 2.: A system for in Silico evolution. The PC downloads con�gurations (circuits) into the FPGA for �tness
evaluation. It also samples and records the FPGA's output. The bus driver insures that the FPGA output is forced
either completely low or high. Peripheral IO (PIO) devices consitute the PC/FPGA interface.

An FPGA is an electronic device (usually packaged as a single chip) that can be con�gured to function
as an arbitrary digital circuit.6 Recon�gurability can be achieved by associating memory cells with logic
gates and interconnections. The states of the con�guration cells govern a gate's speci�c logic function or an
interconnection's source and destinations. That is, a circuit for embodiment in an FPGA can be described

6 The FPGA's size limits the digital circuits it may realize.

3

by a bit string that contains information on the type of gates a circuit requires and how they are to be
connected. The genetic algorithm described in the next section will search for bit strings describing circuits
that induce a target behavior (i.e., oscillation) in the FPGA.

FPGAs generally consist of a collection of cells along with one or more levels of hierarchical intercon-
nect among the cells. Additionally, FPGAs contain IO blocks (IOBs) that enable the con�gured circuit to
communicate with external devices.

(a) (b)

Fig. 3.: Relevant portions of the XC6216 FPGA architecture. Sample logic-cell layout (a) used for the experiments
of this paper. Nearest-neighbor connections and the single bit-wide output line (lower right) are depicted. Digital
per-cell logic (b) consists of multiplexors controlled via con�guration bits.

Figure 3 contains high and low level views of the Xilinx XC6216 architecture relevant to our experiments.
Figure 3a depicts a sub-array of the FPGA's cells and enabled connections (nearest-neighbor). Note the bit-
wide output line emanating from a cell on the bottom row. The oscillator experiments of this paper were
conducted in such 6x8, 8x8, and 16x16 arrays with single outputs. The output of a single cell was routed
to a XC6216 IOB which transmitted the signal to the PC as well as to an oscilloscope for monitoring. Note
that|among other points discussed below|we utilize only the lowest level of inter-cell communication and
that the FPGA circuit receives no input (but may produce a time varying output signal).

The Xilinx XC6216 FPGA [13] was chosen for our implementation for a number of reasons:

1. it may be recon�gured inde�nitely,
2. it may be partially recon�gured,
3. its design insures that an invalid circuit will not harm it,
4. its speci�cation is non-proprietary.

Point 1 allows its use in repeated �tness evaluation which is the central component of a GA.7 Point 2
guarantees that con�guration time (a non-negligible cost in �tness computation) is linear in the size of
the circuit being loaded. Point 3 tolerates random circuit con�gurations which are prevalent in the circuit
population maintained by the GA. Point 4 permits bit-level circuit description while bypassing conventional
circuit entry tools.

Figure 3b is a schematic of the digital logic within a single XC6216 cell. Multiplexors, controlled via
con�guration bits, implement common logic functions. Wires into a cell (from its nearest neighbors) constitute
its X1, X2, and X3 inputs which, by appropriate con�guration of the multiplexors, can compute all 2 :1 and
some 3 : 1 boolean functions for the cell's output, F . A one-bit register is also available per cell. However,
we disabled all registers for this paper's experiments. (Evolution is free to construct register structures by
appropriately connecting multiple cells.) Con�guration of a single XC6216 cell nominally requires three bytes
of information.

It is important to note that although the cell function is described in terms of digital logic, the cell
is constructed from gates which are in turn built from analog components (transistors). Thus, a circuit
constructed in an unconventional manner may exhibit analog behavior that may extend to the global (circuit)

7 Our chip has been recon�gured millions of times.

4

level. GA �tness evaluation is an unconventional FPGA application and we make no attempt to detect or
restrict con�guration strings describing such circuits.

3.2 Software: Search Algorithms

This section describes the implementation of the genetic algorithm used in the oscillator experiments and also
recounts the random-search algorithm used to verify the e�cacy of in Silico evolution. We defer elaboration
of the various constants (e.g., population and sample sizes) to Section 4.

Evaluation Function. Fitness assignment requires an assessment of an individual's performance on some
particular task. This is done via an evaluation function:

EO : (I; f)! S (1)

EO maps an n-bit con�guration string (individual) I and a frequency f to an m element sample vector S.
This vector contains m output values (each either low or high) of the FPGA's output line at 1=f second
intervals and is used in assigning individual I 's �tness.

We note that in our implementation the frequency f may only be instantiated to values that can be
readily synthesized in software by the PC (see x4).

Fitness Function. A circuit I 's �tness is computed using only the sample vector S returned by the evalu-
ation function (Equation 1). Lower �tness values are better. The �tness is given by:

Fo (S) �

mX

i=1

Si � (i mod 2) (2)

where Si is the i-th element of the sample and � denotes \exclusive or." The �tness, therefore, is the number
of \missed" pulses. A missed pulse occurs when an even (odd) sample element does not match a low (high)
target pulse.

Fig. 4.: Juxtapostion of the target oscillator (at sampling frequency f) and a possible solution oscillator at a harmonic
of f .

Figure 4 illustrates the �tness computation process. The top pulse (of sample frequency f) indicates the
points in time when samples are taken. The FPGA's output is always sampled at the beginning of a high
pulse and alternating samples are taken to be high followed by low, etc. Note that an oscillator of a harmonic
multiple of f may satisfy the desired criteria.

Search Methods. Here, we describe details of the genetic and random search.

Genetic Search. We use tournament selection with elitism as the GA's population-selection mechanism.
Crossover and mutation are its genetic operators.

Population selection, for the construction of successive generations, is performed via k-tournament selec-
tion. Let P be a population (set) of N individuals (con�guration strings). To select a single individual from

5

P , tournament selection examines k individuals in P and selects the one with best �tness. This mechanism
is used to generate candidate pairs for crossover, for example.

We use a recombination operator that performs two-point crossover. Crossover of two n-bit con�guration
strings Ia and Ib �rst selects a subsequence of bits

8 starting at a random point 0 � pa < n in con�guration
Ia. The length k > 0 of the subsequence is chosen randomly such that pa + k < n. A random point pb,
0 � pb + k < n, is then chosen in con�guration Ib. Finally, the k bits in Ia starting at pa are interchanged
with the k bits in Ib starting at pb.

Crossover in a population P is performed by �rst selecting a subset P 0 � P of con�gurations from
the population (using tournament selection). A con�guration is randomly selected for P 0 with probability
Probcrossover . The con�gurations in P 0 are then randomly paired and the crossover operator is applied to
each pair to produce a replacement pair.

Bits in every con�guration string in P are mutated (negated) with probability Probmutate during gener-
ation transitions.

Random Search. Random search randomly generates an individual I , evaluates I and computes its �tness, and
(optionally) records I 's �tness as the best seen if I improves on the current best �tness. This process continues
until a su�cient number of global solutions are found or until the number of con�guration evaluations exceeds
a predetermined threshold.

4 Experiments

For three array sizes|6x8, 8x8, and 16x16|we performed oscillator evolution experiments for ten target
frequencies in a Xilinx XC6216 FPGA [13]. Each of the thirty experiments consisted of ten randomly seeded
GA runs. Table 1 lists the frequencies and summarizes the results. Note that the evolved oscillators are close
to harmonics of the target frequency. The highest target frequency is the one at which the PC can most
rapidly sample the FPGA by polling the IO cards mapped to the PC's port. The nine lower frequency targets
were obtained by successively inserting blocks of 100 null operations (NOPs) into this polling loop. (See x5
below for alternatives to software sampling.) Actual frequency determination was then done with an external
oscilloscope attached to the bus driver output.

f f 0 GA Random

88.4 4949 {

66.3 8298 {

55.3 5527 {

47.4 5475 {

40.1 925 149 9943

35.2 6808 {

31.5 8808 {

28.4 6475 {

25.9 6947 {

23.7 925 220 9475

6x8 Cell Array

f f 0 GA Random

88.4 4381 {

66.3 1185 466 9734

55.3 929 213 9099

47.4 6032 {

40.1 5025 {

35.2 7066 {

31.5 8772 {

28.4 909 341 9905

25.9 6535 {

23.7 8016 {

8x8 Cell Array

f f 0 GA Random

88.4 6033 {

66.3 909 575 9931

55.3 925 52 8313

47.4 6920 {

40.1 4134 {

35.2 8194 {

31.5 7523 {

28.4 943 552 9886

25.9 6491 {

23.7 8533 {

16x16 Cell Array

Table 1.: Results of evolving oscillators for ten target frequencies in three cell-array sizes. The target frequency f

and the evolved frequecy f 0 are in kHz. (f 0 is given only for experiments that produced �tness values less than 1000.)
The table lists the best �tness (as the number of missed pulses out of 2 � 104) found by the GA and, for targets that
gave oscillators, by a random search.

GA parameters were set as follows: population size N = 512, Probcrossover = 25%, Probmutate = 0:01%.
The probability settings mean that a quarter of every generation was generated through crossover (the

8 To simplify implementation, we select points at byte boundaries. We do not expect that this simpli�cation funda-
mentally a�ects our results.

6

other three quarters being directly selected) and that one bit (randomly selected) in every 104 bits in the
population was negated during transition into a new generation. Binary tournament selection was used. A
GA run was deemed complete when the �tness of the population's best individual did not improve for 50
consecutive generations (stasis). We have no reason to believe these settings to be in any way \optimal" for
the problem under investigation; alternate settings have not been tried.

The length of the con�guration string was 576 bytes of which 1920 bits (41:6%) actively controlled the
FPGA. To simplify the problem, the remaining bits were masked to enable only nearest-neighbor intercon-
nections and to disable cell registers. We chose to disable these features to simplify the problem and hence
do not yet have data on whether their inclusion a�ects the solutions.

In a �tness evaluation, the FPGA's output line was sampled m = 2� 104 times at the target rate. We
arrived at this sample size by noting that shorter samples (e.g, m = 1� 103) produced unstable oscillators.
That is, oscillators evolved using a signi�cantly shorter sample sequence decayed after producing pulses only
for the duration of the sampling. We �nd that the GA can encourage oscillator stability by integrating over
longer sample times. In light of these �ndings, it would be interesting to examine the stability of Thompson
et al.'s [11] oscillators evolved under software simulation.

For each target frequency f , Table 1 records the best GA individual �tness (fewest missed pulses) found
for the three array sizes over ten runs. For individuals with �tness less than 1000 we list the oscillating
frequency f 0. The �tness of the best individual found via random search is also given. Our results are
statistically reproducible. This means that in a �xed number of runs, evolutionary searches will �nd circuits
with comparable �tness even though the searches' random seeds di�er.

The GA found oscillators of good, but not perfect, accuracy. Solutions always appeared within the �rst 300
generations. Note that all evolved oscillators are close to a harmonic of the target frequency. The oscillators
found in the smallest array (6x8) are qualitatively di�erent than those found in the larger (8x8 and 16x16)
arrays in that they were found at di�erent frequencies. In particular, the evolved 6x8 oscillator for target
40:1kHz has a frequency similar to the 16x16 evolved oscillator for the 55:3kHz target; yet no oscillator
was found in the 6x8 cell space for the latter target. That is, the 6x8 oscillator for 40:1kHz should also
be an oscillator for 55:3kHz in the same cell space; yet it was not found for target 55:3kHz. Restriction of
resources apparently enables discovery of certain oscillators but also inhibits discovery of others. A possible
explanation is that the restricted cell space blocks some evolutionary pathways that are available with more
resources.

The evolved oscillator circuits require further study to discern their internal structure. It is straightforward
to construct|from the con�guration bit strings|a schematic of the cells' functions and the wires that
connect them. However, it is unlikely that a digital implementation (with di�erent layout, for example)
constructed from a disassembled schematic will yield identical, or even similar, behavior. In other words,
it is possible that the evolved circuits exploit parallel interactions between gates used in an asynchronous
uncontrolled fashion. In the oscillator experiments we observe that the the frequency of the oscillator circuits
could be governed by such e�ects but not their general function (oscillation); we conclude this because the
circuits portably oscillate in di�erent silicon pieces, but at di�erent frequencies (see x5).

Figure 5a depicts an oscilloscope output of the 929kHz 8x8 oscillator found during the search at target
frequency f = 55:3kHz. The voltage on the FPGA output line was captured before the signal passed through
the bus driver (Figure 2). Capture of the output before the driver yields a sawtooth function that oscillates
between TTL threshold voltage levels. Note that the circuit's gates are exploiting threshold levels to achieve
oscillation. The signal after the bus driver approaches the form of a square wave (not shown). Figure 5b is
the power spectrum for this sawtooth signal; it indicates that the signal lies mainly about 900kHz, but also
contains a few high-frequency components. In other words, the oscillator is not spectrally pure, but quite
close.

To assure that evolutionary search was indeed approaching solutions and not randomly \stumbling" upon
them, we conducted 106 random-search evaluations (x3.2) for each experiment that yielded a circuit with
GA �tness below 1000. The best �tness produced by random search never reached 9000. (In comparison, ten
GA runs for a given frequency required approximately 3:5� 105 evaluations.) Note that a circuit that holds
its output either low or high will trivially score a �tness of m=2 (where m is the number of pulse samples).
Random search|even when allotted more evaluations than the GA|has not located a circuit whose output
was in the correct state more than 52% of the time. Furthermore, evolutionary search always found circuits
closer to the goal while requiring fewer evaluations.

7

(a) (b)

Fig. 5.: Evolved oscillator and its power spectrum. Oscillator (a) of frequency 929 kHz, a harmonic of the target
frequency f = 55:3 kHz; its pulses coincide with 98% of f 's pulses. The power spectrum (b) indicates that the signal's
dominant components lie at the measured harmonic frequency.

5 Discussion

We conclude this paper with a discussion of the results and of some engineering issues raised by in Silico

evolution.

Evolutionary search discovered oscillators for some, but not all, presented target frequencies. It is desir-
able, however, to develop methods that can evolve oscillation for more|if not for most|frequencies. We
believe oscillator circuits were not found for some frequencies for two reasons: (1) oscillation at the target
frequency is not possible given the available resources and (2) the length of the search was insu�cient. Com-
parison of array sizes 6x8, 8x8, and 16x16 was done to begin investigation of the �rst point. Since the size
of the search space grows exponentially in the size of the hardware array, searches in larger arrays will likely
be more computationally expensive. (For the 8x8 array the search space already consists of 21920 possible
con�guration strings, some of which describe semantically equivalent circuits; this size increases by a factor
of 16 for the 16x16 array.) Conducting similar experiments with larger populations or greater stasis settings
would expand the search which|in exchange for longer run times|could turn up other oscillating circuits

Our method of sampling the FPGA with a software polling loop running on a PC introduced some
indeterminacy|such as operating system interrupts|into the �tness measurement process. Future systems
for oscillator evolution could employ dedicated frequency generators and microcontrollers to better control
the sample intervals and to provide a larger and �ner spectrum of target frequencies. Software sampling did
not however pose a signi�cant obstacle to evolving some fairly accurate oscillators; better sampling technique
may yield more accurate oscillators or even oscillators for frequencies so far found untenable by evolutionary
search.

It is not at all understood how the evolved circuits function. For example, relative to the speed of the
FPGA's gates (nanosecond transition times), the evolved oscillators are of rather low frequency. To explore
this point, we manually constructed the largest (63 inverters), and hence slowest, ring oscillator that �ts in
the 8x8 cell space. (Figure 1 depicts a similar three-inverter ring.) This oscillator has a frequency of 3560kHz
which is still much higher than the frequencies of the evolved oscillators in all three array sizes. Our evolved
circuits must therefore be using mechanisms other than simple ring oscillation to attain their behavior.
Disassembly of the circuits into digital schematics may provide some clues, but it is unlikely that this will
be su�cient to fully understand their behavior.

Evolution operates with respect to an environment. In Silico circuit evolution occurs not only in the
silicon of the recon�gurable logic device, but also in the environment where that device is located. Like
Thompson [10], we have observed that temperature a�ects the evolved circuits. Cooling the FPGA increases
the frequency of oscillation in our case. The oscillators of this paper were evolved at \room temperature."
Good temperature control seems paramount to evolving more precise circuits. Thompson [10] is investigating
solutions using simultaneous evolution in multiple environments to increase circuit applicability and robust-
ness. Other factors, such as the position of the circuit within the FPGA's full 64x64 array, or the silicon
wafer from which the particular FPGA was cut, may have an e�ect on the portability of evolved circuits.

8

We veri�ed that it is possible to use an oscillator evolved in FPGA chip A in another chip B (of the same
variety)|albeit with a slight change in frequency.

The inuence of factors such as temperature and silicon quality on circuit evolution is an impediment to
the rigorous adherence to speci�cation (of frequency for example) required by conventional system design.
However, evolved circuits are potentially quite adaptive. For example, the evolved oscillators function as
thermometers that could control the device over a temperature range. Evolution is an adaptive process: it
could potentially salvage defective chips by evolving circuitry to avoid|or even harness|the defects.

6 Summary

We have described a system for using evolutionary search to �nd electronic circuits that approximate or
meet a given speci�cation|in particular, to �nd oscillators at various target frequencies. Real-time �tness
measures, obtained from a recon�gurable FPGA, guide the genetic algorithm that performs the search. For
�ve of ten target frequencies, the system was able to construct circuits that oscillated at a harmonic close
to the target frequency. Automated search algorithms operating in the space of circuits can be harnessed as
a powerful new aid in the design and construction of certain electronic hardware.

Acknowledgments

Thanks to Bob Frye for valuable insights into this work. The anonymous referees, Brian Kernighan, and
Adrian Thompson supplied useful comments.

References

1. J. W. Atmar. Speculation on the Evolution of Intelligence and its Possible Realization in Machine Form. PhD
thesis, New Mexico State University, April 1976.

2. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.
3. T. Higuchi, H. Iba, and B. Manderick. Evolvable hardware with genetic learning. In H. Kitano and J. A. Hendler,

editors, Massively Parallel Arti�cial Intelligence, pages 399{421. MIT Press, 1994.
4. J. Holland. Adapation in Natural and Arti�cal Systems. University of Michigan Press, 1975.
5. J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Automated WYWIWYG design of both the topol-

ogy and component values of analog electrical circuits using genetic programming. In Proceedings of the First
Conference on Genetic Programming, pages 123{131. MIT Press, July 1996.

6. J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors. Proceedings of the
Second Genetic Programming Conference. Morgan Kaufmann, July 1997.

7. E. Rietman, R. Slous, H. Hemmi, H. de Garis, and K. Shimohara. Building a machine for evolution in silico.
In M. Sugisaka, editor, Proceedings of the Third International Symposium on Arti�cial Life and Robotics, pages
186{189, January 1998.

8. A. Thompson. Silicon evolution. In J. Koza, editor, Proceedings of the First Conference on Genetic Programming,
pages 444{452. MIT Press, July 1996.

9. A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics. In T. Higuchi and M. Iwata, editors,
First Int. Conference on Evolvable Systems: from Biology to Hardware (ICES96), pages 390{405. Springer Verlag
LNCS 1259, 1997.

10. A. Thompson. Temperature in natural and arti�cial systems. In P. Husbands and I. Harvey, editors, Fourth
International Conference on Arti�cial Life, pages 388{397. MIT Press, 1997.

11. A. Thompson, I. Harvey, and P. Husbands. Unconstrained evolution and hard consequences. In E. Sanchez and
M. Tomassini, editors, Towards Evolvable Hardware: The Evolutionary Engineering Approach, pages 136{165.
Springer{Verlag, 1996.

12. S. Wolfram. Approaches to complexity engineering. Physica D, 22:385{399, 1986.
13. Xilinx Inc. The Programmable Logic Data Book. XC6200 Advanced product speci�cation V1.0, 1996.

http://www.xilinx.com.

9

