
Appears in Proccedings of 2005 Congress on Evolutionary Computation

Fast Evolution of Custom Machine Representations
Lorenz Huelsbergen

Bell Labs, Lucent Technologies
Murray Hill, NJ 07974

lorenz@research.bell-labs.com

Abstract- Described are new approaches for evaluating
computer program representations for use in automated
search methodologies such as the evolutionary design
of software. Previously, program representations have
been either evaluated directly on raw hardware, provid-
ing high speed but little control and flexibility; or, pro-
grams were interpreted by a software interpreter which
can incorporate much flexibility into a program’s evalu-
ation, but does so at a large cost in time due to interpre-
tation overheads.

Here we bridge this gap by providing intermediate
compilation techniques for machine representations that
approach the speed of running raw bits directly on hard-
ware, but that have all the flexibility and control of cus-
tom instruction sets. In particular, we describe two com-
pilation techniques: the first uses just-in-time compila-
tion to convert a custom instruction sequence to machine
code; the second compiles an instruction set specifica-
tion into a specialized interpreter which incurs only small
overheads for instruction decoding. We show that both
techniques can provide manyfold speedups over direct
interpretation while retaining the expressiveness of cus-
tom representations.

1 Introduction
The automatic search for interesting devices—be they phys-
ical, computational, or otherwise—requires the repeated
evaluation of candidate individuals to ascertain their fitness.
Often this evaluation is performed by a computer program
simulating the target device’s environment. Computer sim-
ulation of the environment is, however, a tradeoff. It allows
modeling of environments expensive to build or difficult to
control in real time, but typically incurs very large tempo-
ral simulation overheads. Since fitness evaluation is central
to evolutionary search and other search methodologies, it is
advantageous to remove as much of simulation’s overheads
as possible, while preserving most of its advantages.

Specifically, if computer programs are being evolved,
then a computer may be used directly for evaluating solu-
tions. Alternately, a computer may be used indirectly to
simulate another computer, perhaps through multiple lev-
els of intermediate interpretation. When search is used to
find computer programs—as in the evolutionary computa-
tion areas of genetic programming and machine-language
induction—both ends of this simulation spectrum have been
used by its practitioners [3, 4, 2, 11, 10, 6]. The evaluation
directly of the bits specifying the program on a hardware

processor is on one end of this spectrum [11, 10]. Its pri-
mary advantage is its extremely fast execution speed. On
the other end of this spectrum is the pure interpretation of
the bit string as instructions by a software interpreter [6, 2].
Interpretation gives great flexibility to the design of a cus-
tom instruction set architecture (ISA) and to the subsequent
evaluation of programs written in it. For example, restrict-
ing evaluation to a maximum fixed number of instructions—
a central issue in the presence of loops—is easy with an
interpreter but tricky when raw bits are run natively on a
general purpose machine.

Speed, flexibility, and control are all desirable in the
evaluation of a program representation since they con-
tribute to the overall efficacy of the evolutionary paradigm:
fast evolution of bits on a microprocessor helps find solu-
tions quickly, custom ISA’s allow targeting of a particular
region—and often a smaller region—of the solution space,
and custom instruction sets can avoid finding programs that
might disrupt the search environment, ones that might re-
set the machine for example. This paper shows that the
middle part of the “raw to interpreted” spectrum contains
the best of both worlds. Custom ISA’s—as previously used
for many program evolution projects in many frameworks
(e.g., [3, 4, 2, 6])—can achieve speeds much closer to raw
hardware processing of the instruction bits than pure inter-
pretation has allowed, all the while completely retaining the
safety, control and flexibility of custom instructions.

This paper contributes two techniques for speeding the
evaluation of custom machine-language ISA’s: just-in-time
compilation (JIT or JITC) of freshly created individuals and
specialized interpreter generation (SIG). We believe that
these approaches are also valuable in domains other than
machine-language induction. For example, one can envis-
age JITC or SIG being used to speed evaluation of the Lisp
expressions typically used in Koza-style genetic program-
ming [9] and being applied to other types of program repre-
sentations as well. Note however that JITC in particular is
most useful for evolvable representations that contain loop
constructs since some runtime cost is incurred when new in-
dividuals are created and this cost must be offset by frequent
use of the compiled instructions.

JITC does an on-the-fly translation of a program’s cus-
tom instructions to the underlying hardware’s machine-
language. JITC can be fast; only a single translation pass
over the program is required.

�
Typically, a custom instruc-�

Forward branches to points in the program not yet scanned require
an additional small amount of work to rewrite the forward address once it

while (pc < prog_sz && n_steps--) {
int instr = prog[pc];
int op = GET_OPCODE(instr);
int arity = arity_map[op];
int kind = kind_map[op];
int reg_ops[MAX_ARITY];

pc++;
if (kind == BRANCH_KIND) {
int offset = GET_OFFSET_SZ(instr) *
(GET_OFFSET_DIR(instr) ? 1 : -1);
if (op != J_OPCODE) {

int reg = GET_ARG1(instr);
switch (op) {

case JZ_OPCODE:
offset = !regs[reg] ? offset : 0;
break;

/* other branch cases here */ } }
pc = BOUND_PC(pc+offset,local_prog_sz);

} else {
while (arity--)

reg_ops[arity] = GET_ARG_I(instr,arity);
switch (op) {

case ADD_OPCODE:
regs[reg_ops[1]] += regs[reg_ops[0]];
break;

/* other instruction cases here */

Figure 1: Fragment of a register-machine interpreter written in C and
used in program evolution experiments. Overheads due to instruction de-
coding and program-counter maintenance and termination detection are ev-
ident.

tion will translate into a small number (3-5) of machine
instructions, which is much less than the number of ma-
chine instructions required for its interpretation. Bookkeep-
ing code for terminating execution in the presence of long
or infinite loops, for example, adds significantly to the com-
plexities of interpretation. JIT compilation produces ma-
chine code to perform these tasks quickly as well.

To illustrate the benefits of JITC and SIG, Figure 1 con-
tains a small portion of an interpreter written in C used for
fully interpreted machine-language induction experiments
[6]. Only the code for a couple of instructions is shown:
a branch (JZ OPCODE) and addition (ADD OPCODE). The
full interpreter is much larger—a few hundred lines of C.
(The operational semantics of the full interpreter are given
later in Figure 2.) The point is that there are significant over-
heads to interpretation due to the task of instruction decod-
ing. In the interpreter code one can see that the instruction
kind must be determined as well as the arguments to the
instruction (reg ops). Furthermore, the program counter
(pc) must be maintained. A good C compiler can eliminate
blatant overheads in this code, but the essential task of de-
coding a custom instruction remains, as well as the control
of the interpretation.

Specialized interpreter generation (SIG) for a custom
ISA is this paper’s second technique for speeding machine
representations. It is well known in the programming lan-
guage and compiler communities that for small instruction

becomes known, as explained in Section 4.

sets, say for instructions where opcodes and operands are
contained in 16 bits, one can trade space for time and gen-
erate a (potentially large) custom interpreter that essentially
makes every possible instruction and operand combination
a special case. The SIG approach is simpler than a JIT
compilation system and is also largely machine and OS in-
dependent, but does still incur runtime overhead due to its
instruction dispatch loop; whereas JITC creates a true pro-
gram that does not require interpretation. SIG can be sub-
stantially faster than pure interpretation since all instruction
decoding operations are removed. As shown in Figure 1,
SIG removes, for example, the tests for determining the
kind of instruction being decoded and for parsing its reg-
ister operands.

This paper’s work on fast evaluation of custom instruc-
tion sets is part of the & (AMP–automatic machine pro-
gramming) project currently being designed and imple-
mented to experiment with modular evolution of programs,
widely distributed parallel evolution, and fast evolution
techniques.

The paper continues with related work in the next sec-
tion (

�
2). Section 3 describes a simple, but complete, in-

terpreter that has been used in evolving machine-language
programs, which is used in the subsequent sections describ-
ing JITC and SIG. Section 4 describes JIT compilation of
the interpreter by giving a full translation of the interpreter’s
instructions and a description of the runtime data structures
required for compilation and for implementing evolution-
ary operators such as crossover. Another technique for im-
proving upon pure interpretation is by specializing the inter-
preter for all possible instructions; SIG is described in Sec-
tion 5. We summarize this work in Section 6 with a compar-
ison of JITC and SIG to the known methods of running raw
bits directly on hardware and of interpreting instructions in
a straightforward manner.

2 Related Work
The general ideas of just-in-time compilation and inter-
preter specialization are from the programming languages
and compiler literature; [1] provides a thorough background
in the machinery necessary for implementing such features.
The author is unaware of the use of JITC or SIG in evolving
program representations. Therefore, this paper supplies the
details of how such techniques can function in an evolution-
ary setting with operators like crossover, time constraints on
evaluations, etc., while providing large latitude in instruc-
tion set customization.

Nordin attempted to evolve programs directly on micro-
processor instruction sets [11]. The “brittleness” of such
representations—changing a single bit can create a program
that crashes the machine—led Kühling, Wolff and Nordin
[10] to design methods for containing the evolution of ma-
chine code by essentially using the operating system to trap
exceptions (invalid memory addresses, for example). The
substantial OS support their scheme requires curtails porta-
bility across systems and OS’s, making its implementation
inaccessible to most practitioners. We believe JITC and es-
pecially SIG to be relatively easy to implement.

2

A critique of [11, 10] more relevant to evolutionary com-
putation concerns is that the search space of their represen-
tation is enormous since it encompasses the ISA of the un-
derlying native machine—in the CISC � processors the au-
thors work with, opcodes alone can be 32 bits wide, not
including operands. This makes solutions difficult and (and
perhaps virtually impossible) to come by since the search
space is “polluted” by instructions that cannot contribute to
the sought after solution. Furthermore, many instruction
codings may now result in an operating system trap—this
can increase the cost of executing such an instruction enor-
mously. The JITC and SIG proposals of this paper yield ex-
ecution almost as fast as that of their system, yet admit small
ISA’s while providing extreme flexibility to the EC experi-
menter. Researchers using raw bits on hardware [11, 10]
have not demonstrated evolved programs using complex
control flow (i.e., loops or recursion) that provably compute
their intended functions exactly; we surmise that even their
fast evaluation method only in part compensates for the ex-
treme size of the search landscapes implied by a CISC pro-
cessor’s instruction set size.

Early experiments by Friedberg et al. [3, 4] attempted
to evolve very simple machine-language programs, includ-
ing branches, using an interpretive approach. Their early
experiments were not successful when compared to random
search, but they elucidated the MLI ideas being explored to-
day. Cramer [2] describes an experiment that interpreted a
representation similar to a machine language, but endowed
with high-level iteration operators. Experiments by us (see
[6] for reference chain) use interpreted register machines to
evolve exact solutions for many functions that require com-
plex control flow. JITC and SIG are intended to push the
capabilities of machine-language induction farther.

The JITC and SIG concepts of this paper are applicable
too to evolving other program representations of interest.
For example, the Lisp-based genetic programming work of
Koza [9] and the large body of work based on it, stands to
benefit through run-time compilation of Lisp expressions or
the creation of custom interpreters for the same.

3 Virtual Register-Machine Interpreter
This section provides a sample custom ISA that has been
used for evolving machine-language programs requiring
evolution of loop structures (e.g., [6]); it is used in the sub-
sequent sections. The reader may wish to skip ahead to sec-
tions 4 and 5 and refer to this section’s description only as
necessary. The important thing to note is that the VRM con-
sists of external state in the form of a set of virtual registers,
internal state in the form of a program counter, and instruc-
tions.

The operational semantics of the VRM are given in Fig-
ure 2. It includes instructions similar to those of contem-
porary processors that perform arithmetic, move data, and
twiddle bits. Branch instructions allow synthesis of arbi-
trary control flow. This unrestricted control flow is impor-
tant because it enables solution of non-trivial problems by
synthesizing complex control structures such as loops and�

Complex instruction set computer.

recursion.

3.1 External State: Registers

We define the register state as a vector����
	������������������ ���
of � signed integers. The register state constitutes the ma-
chine’s mutable memory. The precision of a register is in-
herited from the underlying implementation. � Many pro-
gram instructions (e.g., ADD) modify registers directly.

3.2 Internal State: PC

In addition to the external register state, VRM maintains a
piece of internal state: a program counter (PC). The PC is
an integer, ��� PC � � , that selects which instruction to
fetch and execute. Branch instructions modify the PC by
adding a signed offset to it; all other instructions always in-
crement the PC by one. The PC is initially zero. In Figure 2,
the function! �#"$ off

�
PC
� �&%('*),+.-/$0)21435$�� � PC 6 off % � �&%

computes the new PC.

3.3 Instruction Set

A program is a vector of � instructions�78�
	�79�:����������7�;<� ���
The program counter corresponds to an index of

�7
. A pro-

gram terminates when PC '=� , that is, when evaluation
steps past the end of the program. Note that an interpreter
must explicitly maintain the PC. One advantage of this is
that it is easy to limit the maximum number of instruction
evaluated; the disadvantage is that it must expend many cy-
cles for its maintenance.

The VRM’s ISA consists of a register move instruc-
tion MOV, an unconditional branch J, branches conditional
on a register’s value relative to the zero value (JZ, JNZ,
JLZ, JGZ), instructions that initialize registers (SET and
CLR), instructions to increment (INC) and decrement (DEC)
a given register, and a nullary instruction NOP which does
nothing. The arithmetic instructions (ADD, SUB, MUL, DIV,
MOD) perform the respective two’s complement operation
on source and destination, leaving the result in the des-
tination register. The arithmetic NEG instruction negates
the value in its argument register. The arithmetic instruc-
tions mimic C’s behavior and “wrap around” on the excep-
tional conditions of integer overflow (or underflow) instead
of trapping. Arithmetic operations that can generate traps
in C are DIV and MOD which are susceptible to divide-by-
zero. Our VRM evaluator checks for zero divisors, a condi-
tion which we have (arbitrarily) defined to place zero in the
destination register. Note that we must choose how JITC
and SIG will handle such exceptions.

Branches (J, JZ, JNZ, JLZ, JGZ) are always relative
to the program counter. Negative offsets describe a back-
ward branch. Note that the operational semantics rewrites
a branch to an address ��� as a branch to

7 �
(i.e. PC >?�)@

A typical implementation inherits 32-bit signed integers via C’s int
type on a 32-bit machine.

3

NOP A B PC C PC DFE
MOV(G dst, G src) A H PC C PC DIEG dst CJG src

SET(G a) A H PC C PC DIEG a CKE
CLR(G a) A H PC C PC DIEG a CML
INC(G a) A H PC C PC DIEG a CMG a DFE
DEC(G a) A H PC C PC DIEG a CMG a N E
NEG(G a) A H PC C PC DIEG a CML N G a

ADD(G dst, G src) A H PC C PC DIEG dst CJG dst DOG src

SUB(G dst, G src) A H PC C PC DIEG dst CJG dst N G src

J(off) A B PC CMPRQTS(U off V PC VWQYX
JZ(G a,off) A H PC C[Z P\QTS]U off V PC VWQYX if G a ^ L

PC DIE otherwise

JLZ(G a,off) A H PC C[Z P\QTS]U off V PC VWQYX if G a _ L
PC DIE otherwise

MUL(G dst, G src) A H PC C PC DIEG dst CMG dst ` G src

DIV(G dst, G src) A H PC C PC DIEa G dst CJG dst b G src c
MOD(G dst, G src) A H PC C PC DIEa G dst CJG dst d G src c
AND(G dst, G src) A H PC C PC DIEG dst CMG dst e G src

OR(G dst, G src) A H PC C PC DIEG dst CMG dst f G src

XOR(G dst, G src) A H PC C PC DIEG dst CMG dst g G src

NOT(G a) A H PC C PC DIEG a CihIG a

SHL(G dst, G src) A H PC C PC DIEa G dst CJG dst _j_ G src c
SHR(G dst, G src) A H PC C PC DIEa G dst CJG dst kjk G src c

JNZ(G a,off) A H PC C[Z P\QTS(U off V PC VWQYX if G a l^ L
PC DIE otherwise

JGZ(G a,off) A H PC C[Z P\QTS(U off V PC VWQYX if G a k L
PC DIE otherwise

Figure 2: Operational semantics for the virtual register machine VRM. An arithmetic or logical operator on the right-hand side mostly inherits the C
language’s semantics of that operator. Expressions enclosed in m brackets n yield zero on exceptional cases (e.g., divide-by-zero, invalid shift amounts).

and a branch past the end of the program (�porq) as termi-
nation (i.e. PC >s�). A jump instruction

7�t
can therefore

branch to any one of �u6 q distinct addresses. The con-
ditional branches are parameterized by a register and the
jump displacement. JZ branches if the register is zero. JNZ
branches on any value but zero. JLZ branches on a nega-
tive, and JGZ on a positive, register value.

The six bit-wise logical instructions found in the right-
hand column of Figure 2 perform their namesake’s opera-
tion and are defined in terms of the respective C operators
[8]. A departure from this semantics is the interpretation
of the shift operators as NOPs if the shift amount is either
negative or exceeds the number of bits comprising an imple-
mentation register. Since VRM registers are signed, a right
shift (SHR) of a negative quantity will effectively “reset” the
sign bit.

4 Just-in-Time Compilation (JIT)
This section shows how a simple, but fairly complete VRM
can be translated by JIT compilation to native machine in-
structions. Auxiliary machinery necessary to evaluate the
resulting translated program is then described. We also give
two extensions to the translation for custom representations
that:

1. require more registers than available on the native ma-
chine (as may well be the case for Intel x86 [7] archi-
tectures), and

2. memory operations with load/store instructions

The translation assumes without loss of generality that
the underlying machine is a reduced instruction set proces-
sor (RISC) and uses in particular the MIPS instruction set
architecture [5] as the target native machine. This choice of
MIPS as the ISA is in some sense arbitrary; however, the
MIPS ISA is simple enough that, with the explanation in
this text, its semantics should be clear and substitution of
other common ISA’s is straightforward.

4.1 Translation

The translation of the VRM of Figure 2 is given in Figure 3.
After describing the strategy for maintaining internal VRM
state, we proceed to describe the translation itself for a rep-
resentative sample of instructions.

The result of JIT translation of a VRM program v is a
linear sequence of native machine instructions comprising a
native machine program vxw . Since v/w is no longer governed
by an interpreter loop, it must manage its own state, both
internal (program counter) and external (registers). This is
accomplished by mapping this state to the hardware’s regis-
ter set.

The VRM’s program counter’s function is subsumed by
the PC of the native machine. However, we need to re-
tain the flexibility of the interpreted VRM in that it should
be possible to select the exact number of translated VRM
instructions to be executed. This can be accomplished by

4

NOP
�

termchk macro
� H addi rt, rt, -1

bltz rt, l term

MOV(
�

dst,
�

src)
� H termchk macro

add rdst, r0, rsrc

SET(
�

a)
� H termchk macro

addi ra, r0, 1

CLR(
�

a)
� H termchk macro

add ra, r0, r0

INC(
�

a)
� H termchk macro

addi ra, ra, 1

DEC(
�

a)
� H termchk macro

addi ra, ra, -1

NEG(
�

a)
� H termchk macro

sub ra, r0, ra

ADD(
�

dst,
�

src)
� H termchk macro

add rdst, rdst, rsrc

SUB(
�

dst,
�

src)
� H termchk macro

sub rdst, rdst, rsrc

MUL(
�

dst,
�

src)
� yz termchk macro

mult rdst, rsrc
mflo rdst

DIV(
�

dst,
�

src)
� yz termchk macro

div rdst, rsrc
mflo rdst

MOD(
�

dst,
�

src)
� yz termchk macro

div rdst, rsrc
mflo rdst

AND(
�

dst,
�

src)
� H termchk macro

and rdst, rdst, rsrc

OR(
�

dst,
�

src)
� H termchk macro

or rdst, rdst, rsrc

XOR(
�

dst,
�

src)
� H termchk macro

xor rdst, rdst, rsrc

NOT(
�

a)
� yz termchk macro

addi rtmp, r0, -1
xor ra, rtmp, ra

SHL(
�

dst,
�

src)
� H termchk macro

sllv rdst, rdst, src

SHR(
�

dst,
�

src)
� H termchk macro

slrv rdst, rdst, src

J(off)
� H termchk macro

beq r0, r0, fix offset(offset,this instr loc)

JZ(
�

a,off)
� H termchk macro

beq r0, ra, fix offset(offset,this instr loc)

JNZ(
�

a,off)
� H termchk macro

bneq r0, ra, fix offset(offset,this instr loc)

JLZ(
�

a,off)
� H termchk macro

bltz ra, fix offset(offset,this instr loc)

JGZ(
�

a,off)
� H termchk macro

bgtz ra, fix offset(offset,this instr loc)

Figure 3: JIT equivalents for the VRM of Figure 2 using MIPS instruction set. The function fix offset computes the absolute address of the branch
target at compile time. Note the use of the termination register to limit the number of instructions executed and the use of a temporary register to hold
intermediate values. See text for details.

5

dedicating a machine register, here denoted rt, to holding
the number of VRM instructions remaining to be evaluated.
To terminate the program after { VRM instructions, rt is
loaded with { at the start of execution of vxw . JITC inserts
before the translation of every VRM instruction a check to
see if rt has reached zero and, if so, to terminate the pro-
gram by branching to an absolute label. This label, denoted
l term in the figure, is where control should flow after the
program terminates. A logical point is at the end of v8w since
“falling off the end” of v/w signifies termination as well. It
may however be placed anywhere convenient; if it is not
placed at the end of v/w , an unconditional branch instruction
to l term must be placed after the last translated instruc-
tion in v/w .

The two-instruction macro, termchk macro, defined
and used in Figure 3, performs the task of decrementing
the termination register and checking whether it has reached
zero. Note that the VRM’s NOP instruction translates into
this macro. Also note that all VRM instruction translations
begin with termchk macro.

The VRM’s external state of registers is mapped into the
native hardware’s general purpose register (GPR) set. To
allow this, it is necessary to save all GPR’s to spill mem-
ory before executing vxw and to restore these registers after
l term is reached. Here we assume that the number of
VRM registers is less than the number of free GPR’s; be-
low, we describe how additional registers may be virtualized
using some additional memory.

Note that in the MIPS architecture register r0 is tied
to zero. Therefore, the mapping of VRM registers to na-
tive GPR’s starts with register r1. In addition to rt, an-
other GPR here denoted rtmp is reserved for use as tempo-
rary storage. Depending on the representation being trans-
lated, more (or perhaps fewer) dedicated registers may be
required.

The actual translation of VRM instructions is straightfor-
ward. This is due to the VRM being very close to contem-
porary machine languages. Note, however, that the MIPS
instruction set uses the arithmetic instruction for addition
add for many purposes, including register-to-register trans-
fer. The MOV instruction, for example, becomes an addi-
tion of the source register to the zero register with the result
placed in the destination register. Other instructions such as
SET, CLR, INC, DEC, and of course ADD, can be defined in
terms of MIPS’ add or addi instructions. The MIPS sub
instruction is used similarly for NEG and SUB.

Note the arithmetic functions of multiplication and di-
vision translate to multiple MIPS instructions (see [5] for
details). Also, MIPS does not define an exception condi-
tion for division by zero or arithmetic overflow. (In the case
of divide-by-zero the result is undefined [5].) If it is nec-
essary for the VRM to identify such conditions, additional
instructions must be inserted by the translation to, for exam-
ple, check if the rsrc register is zero. If so, a conditional
branch instruction can transfer control to l term or else-
where.

The translation of VRM’s branch instructions is also
quite direct. Most instructions have a direct MIPS analog,

but special treatment is required for the relative branch off-
set. The correct offset is computed by JITC as it processes
a branch instruction by the fix offset function, which
takes the VRM offset and the instruction number in the pro-
gram and computes the target instruction in the resulting
translation. Such translation is necessary since in the VRM
it was possible to branch past both the start and beginning
instruction of the VRM program. Also, since VRM instruc-
tions now translate into multiple native (MIPS) instructions
and this number is variable from instruction to instruction,
fix offset must compute the appropriate native relative
offset. Because the address of forward VRM branch instruc-
tions are not known during the translation pass, the location
of the incomplete native branch offset must be retained and
resolved once all VRM instructions have been processed.
Auxiliary data structures are necessary for the JIT compiler
to resolve such issues.

4.2 Auxiliary Data Structures

The following data structures support JIT translation. First,
a block of executable memory

!
large enough to hold the

translated program vxw is needed. As we remarked earlier,
this block may require prologue code to spill registers that
are in use and epilogue code to restore them. Prologue code
can also be used to initialize registers and epilogue code can
return the program’s output from registers.

Second, a vector | of native start addresses for VRM in-
structions is used in resolving branches (both forward and
backward). Shortly we describe how | also aids in imple-
menting operators like crossover. Note that one can dis-
pense with maintaining | entirely by making all VRM in-
structions translate into the same number of native instruc-
tions; one can pad translations shorter than the longest in-
struction with MIPS nop’s. If this is done, the instruction
number suffices to determine the start of the instruction’s
translation in

!
. This simplifies JIT compilation and evolu-

tionary operator implementation, but significantly slows the
evaluation.

Another data structure useful for implementing the evo-
lutionary operators is a type vector } . This vector denotes
whether an instruction is a branch or not, and if so, what its
relative offset is in the corresponding VRM program. This
information is necessary to process branch instructions af-
ter relocation by an evolutionary operator (see below) since
the compiled offsets computed by fix offset may need
to be recomputed when an evolutionary operator moves an
instruction, for example.

4.3 Evolutionary Operators

When applied to a program representation, evolutionary op-
erators such as crossover, point-wise mutation, or macro-
mutation, shuffle program instructions or replace existing
instructions with new ones.

To implement crossover between two parents ~ and �
to produce offspring � , for instance, the system allocates a
new executable memory block

!��
and copies the desired

translated instructions from the parent blocks
!/�

and
!5�

successively into
!��

. The instruction-address vectors | �
6

and | � defined above aid this copying. As defined in Fig-
ure 3, all instructions except for the branch instructions are
relocatable; that is, they may be moved to a new address
without change. Branch instructions, however, may need to
have their offsets recomputed by fix offset since their
location within the program may have changed. For exam-
ple, an instruction � that in the VRM program branched past
the end of the program may no longer do so after a crossover
operation since � may have been moved to the beginning of
the resulting offspring. The type vectors } � and } � are
used to find the branch instructions in � inherited from ~
and � and the address vectors | � and | � are used in reap-
plying fix offset. Note that new address and type vec-
tors | � and } � are formed for � during this process.

Mutations and macro-mutations are implemented simi-
larly through copying in general. Since different VRM in-
structions can translate into differing numbers of native in-
structions, full copying may be necessary. However, it may
be possible to perform a mutation in place if the number
of native instructions comprising the VRM instruction be-
ing mutated is larger than the number of native instructions
comprising the mutation. Again, the vector | can be used
to determine this.

4.4 Translating Memory Operands

An important class of instructions absent from the sample
VRM (Figure 2) is memory load/store instructions. In the
VRM, all memory is contained in the register state. How-
ever, experimenters may wish to evolve programs with in-
structions that have memory operands.

A simple way to translate memory instructions is as fol-
lows. A runtime block of memory � is allocated as “the
memory” and initialized by the prologue code if neces-
sary. A VRM instruction that then indexes into this mem-
ory, say ADD(rdst,M[rindex]), would insert native in-
structions to test if the value of rindex is in range; that is,
a bounds check, ��� rindex ��� ��� , would occur to re-
strict access to memory outside of the allocated block � .
Instructions writing to memory would similarly be bounds
checked.

4.5 Simulating Additional Registers

In the above it was assumed that the number of registers
specified by the VRM fits into the registers on the processor
of the target machine. For some contemporary processors
(e.g., Intel’s x86 [7]) this may not be the case. Here we de-
scribe how to translate a set of virtual registers that cannot
be mapped directly into available machine registers. Stan-
dard compiler techniques accomplish this (cf., [1]).

A bank of � registers is allocated as a block of � mem-
ory words (where a word can hold a single VRM register,
typically 32 or 64 bits). Denote this block as vrb. When a
VRM register is referenced by a VRM instruction, the trans-
lation uses native temporary registers to load the virtual reg-
ister from its location in vrb. The specified operation is
performed on the temporary registers and the result is writ-
ten back to the appropriate places in the vrb as necessary.

Consider translation of ADD(r9,r15) as an example:

st spill0, tmpreg0 #free tmp regs
st spill1, tmpreg1
ld tmpreg0, vrb[15] #get operands
ld tmpreg1, vrb[9]
add tmpreg0, tmpreg0, tmpreg1 #do add
st vrb[9], tmpreg0 #update result reg
ld tmpreg0, spill0 #restore tmp regs
ld tmpreg1, spill1

Here, r9 and r15 reside at offsets 9 and 15 of the vrb re-
spectively. If the temporary native registers are in use (or
it is not known if they are), they must be saved in a spill
area and restored from this area when the addition opera-
tion completes. Also note that the result of the addition (in
tmpreg0) is written back to the virtual destination register
at vrb[9].

4.6 Optimization

The translation described in this section can be further im-
proved by using compiler optimization techniques as cat-
aloged in standard compile text such as [1]. Additional
translation effort can be used to do peep hole optimization
(PHO) within a small window of generated native instruc-
tions. PHO and other more costly optimizations can have
a dramatic effect on the runtime of the translated program.
However, the cost of the optimization must also be taken
into account—one must be sure to recoup the time spent
optimizing through time saved evaluating the resulting pro-
gram.

5 Specialized Interpreter Generation (SIG)
Another technique to speed interpreter evaluation is by spe-
cializing the interpreter for all possible instruction/operand
combinations that may occur. Though not as speedy as pro-
grams produced by JIT compilation, SIG can remove the
instruction decoding overheads—which are not minor and
cost many tens of machine instructions—from the inter-
preter’s loop. A primary advantage of SIG is that it is very
simple to implement and that it is portable across compilers
and OS’s.

A prerequisite for using SIG is that the total number of
opcode/operand combinations be manageable—by this we
mean that this number be small enough that a jump table
can be constructed in memory for dispatching every such
combination. (For counting the number of such combina-
tions in a VRM see, for example, [6].) More precisely, for a
given VRM, SIG will produce a multi-way “switch” state-
ment where every “case” (or “label”) is one of the possi-
ble combinations. This table must be small enough to fit in
memory and it should furthermore be possible to compile
the resulting switch statement with a C or Java compiler.
We have verified that opcodes/operands encoded in 16 bits
and hence resulting in � ��� cases are readily compiled by
conventional C compilers. In practice, 20 or 24 bit opcodes
should be possible, but many interesting VRM’s can already
be defined with 16 bits.

Figure 4 gives a small portion of a specialized interpreter
corresponding to the interpreter fragment of Figure 1. Here
the VRM is again the one of Figure 2 and it is instantiated to
16 registers. The encoding is into 14 bits as follows. For sin-

7

int r0=0, r1=0, ..., r15=0;
while (pc > 0 && pc < prog_sz && nsteps--) {

switch(prog[pc++]) {
case 0x0000: /* NOP */
break;

...
case 0x0100: /* MOV(r0,r0) */

r0 = r0; break;
case 0x0101: /* MOV(r0,r1) */

r0 = r1; break;
case 0x0102: /* MOV(r0,r2) */

r0 = r2; break;
...
case 0x015e: /* MOV(r5,r14) */

r5 = r14; break;
...
case 0x08f7: /* XOR(r15,r7) */

r15 ˆ= r7; break;
...
case 0x3a63: /* JLZ(r6,-3) */

if(r6<0)
pc += -3;

break;
...

Figure 4: Fragment from a specialized interpreter for the VRM of Fig-
ure 2. Note how every opcode/operand combination maps to a case label.
Also, registers are stored directly as variables. See text for the instruction
encoding.

gle register opcodes, the top bits 8-13 are zero, the opcode
is encoded in bits 4-7, and bits 0-3 contain the register. For
branch instructions, the top bit (bit 13) is one and bits 8-11
encode the branch opcode; bits 4-7 contain the register (for
a conditional branch) and bits 0-3 contain the offset with the
offset’s sign encoded in bit 12. The remaining two register
operand instructions are encoded with bits 12-13 zero, the
opcode in bits 8-11, and the register pair in the lower byte.

It is important to note that a good compiler will produce
code for the cases very similar to that of the JITC approach
due to the fact that VRM registers have been mapped di-
rectly to variables and not to arrays as in the slow interpreter
of Figure 1. This removes many memory references since
indirection through an array address is no longer necessary
to fetch/store VRM registers.

Since the encoding of the VRM can be made identical
for standard interpretation (Figure 1) and for SIG, branch
instructions that required special treatment for JITC can be
processed as before. SIG retains the interpreter loop and
can easily detect program counters that fall outside the pro-
gram proper. Relatedly, implementation of the evolution-
ary operators for SIG is also simple—evolutionary opera-
tors can shuffle and modify the program array in an unre-
stricted manner since the interpreter loop again checks for
valid program counter conditions. As with the raw execu-
tion of bits on native hardware [11, 10] and unlike JIT com-
pilation, SIG can admit crossover (and other evolutionary
operators) at bit boundaries if all possible opcode values are
defined.

6 Summary
This paper extends just-in-time compilation and special-
ized interpreter generation techniques to program represen-
tations for use in evolutionary computation experiments. In
particular, we show how custom representations may be
efficiently translated so that their execution efficiency ap-
proaches that of native machine languages. In particular we
find that for a typical virtual register machine, JIT compi-
lation introduces an overhead of 2-3 additional instructions
per VRM instruction—it therefore can run half to a third as
fast as native code, but retains the ability to terminate eval-
uation after a fixed number of instruction executions and
the flexibility to customize fully the instruction set, among
other advantages. SIG, on the other hand, requires 12-20 in-
structions on average for the same VRM, but this is still an
improvement over straight interpretation which can spend
more than 100 cycles on instruction decode and execution.

Raw JITC SIG Int
speed very high high moderate slow
portability very low moderate high very high
program size small moderate small small
extensible no yes yes yes
bit operators yes difficult yes possible
self-modify yes no yes possible

Table 1: Comparison of the two techniques of this paper, JITC and SIG,
to direct execution of bit strings on native hardware (Raw) and to fully
interpreted register machines (Int).

The above table compares the two new and the two ex-
isting schemes along six dimensions: speed, portability be-
tween OS’s, size of the candidate programs, extensibility
of the ISA, availability of evolution operators at bit bound-
aries, and support for self modifying code.

As can be seen from the table entries for just-in-time
compilation and specialized interpreter generation, EC ex-
perimenters now have at hand two new means for evolving
complex software machines while retaining high degrees of
expressiveness in their choice of machine representation.

Bibliography
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Tech-

niques and Tools. Addison-Wesley, 1986.

[2] N. L. Cramer. A representation for the adaptive generation of simple
sequential programs. In Proceedings of the International Conference
on Genetic Algorithms and their Applications, pages 183–187. Texas
Instruments, July 1985.

[3] R. M. Friedberg. A learning machine: Part I. IBM Journal of Re-
search and Development, 2:2–13, 1958.

[4] R. M. Friedberg, B. Dunham, and J. H. North. A learning machine:
Part II. IBM Journal of Research and Development, 3:282–287, 1959.

[5] J. Heinrich. MIPS R4000 Microprocessor User’s Manual. MIPS
Technologies, Inc., second edition, 1994.

[6] L. Huelsbergen. Finding general solutions to the parity problem by
evolving machine-language representations. In Proceedings of the
Third Conference on Genetic Programming, pages 158–166, July
1998.

[7] Intel Corporation. Pentium processor user’s manual. Intel Corpora-
tion, 1993.

8

[8] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice-Hall, second edition, 1988.

[9] J. Koza. Genetic Programming: On the Programming of Computers
by the Means of Natural Selection. MIT Press, Cambridge, MA,
1992.

[10] F. Kühling, K. Wolff, and P. Nordin. Brute-force approach to auto-
matic induction of machine code on CISC architectures. In J. A. Fos-
ter et al., editor, Genetic Programming, Proceedings of the 5th Euro-
pean Conference, EuroGP 2002, volume 2278 of LNCS, pages 288–
297. Springer-Verlag, April 2002.

[11] P. Nordin. A compiling genetic programming system that directly
manipulates the machine-code. In K. Kinnear Jr., editor, Advances in
Genetic Programming, chapter 14, pages 311–331. MIT Press, 1994.

9

