
Finding General Solutions to the Parity Problem

by Evolving Machine-Language Representations

Lorenz Huelsbergen
lorenz@research.bell-labs.com

Bell Laboratories, Lucent Technologies
Murray Hill, NJ 07974

Appears in 1998 Conference on Genetic Programming
This paper contains minor revisions to the published article.

Abstract

Evolutionary search on a machine-
language program representation is used
to �nd exact and general solutions to the
bit-counting problem|abstractly, given a
set B of boolean variables, compute the
number of variables in B with value true.
Solutions to the bit-counting problem di-
rectly solve the parity problem that de-
cides whether the number of true vari-
ables in B is even or odd. Our vir-
tual machine language contains generic
instructions for manipulating a register
set and includes unrestricted branches
and bit-wise logical operations. It does
not contain instructions speci�c only to
bit-counting or parity. A two-level lex-
icographic �tness function �rst selects
for programs that closely approximate
(or solve) the problem and then selects
programs that properly terminate. We
compare two population-based search op-
erators: crossover and macro-mutation.
For this problem, macro-mutation sig-
ni�cantly outperforms crossover. In-
troducing single-point mutation signif-
icantly improves the crossover search
but only slightly improves the macro-
mutation search. Comparison with ran-
dom search veri�es the e�cacy of the di-
rected search methods on the bit-counting
problem.

1 Introduction

Program induction|as practiced in genetic and evolu-
tionary programming|proposes to discover, via search,
general algorithms, embodied as programs, that solve
a speci�ed target problem. A �nite, often small, suite
of test cases provides sample input/output mappings to
guide the search. Ideally, only this set of mappings and

a �tness function that measures how \closely" a pro-
gram satis�es the mappings should convey information
about the target problem to the induction system. The
underlying representation should therefore contain only
domain independent computational primitives. Two de-
sirable properties of a program-induction system have
been elucidated|that it synthesize abstract and gen-
eral programs and that it use a generic computational
representation.

The parity problem|deciding whether the number of
boolean variables with assignment true in a set B of such
variables is even (or odd)|has emerged from the genetic
programming (GP) [13] framework as a di�cult problem
for program induction. Intuitively it is a hard problem
because parity (on bit strings interpreted as integers)
is non-linear and non-monotonic. In addition to serv-
ing as a standard benchmark for quantifying GP tech-
niques, the parity problem has independently received
considerable study [8, 17, 13, 14]. Solutions evolved to
date fall into one of two classes. The �rst class contains
solutions found by GP's genetic-algorithm search and
are constructed solely from general logic primitives (e.g.,
NAND) and terminals (the boolean variables) composed
in Lisp expressions. Solutions in this class [8, 14, 13],
however, �x the maximum size of the input set B to a
small constant (typically � 11) and thus do not general-
ize to arbitrary input sets. Solutions in the second class
[17] are general, logic programs in this case, but were
evolved using a grammar speci�cally devised to solve
the parity problem. This grammar, for example, guides
the search toward solutions by constraining the argu-
ments of recursive calls to forms known a priori to solve
the parity problem. Previous evolved solutions to parity
are therefore either not general or not domain speci�c.

Here we present the �rst evolved solutions to the par-
ity problem that are general and synthesized only from
generic operations. To accomplish this, we evolve a
virtual register machine (VRM) that operates on a set
of integer registers. The VRM includes instructions|
similar to ones of contemporary processors|to perform
arithmetic, move data, and twiddle bits. Branch in-
structions allow synthesis of arbitrary control
ow. This

unrestricted control
ow enables solution of the parity
problem since it may be used to synthesize a recursive
decomposition of the problem. The input set B is rep-
resented as an n-bit vector V in an input register. The
�tness function requires the program to count the num-
ber of set bits in V . The least-signi�cant bit of the
resultant count answers the parity problem. Although
the solutions presented here were evolved using a VRM
with registers of �nite size, we have manually checked
that the solutions are general for all larger register sizes.

In addition to the new approach to the parity prob-
lem, this work extends the previous machine-language
induction (MLI) work [6, 7, 4, 16, 10]. Through
instruction-set extensions and consideration of longer
programs with more registers, our system is now search-
ing very large spaces. A lexicographic �tness function

(see, for example, [2]) improves selection for secondary

program characteristics such as termination. That is, a
two-tier �tness function �rst selects for program correct-
ness. Within a set of programs with equivalent correct-
ness, the second-tier function favors the programs that
properly terminate. Doing so obviates the|often ad

hoc|credit assignment step that a human must other-
wise perform if termination (or any secondary character-
istic) is combined as a separate term with the correctness
term. Unlike Pareto optimality (see [2]), lexicographic
�tness prioritizes the multiple objectives instead of op-
timizing them simultaneously. We describe how lexi-
cographic selection can be integrated with tournament
selection and how it may be applied to other program
characteristics (size and speed, for example).

Two types of evolutionary search are compared: ge-
netic algorithm with crossover (GA-XO) and genetic al-
gorithm with macro-mutation (GA-MM). (GA-MM uses
the GA's population but not its crossover operator.)
Similar studies to ascertain the e�cacy of crossover have
been conducted for some GA (e.g., [11]) and program-
induction problems (e.g., [1, 3, 11]). For the bit-counting
problem, we �nd that GA-MM signi�cantly outperforms
GA-XO. Furthermore, introduction of single-point mu-
tation has a large e�ect on crossover search but not on
macro-mutation search. Random search con�rms that
the evolutionary searches were indeed directed and not
\blind."

Many of the bit-counting algorithms evolved for this
paper directly correspond to well known programming
idioms. A few evolved solutions do not appear to be part
of programming folklore and hence may be potentially
novel algorithms. We furthermore note that evolved so-
lutions exhibit asymptotically di�erent algorithmic time
complexities.

The paper is structured as follows. The next section
details prior work, Section 3 provides a brief overview of
the search system, Section 4 describes the virtual regis-
ter machine, Section 5 describes the experimental setup

(�tness function, etc.), and Section 6 contains results.
We then summarize with a discussion in Section 7.

2 Related Work

Previous work relevant to this paper loosely falls
into four categories: induction of the parity function,
machine-language induction, crossover versus (macro)
mutation, and techniques for multi-objective optimiza-
tion (lexicographic and Pareto orderings).

Koza has extensively examined the parity problem in
the context of his Lisp-based GP [13]. In this setting,
side-e�ect free Lisp expressions, containing boolean
functions such as NAND, operate on a �xed set of boolean
variables (D0; : : : ; Dk�1) called terminals. The �tness
function selects expression trees that correctly deter-
mine whether the number of terminals with value true

for all possible variable assignments is even or odd. An
expression tree that correctly computes k-parity triv-
ially computes j-parity for j < k. However, it can-
not compute parity for j > k because its data struc-
ture, namely the terminal set, is static and hence can-
not represent larger instances. That is, Koza's formu-
lation of the problem does not admit general solutions.
The machine-language approach to the parity problem
can generalize because it may synthesize loops and can
access individual bit-vector elements that encode the
problem's variables. As we shall see, many solutions
discovered by our system are independent of this vec-
tor's length and are hence general. Whether GP with
loop constructs and a more
exible set representation
(e.g., lists or bit vectors) can solve the parity problem
in general is an open question.

With a powerful procedural-abstraction technique
(ADF [14]), Koza has solved instances of k-parity for
values of k to 11. Gathercole and Ross [8] have devel-
oped a novel �tness mechanism that enables GP to solve
fairly large parity instances (k = 7, for example) more
readily. Since our approach generalizes, we do not need
to train with such large instances to produce programs
that correctly solve arbitrary instances (all k).

The generic genetic-programming system (GPP) of
Wong and Leung [17] takes an approach to the parity
problem that is orthogonal to those of GP and MLI. As
do GP and MLI, GPP induces programs using search,
but does so with guidance of a custom grammar that
must be explicitly designed for a given problem. Wong
and Leung designed such a grammar for the k-parity
problem that allows GPP to �nd general recursive solu-
tions (k > 0) using a logic-program representation. This
grammar, however, contains much information about
the structure of such solutions. For example, it en-
codes the syntax of the call to the main function (called
parity) and stipulates that parity be called recursively
only with list arguments smaller than the original argu-
ment. Machine-language induction too �nds solutions

that are general, but that also have the further advan-
tage of not requiring a priori human speci�cation of a
solution's structure.

The groundwork for machine-language induction was
laid by Friedberg et al. [6, 7]. Their early experiments
were not successful when compared to random search,
but they elucidated the MLI ideas being explored to-
day. Cramer [4] describes a more modern experiment
that uses a representation similar to a machine lan-
guage, but endowed with high-level iteration operators.
Nordin's system [16] manipulates native machine-code
(as opposed to the interpreted virtual machines used
here) to provide rapid evaluation. We have previously
reported experiments that synthesize iterative control

ow to learn the Fibonacci sequence, for example [10].

Mutation, without crossover, has been used to search
for computational structures. (The evolutionary pro-
gramming paradigm [5] provides many examples.) Re-
cently, the bene�ts (or detriments) of crossover in GA-
based approaches (such as GP) have begun to receive
scrutiny. Jones [11] suggested and performed experi-
ments to ascertain the viability of crossover. In com-
parison with crossover, he found macro-mutation to
perform quite well for many problems, especially for
problems containing no obvious \building blocks." Fur-
thermore, even in the presence of such building blocks,
macro-mutation e�ectively found solutions. We describe
Jones's approach in Section 5.3.2. Angeline [1] com-
pares macro-mutation to crossover in his (non-standard)
GP system and �nds that the performance of macro-
mutation approaches, and sometimes exceeds that of
crossover. Chellapilla [3] also successfully uses macro-
mutation to evolve Lisp programs. Our macro-mutation
experiments extend this line of inquiry to machine-
language representations. We have previously reported
experiments|only slightly successful|using exhaustive
hillclimbers (based on single-point mutation) on ma-
chine languages [10].

Lexicographic and Pareto optimization are well
known techniques for evaluating a candidate solution
according to multiple criteria. See Ben-Tal [2] for a
characterization of both techniques. Lexicographic op-
timization prioritizes the criteria and emphasizes those
with higher priority. As the optimization progresses
and the high-priority criteria become explored, lower
priority criteria come into play. Pareto optimization,
on the other hand, optimizes multiple criteria simulta-
neously. We believe lexicographic �tness to be useful
in evolving higher-order program characteristics beyond
primary correctness. For example, lexicographic �t-
ness can select for|among many other possible higher-
order characteristics|small programs, fast programs,
low-power programs, or for terminating programs (the
secondary characteristic we use in the experiments of
this paper).

3 Finnegan System

We have built a modular GA system|called Finnegan-C
(cf. [10])|tailored to machine-language induction prob-
lems. Its modularity allows experimentation with dif-
ferent problem descriptions, test suites, virtual register
machines, and evolution operators by linking together
appropriate object �les and libraries. A separate driver
for conducting random search is also provided. Prob-
lem descriptions (�tness functions) are supplied as C
functions. Since the VRMs are also implemented in C,
their instructions|as we shall see|often inherit this
language's operator semantics [12].

4 Virtual Register Machine B

The machine-language representation used for the se-
quence problems is an instance of a virtual register ma-

chine called VRM-B. It is virtual because it is inter-
preted by software. VRM-B di�ers from our earlier
VRMs (e.g., [10]) in that it contains an additional group
of instructions that perform bit-wise operations, such
as logical operations and shifts. Conditional branch in-
structions now also embody the condition check; previ-
ously a separate \compare" instruction set an internal

ag that governed conditionals.
The notation VRM-B(n;m) names a particular VRM-B

that consists of external state (m integer registers), in-
ternal state (a program counter), and a sequence of n
immutable instructions.

4.1 External State: Registers

We de�ne the register state as a vector
~R � hR0; : : : ; Rm�1i

of m signed integers. The register state constitutes the
machine's mutable memory. The precision of a regis-
ter is inherited from the underlying implementation.1

Many program instructions (e.g., ADD) modify registers
directly.
All program input is communicated through the reg-

ister state. That is, program inputs are supplied in the
initial state ~R; output is taken from the �nal register
state ~R0. Registers may also be used to initially supply
the program with constants; alternately, the program
can synthesize necessary constants in registers.
For the bit-counting problem of this paper, non-input

registers were initialized to zero. We defer description
of the concrete input con�guration to Section 5.

4.2 Internal State: PC

In addition to the external register state, VRM-B main-
tains a piece of internal state: a program counter (PC).
The PC is an integer, 0 � PC < n, that selects which

1Our implementation inherits 32-bit signed integers via C's int
type on a 32-bit machine.

instruction to fetch and execute. Branch instructions
modify the PC by adding a signed o�set to it; all other
instructions always increment the PC to point to the
next instruction. The PC is initially zero; that is, pro-
gram execution begins at the �rst program instruction.

4.3 Instruction Set

A program is a vector of n instructions
~I � hI0; : : : ; In�1i

The program counter corresponds to an index of ~I . A
program terminates when PC = n, that is, when eval-
uation steps past the end of the program. (Our evalu-
ation strategy also limits the maximum number of in-
structions evaluated; see Section 6.) Figure 1 contains
VRM-B's instructions and their operational semantics.
Here we �rst summarize the instructions VRM-B shares
with prior VRMs [10] and then describe the bit-wise in-
structions new here.
VRM-B instructions previously used in other VRMs

[10] consist of a register move instruction MOV, an un-
conditional branch J, branches conditional on a regis-
ter's value relative to the zero value (JZ, JNZ, JLZ, JGZ),
instructions that initialize registers (SET and CLR), in-
structions to increment (INC) and decrement (DEC) a
given register, and a nullary instruction NOP which does
nothing. The arithmetic instructions (ADD, SUB, MUL,
DIV, MOD) perform the respective two's complement op-
eration on source and destination, leaving the result in
the destination register. The arithmetic NEG instruc-
tion negates the value in its argument register. The
arithmetic instructions mimic C's behavior and \wrap
around" on the exceptional conditions of integer over-

ow (or under
ow) instead of trapping. Arithmetic op-
erations that can generate traps in C are DIV and MOD

which are susceptible to divide-by-zero. Our VRM eval-
uator checks for zero divisors, a condition which we have
(arbitrarily) de�ned to place zero in the destination reg-
ister.
Branches (J, JZ, JNZ, JLZ, JGZ) are always relative

to the program counter. Negative o�sets describe a
backward branch. Note that the operational semantics
rewrites a branch to an address < 0 as a branch to I0
(i.e. PC 0) and a branch past the end of the program
(n� 1) as termination (i.e. PC n). A jump instruc-
tion Ij can therefore branch to any one of n+1 distinct
addresses. The conditional branches are parameterized
by a register and the jump displacement. JZ branches if
the register is zero. JNZ branches on any value but zero.
JLZ branches on a negative, and JGZ on a positive, reg-
ister value.
New to this VRM are six bit-wise logical instruc-

tions found in the right-hand column of Figure 1. They
perform their namesake's operation and are de�ned in
terms of the respective C operators. A departure from
this semantics is the interpretation of the shift opera-

tors as NOPs if the shift amount is either negative or
exceeds the number of bits comprising an implementa-
tion register. Since VRM-B registers are signed, a right
shift (SHR) of a negative quantity will e�ectively \reset"
the sign bit.
The number of syntactically-distinct instructions in a

VRM-B(n;m) is

S (m;n) � 11m2 + 6m+ (4m+ 1) (n+ 1) + 1 (1)

because there are eleven binary register instructions, six
unary register instructions, one unconditional and four
conditional branch instructions, and one nullary instruc-
tion (NOP). The number of possible (syntactic) programs
in such a machine is therefore:

S (m;n)n (2)

4.4 Evaluation Function

Our interpreter evaluates an n-instruction VRM-B(n;m)

program ~I with respect to an m-register input state ~R
and an integer number of evaluation steps (instructions),
K > 0. EB maps a triple to a singleton:

EB :
�
~I; ~R;K

�
! ~R0 (3)

EB produces the �nal register state ~R0 after executing at
most K instructions. Since our VRM-B evaluator is an
interpreter (essentially Figure 1), it can easily be halted
after evaluation of K instructions.

5 Experimental Setup

This section describes the three search methods|
genetic crossover (GA-XO), population-based macro-
mutation (GA-MM), and random search|applied to the
bit-counting and parity problems. Before describing the
individual methods, we �rst de�ne the test-case model
and the �tness function they have in common. We defer
elaboration of the quantitative settings (e.g., test-case
and program size) to the next section (x6).

5.1 Test Cases

Let B denote a set of boolean variables as input to the
bit-counting problem and B0 an instance (assignment of
variables) of B. We restrict the test cases to the set of
all possible variable assignments for a �xed size b = jBj:

Tb = fB
0 j b = jBjg (4)

For each natural number b, there are 2b elements in Tb
with each serving as a test case. The answer to the bit-
counting problem for a test case t is the number of true
assignments in t. The least-signi�cant bit of this answer
provides the solution to the parity problem.
A program is supplied both t, encoded as a bit vector,

and the problem size b (number of bits in the encoding
that specify t) as inputs in registers.

NOP �
�
PC PC + 1

MOV(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rsrc

SET(Ra) �

�
PC PC + 1
Ra 1

CLR(Ra) �

�
PC PC + 1
Ra 0

INC(Ra) �

�
PC PC + 1
Ra Ra + 1

DEC(Ra) �

�
PC PC + 1
Ra Ra � 1

NEG(Ra) �

�
PC PC + 1
Ra 0�Ra

ADD(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst +Rsrc

SUB(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst �Rsrc

MUL(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst � Rsrc

DIV(Rdst,Rsrc) �

�
PC PC + 1

Rdst Rdst = Rsrc

�

MOD(Rdst,Rsrc) �

�
PC PC + 1

Rdst Rdst % Rsrc

�

AND(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst & Rsrc

OR(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst j Rsrc

XOR(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst ^Rsrc

NOT(Ra) �

�
PC PC + 1
Ra � Ra

SHL(Rdst,Rsrc) �

�
PC PC + 1

Rdst Rdst << Rsrc

�

SHR(Rdst,Rsrc) �

�
PC PC + 1

Rdst Rdst >> Rsrc

�

J(o�set) �
�
PC min (max (0;PC + o�set) ; n)

JZ(Ra,o�set) �

�
PC

�
min (max (0;PC + o�set) ; n) if Ra = 0
PC + 1 otherwise

JNZ(Ra,o�set) �

�
PC

�
min (max (0;PC + o�set) ; n) if Ra 6= 0
PC + 1 otherwise

JLZ(Ra,o�set) �

�
PC

�
min (max (0;PC + o�set) ; n) if Ra < 0
PC + 1 otherwise

JGZ(Ra,o�set) �

�
PC

�
min (max (0;PC + o�set) ; n) if Ra > 0
PC + 1 otherwise

Figure 1: Operational semantics for the virtual register machine VRM-B. An arithmetic or logical operator on the right-hand side
mostly inherits the C language's semantics of that operator. Expressions enclosed in hbracketsi yield zero on exceptional cases (e.g.,
divide-by-zero, invalid shift amounts).

Note that we train programs on a bit-count (and
hence parity) problem of �xed set size b , but that many
of the resultant solutions are exact and general for input
sets of any size (x6).

5.2 Fitness Function

Since a program written in VRM-B need not terminate
and terminating programs are desirable2, we use a lexi-

cographic �tness function (see [2]) of two tiers to select
for programs that do so. A program's �rst-tier �tness
is its correctness. Two programs with identical �rst-tier
�tness are ranked using the second-tier �tness function
which is a termination criterion. By separating the dis-
parate criteria of correctness and termination, we can
sidestep the ad hoc credit assignment problem that often
plagues a single �tness function attempting to express
multiple objectives.
For all program evaluations, a test case encoded as a

bit vector is supplied in input register ~R0, the problem
size b in register ~R1, and the program's result is taken
from output register ~R0

2. All other input registers are
set to zero before evaluation.
First-tier correctness of program ~I on test case t for

problem size b is computed by

F t
1

�
~I
�
� j~R0

2 � answer(t)j (5)

where, using (3), EB(~I; ~R;K) = ~R0, input registers
~R � ht; b; 0; : : : ; 0m�1i, and K is the maximum number
of evaluation steps. That is, the �tness of a program
with regard to a single test case is the absolute magni-
tude of the di�erence of the correct answer, answer(t),

and the computed value in output register ~R0
2. The to-

tal �rst-tier �tness of a program ~I is the sum of the
individual test-case �tness values:

F1

�
~I
�
�
X
t2T

F t
1

�
~I
�

(6)

Lower values indicate better �rst-tier �tness.
Second-tier termination of program ~I on test case t

for problem size b is computed by:

F t
2

�
~I
�
�

�
1 if ~I terminates on t
0 otherwise

(7)

Total second-tier �tness of ~I is:

F2

�
~I
�
�
X
t2T

F t
2

�
~I
�

(8)

Second-tier �tness therefore is the number of test-cases
in the test-case set T for which ~I terminates. In this
case, higher values indicate better second-tier �tness.

2Two terminating programs may readily be composed into a
larger terminating program, for example.

It is straightforward to extend this notion to sec-
ondary program properties other than termination. For
example, code speed can be selected for by having a
higher-tier function favor programs that obtain the same
result by executing fewer instructions. Code size can be
controlled in a similar manner. Other �tness functions
could limit register, function-unit, or power usage.

5.3 Search Methods

Here we describe the search methods used to �nd solu-
tions to the bit-counting and parity problems.

5.3.1 Genetic Search (GA-XO)

Genetic search uses tournament selection as its
population-selection mechanism. Crossover and single-
point mutation are the evolution operators.

Population Selection Population selection, for the
construction of successive generations, is performed via
k-tournament selection (see, e.g., [9]). Let P be a pop-
ulation (set) of N individuals (VRM programs). To se-
lect a single individual from P , tournament selection
examines k individuals in P and selects the one with
best �tness. When the �tness function cannot distin-
guish a single best, one of the best is chosen at random.
This mechanism is used to generate input pairs for the
crossover operator, for example.
Lexicographic �tness functions (cf. [2]) are amenable

to implementation via tournament selection. A two-tier
�tness function may be integrated into a tournament
as follows. Select two individuals at random. Rank
them by �rst-tier �tness. If both �rst-tier �tness values
are identical, break the tie by ranking them with their
second-tier values. This generalizes to higher tiers in
the obvious manner. Note that it is more di�cult to
implement lexicographic �tness in population selection
methods that require ranking a signi�cant portion of
the population|such as in proportional selection (see,
e.g., [15])|since this requires not only computing or-
der information for the entire population (i.e., sorting
it), but also for the equivalence classes induced by the
lexicographic �tness functions.

Operator: Two-Point Crossover We use a sin-
gle recombination operator that performs two-point
crossover. Crossover of two n-instruction programs ~Ii
and ~Ij �rst selects a subsequence of instructions start-

ing at a random point 0 � pi < n in program ~Ii. The
length k > 0 of the subsequence is chosen randomly such
that pi + k � n. A random point pj , 0 � pj + k � n, is

then chosen in program ~Ij . Finally, the k instructions in
~Ii starting at pi are interchanged with the k instructions
in ~Ij starting at pj .

Crossover in a population P is performed by �rst se-
lecting a subset P 0 � P of programs from the popula-
tion; an individual program is randomly selected for P 0

with probability ProbXO. The programs in P 0 are then
randomly paired and the crossover operator is applied
to each pair. The pairs resulting from crossover replace
the corresponding original pairs in the population.

Operator: Single-Point Mutation We conduct ex-
periments with and without a single-point mutation op-
erator that, with probability Probmutate, alters an in-
struction by changing its opcode or operand(s). Single-
point mutation is applied after a new generation has
been �lled with selected individuals, but before its indi-
viduals are reevaluated.

5.3.2 Macro-Mutation (GA-MM)

Population-based macro-mutation is a search method
that, instead of recombining �t individuals, mutates up
to n consecutive instructions in a �t individual in order
to improve it. Macro-mutation can be used to investi-
gate whether program recombination a�ects (improves
or worsens) search e�ciency. Our GA-MM uses the
\headless chicken" crossover proposed by Jones [11]. We
also ran experiments that combined this operator and
single-point mutation.

Operator: Headless-Chicken Crossover To iso-
late the mechanism of crossover (replacing a contiguous
sequence of instructions) from the idea of crossover (in-
heriting useful \building blocks" from other individu-
als), Jones proposed and studied replacing conventional
crossover with one that swaps information (i.e. in-
structions) with a randomly generated individual [11].
He calls this operation \headless chicken" crossover
(HCXO). Others have investigated this form of macro-
mutation in GP and EP systems [1, 3].

HCXO|as we apply it to machine language repre-
sentations in this paper|selects values pi, pj , and k in
the same manner as for conventional crossover (x5.3.1).
However, instead of interchanging the k instructions,
HCXO generates two sequences of k random instruc-
tions and inserts them in the two parents ~Ii and ~Ij at
positions pi and pj . HCXO, like XO, thus generates two
o�spring but no information \crosses over" from one in-
dividual to another. HCXO macro-mutation is applied
to the population with probability ProbMM.

Operator: Single-Point Mutation Though HCXO
sometimes functions as single-point mutation (when the
sequence length is randomly chosen as k = 1), we inves-
tigate the e�ect|on search e�ciency|of an additional
single-point mutation applied after HCXO. Single-point

#Solns #Evals
#Solns
#Evals

GA-XO 9 (max-evals) 9:0� 10�10

GA-XO-SPM 10 5:6� 109 1:8� 10�9

GA-MM 10 2:1� 109 4:8� 10�9

GA-MM-SPM 10 1:9� 109 5:3� 10�9

Random 1 (max-evals) 1:0� 10�10

Table 1: Results of crossover, crossover with single-point mu-
tation, macro-mutation, macro-mutation with single-point muta-
tion, and random search applied to the bit-counting problem. For
each search method, the number of solutions discovered, number
of evaluations required to discover the solutions, and e�ciency (so-
lutions per evaluation) are given. Experiments were limited to the
�rst of either ten solutions or 1� 1010 (max-evals) evaluations.

mutation for the macro-mutation search is implemented
as above (x5.3.1).

5.3.3 Random Search

Random search randomly generates an individual p,
evaluates p and computes its �tness, and (optionally)
records p's �tness as the best if p improves on the cur-
rent best �tness. This process continues until a su�-
cient number of global solutions are found or until the
number of program evaluations exceeds a predetermined
threshold.

6 Results

Here we describe the parameters for the search exper-
iments, report results, and comment on some sample
evolved programs.
We ran four population based searches: GA with

crossover (GA-XO), GA with crossover and single-point
mutation (GA-XO-SPM), GA with macro-mutation
(GA-MM), and GA with macro-mutation and single-
point mutation (GA-MM-SPM). Population size was
N = 8192. The initial population was created randomly.
Binary tournament selection was used. Crossover
(macro-mutation) probability was set to ProbXO = 25%
(ProbMM = 25%). That is, a quarter of the popu-
lation was generated with crossover (macro-mutation)
and the remaining three quarters was �lled by the
unmodi�ed3 winners of tournaments. In the experi-
ments using it, single-point mutation was applied to
probMutate = 0:1% of the instructions in the popu-
lation. A run was deemed complete after 50 consecutive
generations without improvement (stasis).
VRM parameters were set as follows: program size

n = 20, number of registers m = 10, maximum number
of instructions executed K = 100. From Equation 2 the

3Programs not modi�ed between successive generations do not
require reevaluation and are hence not counted in the total number
of evaluations.

size of the search space measured in syntactic programs
is approximately 2219.

The test-case set contained all instances of the 5-
parity problem. Using the earlier notation, b = 5 giving
25 test cases.

Table 1 contains the search results including random
search. We limited an experiment to 1� 1010 evalua-
tions or to ten general solutions to curb both run time
and manual veri�cation time. The stasis value of 50
along with this upper bound on the number of evalua-
tions created a variable number of runs per experiment;
a typical experiment contained hundreds of runs. We
count a program as a solution in the table if it produces
the correct answer and terminates for every test case.
Recall that the least-signi�cant bit of such a solution's
result solves the parity problem. We veri�ed that the
solutions are general for all bit-vector inputs (register
R0) provided the VRM's registers are su�ciently large.
Since registers are signed 32-bit integers in this imple-
mentation, bit-counts and parity of 31-bit sets can be
computed with the evolved programs. By increasing
the size of registers, the evolved solutions can directly
be used to solve arbitrarily large instances. Solutions
rarely exploited the problem size b supplied in register
R1 in producing bit-counting solutions. Some, however,
used this value as a constant to govern, for example,
control
ow. Some solutions, therefore are general with
respect to the encoding in R0, but require R1 to be �xed
at b = 5. This problem can perhaps be avoided by in-
cluding test instances of various sizes in the test suite.

In addition to the number of general solutions found,
the table lists the number of evaluations used and the
search e�ciency. Search e�ciency is the ratio of the
number of solutions to the number of evaluations; this
ratio ranges from zero (ine�ective) to one (highly ef-
fective). We �rst note that random search is rather
ine�ective for this problem and VRM parameter set-
tings. GA-MM performed well overall; its performance
increased slightly in the presence of single-point mu-
tation (GA-MM-SPM). Crossover (GA-XO) too solved
the problem rather e�ectively, but gained more from
single-point mutation (GA-XO-SPM) than the macro-
mutation search. One explanation is that GA-MM al-
ready contains single-point mutation in its random k-
instruction mutation operation. It would be interesting
to examine whether macro-mutations of a certain size
(they now range from one to the program size) are more
e�ective than others.

Three sample solutions found with GA-MM are in
Figure 2. Instructions that do not in
uence the bit-
counting results have been crossed out. Solutions tended
to fall into one of about �ve types; three are represented
by the sample solutions. Figure 2 also contains C code
that implements the three depicted types of bit-count
algorithm. Type A iterates through the vector checking

one bit at a time and counting the number of set bits.
It has time complexity proportional to the position of
the most signi�cant set bit. Note that this particular
type A example is general but requires the problem size
supplied in register R1 to be odd (see discussion above).
Type B repeatedly uses subtraction in conjunction with
AND to remove the least-signi�cant set bit. Its time com-
plexity is proportional to the number of set bits. Type
B solutions predominate (34 of the 40 are type B). Type
C solutions �rst copy the bit-vector into an \accumula-
tor" and iteratively subtract from this accumulator the
vector successively divided by two. Since integer divi-
sion drops remainders of one, the accumulator will hold
the sum of such remainders, which corresponds to the
number of set bits in the input vector.
Type A and B solutions are given as a conventional

programming example and exercise in the literature [12].
We posit that type C solutions are perhaps novel algo-
rithms for bit-counting, but this a daunting proposition
to prove in the positive. We have not yet found type C
examples in literature, code, or folklore.

7 Summary

Population-based search|using either crossover or
macro-mutation|can �nd machine-language programs
that solve the bit-counting and parity problems in
general. Importantly, this paper's �ndings demon-
strate that a machine-language representation with-

out domain-speci�c operators can readily �nd general

solutions to these problems. For this problem do-
main and a speci�c virtual-machine instruction set,
we �nd that macro-mutation substantially outperforms
crossover. This raises the question of how bene�cial
communication among partial solutions (i.e., genetic
crossover) is to such problems' solution. This paper's
macro-mutation results imply that the parity and bit-
counting problems|as formulated herein|do not con-
tain su�cient \building blocks" for crossover to exploit.
This does not mean, however, that building blocks do
not appear in machine-language programs; it is plausible
and likely that evolution of larger programs solving more
di�cult problems can, or must, exploit building blocks.
An obvious direction is to apply both macro-mutation
and crossover to larger and harder program-induction
problems.

Acknowledgments

Thanks to Chris Fraser, Brian Kernighan and Ed Riet-
man for acute comments, to Andy Pargellis for stimu-
lating discussions on evolution, and to the anonymous
referees for helpful suggestions.

Type A

(generation 387)

Type B

(generation 263)

Type C

(generation 220)

Address Instruction
0: J(+13)
1: JLZ(R5,+14)
2: SET(R2)

3: OR(R9,R0)
4: AND(R4,R1)

5: NOP
6: MOV(R1,R0)
7: XOR(R6,R7)

8: SHR(R0,R5)
9: JNZ(R4,+4)

10: INC(R2)
11: SUB(R2,R4)

12: MOV(R4,R8)
13: SET(R4)
14: JNZ(R3,-8)

15: NOT(R1)
16: OR(R5,R4)

17: JZ(R0,+16)
18: JZ(R8,-15)
19: JNZ(R1,+13)

int bitcount typeA(int x)

f
int b;

for (b = 0; x != 0; x >>= 1)
if (x & 0x1) b++;

return b;
g

Address Instruction
0: MOV(R7,R0)
1: JZ(R0,+16)
2: DEC(R4)

3: CLR(R8)
4: NOP

5: JGZ(R8,+6)
6: AND(R6,R4)
7: DIV(R3,R8)

8: DEC(R0)
9: OR(R3,R0)

10: MUL(R9,R6)
11: AND(R0,R7)

12: AND(R1,R5)
13: SET(R3)
14: INC(R2)

15: J(-16)
16: OR(R0,R4)

17: NOP
18: XOR(R3,R2)
19: CLR(R0)

int bitcount typeB(int x)

f
int b;

for (b = 0; x != 0; b++)
x &= x-1;

return b;
g

Address Instruction
0: JNZ(R9,+1)
1: SET(R6)
2: MOV(R2,R0)

3: JLZ(R7,-12)
4: SHR(R0,R6)

5: JLZ(R5,+11)
6: SUB(R2,R0)
7: SHL(R4,R7)

8: AND(R8,R6)
9: SUB(R4,R6)

10: SHR(R3,R3)
11: NOT(R3)

12: JNZ(R0,-8)
13: DEC(R8)
14: MUL(R7,R1)

15: SUB(R8,R3)
16: J(+16)

17: ADD(R4,R9)
18: J(+10)
19: NOT(R8)

int bitcount typeC(int x)

f
int b;

for (b = x; x != 0; b -= x)
x >>= 1;

return b;
g

Figure 2: Sample solutions to bit-counting found using population-based macro-mutation search. The input bit-vector is supplied in
R0 and the problem size in R1. The bit-count result is taken from R2; its least-signi�cant bit solves the parity problem. Instructions
that do not a�ect the bit-count result have a line through them. The C functions embody the corresponding bit-counting algorithms.

References

[1] P. J. Angeline. Subtree crossover: Building block engine or
macromutation? In Proceedings of the Second Conference

on Genetic Programming, pages 9{17, July 1997.

[2] A. Ben-Tal. Characterization of Pareto and lexicographic
optimal solutions. In G. Fandel and T. Gal, editors, Multiple

Criteria Decision Making Theory and Application, pages 1{
11. Lecture Notes in Economics and Mathematical Systems,
No. 177, Springer-Verlag, 1979.

[3] K. Chellapilla. Evolutionary programming with tree muta-
tions: Evolving computer programs without crossover. In
Proceedings of the Second Conference on Genetic Program-

ming, pages 240{248, July 1997.

[4] N. L. Cramer. A representation for the adaptive genera-
tion of simple sequential programs. In Proceedings of the

International Conference on Genetic Algorithms and their

Applications, pages 183{187. Texas Instruments, July 1985.

[5] L. J. Fogel, A. J. Owens, and M. J. Walsh. Arti�cial Intelli-
gence through Simulated Evolution. New York: John Wiley,
1966.

[6] R. M. Friedberg. A learning machine: Part I. IBM Journal

of Research and Development, 2:2{13, 1958.

[7] R. M. Friedberg, B. Dunham, and J. H. North. A learning
machine: Part II. IBM Journal of Research and Develop-

ment, 3:282{287, 1959.

[8] C. Gathercole and P. Ross. Tackling the boolean even n

parity problem with genetic programming and limited-error
�tness. In Proceedings of the Second Conference on Genetic

Programming, pages 119{127, July 1997.

[9] D. E. Goldberg and K. Deb. A comparitive analysis of se-
lection schemes used in genetic algorithms. In G. Rawlins,
editor, Foundations of Genetic Algorithms. Morgan Kau�-
man, 1991.

[10] L. Huelsbergen. Learning recursive sequences via evolution
of machine-language programs. In Proceedings of the Second

Conference on Genetic Programming, pages 186{194, July
1997.

[11] T. Jones. Crossover, macromutation, and population-based
search. In Proceedings of the Sixth International Conference

on Genetic Algorithms, pages 73{80, 1995.

[12] B. W. Kernighan and D. M. Ritchie. The C Programming

Language. Prentice-Hall, second edition, 1988.

[13] J. Koza. Genetic Programming: On the Programming of

Computers by the Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[14] J. Koza. Genetic Programming II. MIT Press, Cambridge,
MA, 1994.

[15] Z. Michalewicz. Genetic Algorithms + Data Structures =

Evolution Programs. Springer Verlag, Berlin, 1992.

[16] P. Nordin. A compiling genetic programming system that
directly manipulates the machine-code. In K. Kinnear Jr.,
editor, Advances in Genetic Programming, chapter 14, pages
311{331. MIT Press, 1994.

[17] M. L. Wong and K. S. Leung. Learning recursive functions
from noisy examples using generic genetic programming. In
Proceedings of the First Conference on Genetic Program-

ming, pages 238{246, July 1996.

