
Learning Recursive Sequences via

Evolution of Machine-Language Programs

Lorenz Huelsbergen
lorenz@research.bell-labs.com

Bell Laboratories, Lucent Technologies

600 Mountain Avenue, Murray Hill, NJ 07974

Appears in 1997 Conference on Genetic Programming
This paper contains minor revisions to the published article.

Abstract

We use directed search techniques in the
space of computer programs to learn recur-
sive sequences of positive integers. Specif-
ically, the integer sequences of squares,
x2; cubes, x3; factorial, x!; and Fibonacci
numbers are studied. Given a small �nite
pre�x of a sequence, we show that three
directed searches|machine-language ge-
netic programming with crossover, ex-
haustive iterative hill climbing, and a hy-
brid (crossover and hill climbing)|can au-
tomatically discover programs that exactly
reproduce the �nite target pre�x and,
moreover, that correctly produce the re-
maining sequence up to the underlying ma-
chine's precision.

Our machine-language representation is
generic|it contains instructions for arith-
metic, register manipulation and compar-
ison, and control
ow. We also introduce
an output instruction that allows variable-
length sequences as result values. Impor-
tantly, this representation does not con-
tain recursive operators; recursion, when
needed, is automatically synthesized from
primitive instructions.

For a �xed set of search parameters (e.g.,
instruction set, program size, �tness cri-
teria), we compare the e�ciencies of the
three directed search techniques on the
four sequence problems. For this param-
eter set, an evolutionary-based search al-
ways outperforms exhaustive hill climbing
as well as undirected random search. Since
only the pre�x of the target sequence is
variable in our experiments, we posit that
this approach to sequence induction is po-
tentially quite general.

1 Introduction

Given a �nite pre�x of a perhaps unknown sequence
of values, it is tempting to ask \What is the next, yet
unseen, value in the sequence?" If we have reason to
suspect that the sequence is generated by a computable
function, one can attempt to answer this question, per-
haps by inspection of, and induction on, the given pre�x.
This leads to the more general query: \What algorithm
produces this sequence?" In this paper we show em-
pirically that|for some non-trivial integer sequences|
directed searches in the space of computer programs can
automatically provide correct answers to the above ques-
tions.
We consider four integer sequences: square , cube,

factorial and Fibonacci numbers. Figure 1 de�nes the
underlying functions. The factorial and Fibonacci se-
quences have natural recursive de�nitions and square

and cube can also|via the binomial theorem|be ex-
pressed recursively. As we shall see, the programs
evolved to produce the square and cube sequences utilize
recursion. For a function f , we consider the l element
pre�x ff(0); : : : ; f(l � 1)g as the target sequence for the
searches. For the experiments in this paper, l-pre�xes
of length ten (l = 10) su�ce to learn the sequences.
We �rst examine two distinct types of directed search:

a global search in the form of machine-language genetic
programming and a local search in the form of an ex-
haustive iterative hill climber. We then consider a hy-
brid search composed of machine-language genetic pro-
gramming and hill climbing; it also performs well on
this paper's set of sequence problems. Random search,
on the other hand, is found to be ine�ective.
Machine-language genetic programming (MLGP) [11,

7, 2] is a form of genetic algorithm (GA) [6] closely re-
lated to Koza's genetic programming (GP) [8] of Lisp ex-
pressions. GAs use principles from evolutionary theory
(populations, �tness criteria, recombination) to search
large non-linear spaces. GP and MLGP apply such
search to the space of computer programs primarily via
the crossover (XO) genetic operator. Crossover ran-
domly swaps portions of individuals (programs) with

square(x) � x2

cube(x) � x3

factorial(x) �

�
1 if x = 0
x � factorial(x� 1) otherwise

Fibonacci(x) �

�
1 if x = 0 or x = 1
Fibonacci(x� 2) + Fibonacci(x� 1) otherwise

Figure 1: Functions de�ning the sequences considered in this paper. Domains and ranges are the natural numbers.

the goal of producing a yet �tter individual. MLGP has
roots in work by Friedberg et al [4, 3] on evolving pro-
grams; such early approaches however did not improve
upon random search (i.e. guessing).
Koza has used GP to learn the Fibonacci function

[8] (among many other, albeit non-recursive, functions
and programs).1 To do so, he added a recursive function
(called SRF) to the set of GP functions. For a program p,
SRF retains the values produced by p on previous tests.
That is, when evaluating the test for Fibonacci(xn), p's
results of prior tests (Fibonacci(xi) for i < n) are avail-
able to p through SRF. Arguably, inclusion of SRF re-
quires a prior knowledge of the structure of the solution.
Other researchers (e.g. [5]) introduce explicit domain-
speci�c sequence instructions2 into the representation
(instruction set) de�ning the search space. They thus
sidestep (as does SRF) the task of synthesizing recursion
from non-recursive instructions by requiring a human
to provide recursion within the set of supplied instruc-
tions. Domain-speci�c instructions, on the other hand,
are useful for solving problems outside the current reach
of pure machine-language genetic programming, but en-
tail the risk of making the target problem much easier.
Thus, domain-speci�c operators obscure the cause of a
problem's solution: is it the search algorithm or the hu-
man supplying suitable domain-speci�c instructions?
Our approach is orthogonal to user-supplied domain-

speci�c instructions since it allows and requires the au-
tomatic synthesis of complex (i.e. recursive) instruction
sequences from only primitive (non-recursive) instruc-
tions. In particular, we build on prior work [7] that
evolved iteration and control
ow using primitive ma-
chine instructions. The ability to synthesize arbitrary
control
ow, coupled with readable and writable mem-
ory locations, enables the juxtaposition of non-recursive

1The square and cube functions are similar to the simple regres-
sions commonly solved via GP (e.g. [8]); their recursive solution
by MLGP is novel as is their treatment here as sequences. We are
unaware of solutions to the factorial function or sequence by GP
or other machine-learning techniques.

2MLGP's \instructions" correspond to GP's \functions"; we
use the terminology interchangeably.

instructions to yield iterative and recursive behavior.

We restrict our representation to primitive machine
instructions on the following grounds. Processors
have|in a sense|\evolved" their instruction sets since
their inception. Contemporary instruction sets are cer-
tainly suitable for solving a variety of general-purpose
problems. Furthermore, the instruction sets of di�er-
ent processors share large subsets of instructions with
similar functionality: arithmetic, branch-based control

ow, register{memory moves, etc. Our line of inquiry is
to demonstrate that GAs (as MLGP) can utilize primi-
tive machine instructions as building blocks for complex
programs.
Our approach is general in that a single instruction

set|embodied as a virtual register machine (VRM, cf.
[7]) for sequences, called VRM-S|su�ces for the four
problems under consideration. VRM-S consists of in-
structions for basic register manipulation (move, set,
clear, increment, decrement), arithmetic (add, subtract,
multiply, divide, negate), control
ow (conditional and
unconditional branches) and output. In this paper, we
consider only machine-language programs of �xed size
and composed of such instructions.
Hill climbing is a well-known search technique (see,

for example, [13]) that, given a candidate individual,
examines near neighbors for an improvement. Iterative
hill climbers continue this process with a \better" neigh-
bor as a replacement for the candidate individual until
a (global or local) optimum is reached. Hill climbing,
unlike evolutionary searches, is a form of local search
since it only examines neighbors a bounded distance
from the current candidate. We compare MLGP using
crossover (XO) to an exhaustive iterative hill climber
(EIHC). EIHC is exhaustive because for a program p,
it examines all individuals that di�er from p by a sin-
gle instruction. From MLGP (using XO) and EIHC, we
then also construct and measure a hybrid global-local
search mechanism (XO-EIHC).
We �nd that the evolutionary searches (XO or

XO-EIHC), as well as hill climbing (EIHC), can discover
solutions to the four sequence problems of this paper.

2

Surprisingly, all discovered solutions are exact (veri�ed
by hand) up to to underlying machine's register preci-
sion. That is, given registers of arbitrary precision, the
resultant programs correctly produce the in�nite integer
sequences de�ned by the functions of Figure 1.
In comparing the e�ciencies of the various search

techniques by counting program evaluations, we �nd
that an evolutionary search (XO or XO-EIHC) outper-
forms exhaustive hill climbing (EIHC) on the problems
considered. The work of O'Reilly and Oppacher [12]
similarly contrasts GP, stochastic iterated hill climbing,
and hybrids thereof; their problem set and representa-
tion, however, di�er qualitatively from ours, making di-
rect comparisons of quantitative conclusions unenlight-
ening. Finally, comparison of XO, EIHC, and XO-EIHC
to random search reveals that, for the problems consid-
ered in this paper, a directed search signi�cantly out-
performs random search.
The contributions of this paper are threefold; we

1. demonstrate the feasibility of using directed searches
to learn recursive integer sequences using only a
generic machine-language representation without re-
cursive instructions,

2. compare the e�ciencies of evolutionary, hill climb-
ing, hybrid (evolutionary and hill climbing) and ran-
dom searches, and

3. introduce novel MLGP techniques for manipulating
(possibly unbounded) sequences as MLGP result val-
ues.

We use the Finnegan system (described brie
y in Sec-
tion 2) to interpret VRM-S (Section 3). Section 4 de-
scribes the experimental setup in general and the four
search techniques (XO, EIHC, XO-EIHC, Random) in
particular. Results and conclusions of using the searches
to learn the four sequences de�ned by the functions of
Figure 1 are in Section 5. We summarize in Section 6.

2 Finnegan System

Finnegan (cf. [7]) is a framework for experimenting with
simulated evolution of machine-language programs. It
is written in the Standard ML (SML) programming lan-
guage [10] and implemented using the Standard ML of
New Jersey (SML/NJ) compiler [1]. Since SML is highly
modular, it is well suited to an experimental MLGP
framework into which one can easily plug various repre-
sentations, �tness functions, etc., selected from libraries
of such components.

3 Virtual Register Machine S

The machine-language representation used for the se-
quence problems is an instance of a virtual register ma-
chine called VRM-S . The machine is virtual because it

is interpreted by software. The notation VRM-S(n;m)

names a particular VRM-S that consists of external
state (m integer registers), internal state (a program
counter and
ag) and a sequence of n immutable in-
structions.

3.1 External State: Registers

We de�ne the register state as a vector
~R � hR0; : : : ; Rm�1i

of m integers; the register state constitutes the ma-
chine's mutable memory. The precision of a register is
inherited from the underlying implementation.3 Many
program instructions (e.g., Add) modify registers di-
rectly.
All program input is communicated through the reg-

ister state; that is, program inputs are supplied in the
initial state ~Rinitial. Outputs may be taken from the

�nal register state ~R�nal and from an output stream

of integers denoted Stdout and produced by the Out in-
struction (further described below). Registers may also
be used to initially supply the program with constants;
alternately, the program can synthesize necessary con-
stants in registers.
For the sequence problems of this paper, the registers

were initialized to zero.

3.2 Internal State: PC, Flag

In addition to the external register state, VRM-S main-
tains two pieces of internal state: a program counter
(PC) and a comparison
ag (Flag). The program
counter is an integer that selects which instruction to
fetch and execute. Branch instructions modify the PC
to point to the branch's target; all other instructions al-
ways increment the PC to point to the next instruction.
The PC is initially set to zero; that is, it points to the
�rst program instruction.
The Flag re
ects the result of the last comparison

instruction executed. It can assume the values less,
greater , and equal . Flag is initially unde�ned which
we denote as ? (bottom). Only the comparison instruc-
tions (see below) can modify the Flag state.

3.3 Instruction Set

A program is a vector of n instructions
~I � hI0; : : : ; In�1i

The program counter naturally corresponds to an index
of ~I . A program terminates when PC = n; that is,
when evaluation steps past the end of the program. (Our
evaluation strategy also limits the maximum number of
instructions evaluated; see Section 5.) Figure 2 contains
VRM-S's instructions and their operational semantics.

3Integers in the SML/NJ compiler used for Finnegan are signed
and 31 bit.

3

Out(Ra) �

�
PC PC + 1
Write(Stdout ; Ra)

Mov(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rsrc

Set(Ra) �

�
PC PC + 1
Ra 1

Clear(Ra) �

�
PC PC + 1
Ra 0

Inc(Ra) �

�
PC PC + 1
Ra 1�Ra

Dec(Ra) �

�
PC PC + 1
Ra 1	Ra

Neg(Ra) �

�
PC PC + 1
Ra Ra 	 0

Add(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst �Rsrc

Sub(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst 	Rsrc

Mul(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst
Rsrc

Div(Rdst,Rsrc) �

�
PC PC + 1
Rdst Rdst �Rsrc

Nop �
�
PC PC + 1

Cmp(Ra,Rb) �

0
BB@

PC PC + 1

Flag

8<
:

less if Ra < Rb
greater if Ra > Rb
equal otherwise

J(o�set) �
�
PC min (max (0;PC + o�set) ; n)

Jl(o�set) �

�
PC

�
min (max (0;PC + o�set) ; n) if Flag = less

PC + 1 otherwise

Jg(o�set) �

�
PC

�
min (max (0;PC + o�set) ; n) if Flag = greater

PC + 1 otherwise

Je(o�set) �

�
PC

�
min (max (0;PC + o�set) ; n) if Flag = equal

PC + 1 otherwise

Figure 2: Operational semantics for the virtual register machine VRM-S. Evaluation commences with PC = 0 and
Flag uninitialized. The trapping arithmetic operators (�, 	,
, and �) denote the respective integer operation,
but yield zero on exceptional cases (over
ow, under
ow, divide-by-zero).

4

VRM-S is a proper superset of VRM-M [7] previously
used to evolve machine-language iteration. The Out in-
struction is, however, novel to VRM-S and to MLGP in
general. Programs can use Out to place an integer on an
output stream. In particular, the Out instructions ap-
pends the integer in its register argument to the tail of
the global output stream called Stdout . A program that
does not execute an Out instruction produces the empty
stream; that is, Stdout contains no values after execu-
tion of such a program. The Out instruction mimics
native machine-language instructions that write values
to hardware ports.
The instruction set further consists of a nullary in-

struction Nop which does nothing, a register move in-
struction Mov, a comparison instruction Cmp that re
ects
the relation of its argument registers in the Flag state,
an unconditional branch J, branches conditional on the
Flag state (Jl, Jg, Je), instructions that initialize reg-
isters (Set and Clear), and instructions to increment
(Inc) and decrement (Dec) a given register. The arith-
metic instructions (Add, Sub, Mul, Div) perform the re-
spective operation, leaving the result in the destination
register. The arithmetic Neg instruction negates the
value in its argument register. The arithmetic instruc-
tions trap exceptional conditions (over
ow, under
ow,
divide-by-zero) for which they return zero (see Figure 2).
Branches (J, Jl, Je, Jg) are always relative to the

program counter. Negative o�sets describe a backward
branch. Note that the operational semantics rewrites a
branch to an address< 0 as a branch to I0 (i.e. PC 0)
and a branch past the end of the program (n� 1) as
termination (i.e. PC n). A jump instruction Ij can
therefore branch to any one of n+ 1 distinct addresses.
The number of syntactically-distinct instructions in a

VRM-S(n;m) is

S (m;n) � 6m2 + 6m+ 4 (n+ 1) + 1 (1)

because there are six binary register instructions, six
unary register instructions, four relative branch instruc-
tions, and one nullary instruction (Nop). The number
of possible (syntactic) programs in a such a machine is
therefore: S (m;n)

n
(2)

3.4 Evaluation Function

Our interpreter evaluates an n-instruction VRM-S(n;m)

program ~I with respect to an m-register input state ~R
and an integer number of evaluation steps (instructions),
K > 0. ES maps a triple to a pair:

ES :
�
~I; ~R;K

�
!
�
~R0;Stdout

�
(3)

ES produces the �nal register state ~R0 and the out-
put stream Stdout after evaluation of at most K
instructions.4

4Since our VRM-S evaluator is an interpreter (essentially Fig-
ure 2), it can be easily halted after evaluation of K instructions.

4 Experimental Setup

This section describes the four search methods|
genetic crossover (XO), exhaustive iterative hill climb-
ing (EIHC), hybrid (XO-EIHC), and random search|
applied to the four sequence problems. Before describ-
ing the individual methods, we �rst de�ne the test-case
model and the �tness function they have in common.
We defer elaboration of the quantitative settings (e.g.,
program size) to the next section (x5).

4.1 Test Case

The l-pre�x test case for a sequence problem de�ned
by function f is de�ned as s � ff(0); : : : ; f(l� 1)g. A
pre�x length of l = 10 su�ces for the four sequence
problems of this paper; the e�ect of other pre�x sizes
has not been investigated.

4.2 Fitness Function

A program's �tness is computed only from the Stdout
stream returned by the evaluation function (Equa-
tion 3). Lower �tness values are better. For sequence
function f , the raw �tness of an n-instruction program
~I on test case s is given by

Fs

�
~I
�
�

l�1X
i=0

jvi � f(i)j � scales(i) (4)

where, using (3), ES(~I; ~R;K) =
�
~R0;Stdout

�
, input reg-

isters ~R � h0; : : : ; 0m�1i, and K is the maximum num-
ber of evaluation steps. Take the sequence fv0; : : : ; vl�1g
to be the �rst l values of Stdout if this stream con-
tains at least l values; otherwise, when Stdout con-
tains j < l values, take values vj ; : : : ; vl�1 as smax

(where smax is the largest value in sequence S; that
is, smax � max ff(0); : : : ; f(l � 1)g for the sequence de-
�ned by f). The function scales, returning a real value,
is de�ned as

scales(i) �

�
smax if f(i) = 0
smax=f(i) otherwise

(5)

It serves to scale an incorrect result value, jvi � f(i)j > 0
from (4) above, in proportion to the magnitude of the
error.5

4.3 Search Methods

Here, we describe the search methods used to �nd solu-
tions to the sequence problems.

5When f(i) = 0, smax=f(i) is unde�ned and we penalize the
program with smax.

5

4.3.1 Genetic Search (XO)

The MLGP genetic search uses proportional selection as
its population-selection mechanism and crossover (XO)
as its sole genetic operator.

Population Selection Population selection, for the
construction of successive generations, is performed via
proportional selection (see, e.g., [8, 9]). Let P be a pop-
ulation (set) of N programs. The selection mechanism
�rst normalizes an individual's raw �tness (4) to the
unit interval:

cFs �~I � � 1

Fs

�
~I
�P

p2P Fs (p)
�1

(6)

It then selects N random reals, X � fx1; : : : ; xNg, in
the unit interval. For each x 2 X , population selec-
tion then chooses a program ~I for the next generation

if x < cFs �~I � and there does not exist an ~I 0 such that

x < cFs �~I 0 � < cFs �~I �.
Genetic Operator: Two-Point Crossover We use
a single recombination operator that performs two-point
crossover.

Crossover of two n-instruction programs ~Ii and ~Ij
�rst selects a subsequence of instructions starting at
a random point 0 � pi < n in program ~Ii. The length
k > 0 of the subsequence is chosen randomly such that
pi < pi + k < n. A random point pj , 0 � pj + k < n, is

then chosen in program ~Ij . Finally, the k instructions in
~Ii starting at pi are interchanged with the k instructions
in ~Ij starting at pj .

Crossover in a population P is performed by �rst se-
lecting a subset P 0 � P of programs from the popula-
tion; an individual program is randomly selected for P 0

with probability Probxover. The programs in P
0 are then

randomly paired and the crossover operator is applied
to each pair. The pairs resulting from crossover replace
the corresponding original pairs in the population.

4.3.2 Exhaustive Iterative Hill Climbing (EIHC)

Hill climbing is the second search method we exam-
ined in the context of learning integer sequences using a
machine-language representation. In particular, we im-
plemented an exhaustive iterative hill climber (EIHC)
that works as follows.

EIHC �rst randomly generates an n-instruction can-
didate program p, evaluates it, and computes its �tness.
For each of the n instruction positions i in p, EIHC it-
eratively replaces the instruction at i with all possible
VRM-S instructions, evaluates the resulting neighbors,
and records their �tness values. The neighbor p0 with

the largest improvement in �tness replaces the candi-
date p. If no such neighbor exists|that is, no single-
point instruction replacement improves on p's �tness|
the search has reached an optimum (local or global) and
the search terminates. A search that fails to �nd a global
optimum is restarted with a new, random, candidate
program.
Since EIHC replaces all program instructions with all

possible VRM-S instructions, it exhaustively examines
all single-point changes. Since it moves in the direction
with the greatest improvement in �tness, it is a \steep-
est gradient" search. Many variations on hill climb-
ing are possible: movement in the direction of the �rst
improvement (instead of the best), stochastic selection
of some single-point changes (cf. [12]), examination of
multi-point changes. We have not explored the impact
on performance that such variations may have.

4.3.3 Hybrid Search (XO-EIHC)

We combine XO with EIHC to form a hybrid search
method (XO-EIHC) as follows. Recall that MLGP with
XO proceeds in generations. At the start of a new gen-
eration for XO-EIHC, we randomly select a single indi-
vidual p from the population P , apply EIHC to p until
a local or global optimum is found, and reinsert the re-
sult of the EIHC search into P . Many variations of this
scheme are possible: select fewer/more individuals per
generation, select only from the �ttest individuals, use
an alternate form of local search, etc. As with pure
EIHC, we have not explored the e�ects of such varia-
tions.

4.3.4 Random Search

Random search randomly generates an individual p,
evaluates p and computes its �tness, and (optionally)
records p's �tness as the best if p improves on the cur-
rent best �tness. This process continues until a su�-
cient number of global solutions are found or until the
number of program evaluations exceeds a predetermined
threshold.

5 Results

For each of the four sequence problems de�ned by the
functions of Figure 1, we conducted four experiments,
one for each of the search methods of the the previous
section. Table 1 holds the quantitative results.
We used a single parameter set for all experi-

ments; only the target test sequence (x4.1) was vari-
able. The virtual register machine was instantiated to
VRM-S(12;12); that is, programs were of length n = 12
and had m = 12 registers.6 The maximum number of

6Equation 2 indicates that the number of syntactic programs
in VRM-S(12;12) is on the order of 1035.

6

#Solns #Evals
#Evals
#Solns

XO 10 506443 5:06� 105

EIHC 10 3455593 3:45� 106

XO-EIHC 10 1931384 1:93� 106

Random 3 (max-evals) 1:6� 107

square

#Solns #Evals
#Evals
#Solns

XO 10 32877175 3:28� 106

EIHC 5 (max-evals) 1:00� 107

XO-EIHC 10 32552681 3:25� 106

Random 0 (max-evals) |

cube

#Solns #Evals
#Evals
#Solns

XO 10 26692924 2:66� 106

EIHC 8 (max-evals) 6:25� 106

XO-EIHC 9 (max-evals) 5:55� 106

Random 0 (max-evals) |

factorial

#Solns #Evals
#Evals
#Solns

XO 0 (max-evals) |

EIHC 10 21114026 2:11� 106

XO-EIHC 10 10239228 1:02� 106

Random 0 (max-evals) |

Fibonacci

Table 1: Results of the four search methods applied to the sequence problems. For each sequence and search
method, the number of solutions discovered, number of evaluations required to discover the solutions, and e�ciency
(#Evaluations per #Solutions) are given. Experiments were limited to the �rst of either ten solutions or 5� 107

(max-evals) evaluations.

program evaluation steps was set to K = 100.
(It can be argued that the values n, m, and K

implicitly carry information about the solutions being
sought. One could however automatically �nd such
values by starting with small values (e.g. one) and|
if unsuccessful|increasing the values, by perhaps dou-
bling, and retrying the search.)
For the evolutionary searches (XO, XO-EIHC) the

population size was set to N = 256 and the crossover
probability to Probxover = 0:25. A run was deemed
complete after 32 generations without an improvement
in best �tness (stasis). Di�erent values for the evolu-
tionary parameters of course in
uence the comparative
results; conclusions drawn from the comparisons must
take this into account.
For each sequence and search method, the number of

solutions discovered, number of evaluations required to
discover the solutions, and e�ciency are given in Ta-
ble 1. E�ciency is measured in evaluations per solu-
tion, where a lower value indicates higher e�ciency; ef-
�ciency is unde�ned when a search method yields no
solutions. To curtail manual veri�cation time and cpu
time, searches were limited to the �rst ten solutions or
5� 107 evaluations, whichever came �rst.
From the table one can conclude that the evolutionary

searches perform quite well and that, as to be expected,
random search performs extremely poorly. Pure hill
climbing (EIHC) never performs as well as an evolution-
ary search in this experimental setup. From the results,
it is not apparent when to use the hybrid (XO-EIHC)
search. XO-EIHC is competitive with XO on cube, but

lags XO on square and factorial . XO-EIHC, however,
produces solutions for Fibonacci where XO surprisingly
produces no solutions (we suspect this to be an arti-
fact of the evolutionary parameters, program length and
number of evaluation steps).
All solutions discovered by the four search methods

are exact|they produce the in�nite sequence of their
respective function up to the machine's underlying reg-
ister precision. Solutions were checked for exactness by
hand. We note that program and register sizes (n and
m) must govern the tradeo� of solution exactness ver-
sus over�tting. That is, the incorporation of the target
sequence into the program as data|instead of its pro-
duction by an algorithm|to yield a non-general solution
seems more likely as the di�erence between n and the
length of the target pre�x l increases. Further experi-
ments are necessary to ascertain if and when over�tting
in MLGP occurs.
Sample solutions to the square , cube , factorial ,

and Fibonacci sequence problems found by the hybrid
XO-EIHC search are in Figure 3. The solutions pro-
duce the respective in�nite sequence via an in�nite loop
synthesized from jump instructions. Since a solution
must produce an output sequence, it also contains at
least one Out instruction. Note how the solution for
Fibonacci economizes on instructions by using two in-
stances of Out.
The programs for Fibonacci and factorial �rst (par-

tially) generate the required base cases before entering
their loop. Note the exploitation of Div's divide-by-zero
behavior in lines 7{8 of factorial 's solution: after emit-

7

Address Instruction
0: Nop

1: Out(R6)

2: Inc(R1)

3: Add(R6,R1)

4: Inc(R2)

5: Inc(R1)

6: Jg(+2)

7: Cmp(R6,R0)

8: J(+1)

9: Jg(-10)

10: Clear(R1)

11: J(+1)

square

(generation 6)

Address Instruction
0: Inc(R4)

1: Out(R0)

2: Add(R10,R4)

3: Add(R0,R10)

4: Inc(R4)

5: Add(R10,R4)

6: J(+2)

7: Inc(R5)

8: Inc(R4)

9: J(-9)

10: J(+3)

11: J(+1)

cube

(generation 88)

Address Instruction
0: Inc(R1)

1: Mov(R6,R0)

2: Add(R1,R6)

3: Out(R1)

4: Add(R6,R1)

5: Mov(R6,R1)

6: Mul(R1,R9)

7: Div(R1,R10)

8: Set(R10)

9: Inc(R9)

10: J(-8)

11: J(+1)

factorial

(generation 26)

Address Instruction
0: Dec(R1)

1: Neg(R0)

2: Set(R6)

3: Sub(R5,R1)

4: Cmp(R7,R6)

5: Add(R5,R4)

6: Out(R5)

7: Add(R4,R5)

8: Clear(R1)

9: Out(R4)

10: Jl(-7)

11: J(R+1)

Fibonacci

(generation 31)

Figure 3: Sample solutions to the square , cube , factorial , and Fibonacci sequence problems found by the hybrid
XO-EIHC search. Instructions that do not a�ect a program's result have a line through them.

ting factorial(0), and only in the �rst loop iteration, it
clears R1 in preparation for factorial(1).
In the solutions exhibited, the results from previous

loop iterations are used in computing the current it-
eration's output value(s). Solutions to factorial and
Fibonacci follow their natural recursive de�nitions (Fig-
ure 1); for example, the solution for Fibonacci maintains
prior Fibonacci values in registers R4 and R5. The solu-
tions for square and cube use the expansion of the bi-
nomial theorem7 and recursively compute their results
as well. In other words, square computes (x+ 1)2 by
adding 2x + 1 to the value of x2 computed in the pre-
vious iteration. Similarly, cube computes (x+ 1)3 from
x3. Solution programs for square and cube typically
converged on this recursive structure. Solutions using
multiplication to compute square and cube were atypi-
cal; no solutions for cube used multiplication and only a
single solution to square did so (and this was found by
random search!). This suggests that the ability to syn-
thesize control-
ow can potentially increase the number
of possible solutions on certain problems, implicitly in-
creasing search e�ciency.

6 Summary

We have demonstrated that the directed search of
machine-language genetic programming, as well as that
of hill climbing, can be applied to the space of machine-
language computer programs to learn the integer se-
quences generated by the functions for square , cube ,
factorial and Fibonacci . A hybrid global-local search
(genetic crossover and hill climbing) also performs well
in that it �nds solutions to all four problems. Further-
more, directed searches always outperformed random
search.

7 (a+ b)n =
Pn

k=0

�
n
k

�
an�kbk

Notably, our machine-language representation does
not require recursive operators to produce programs
that|for the experimental solutions generated|exactly
produce the in�nite recursive sequence implied by the
sequence's ten-element pre�x, supplied as the test case.
The instruction set is generic in that it contains only
primitive instructions for register manipulation, condi-
tional and unconditional branches, and arithmetic. For
this work, we also introduced an instruction that allows
programs to produce value streams as output.
Further future investigation of search-parameter set-

tings (e.g., program or population size) is necessary
to enable more de�nitive comparisons of the search
techniques and to guide their further integration into
machine-language genetic-programming systems. Re-
latedly, a study of the relationship of program size and
evaluation steps to solution quality (generality) is im-
portant. Re�nement of technique should allow MLGP
solution of more di�cult sequence-induction problems.

Acknowledgments

Thanks to David Hull and Andy Pargellis for discussions
of this work and comments on this paper.

References

[1] A. W. Appel and D. B. MacQueen. A Standard
ML compiler. Functional Programming Languages
and Computer Architecture, 274:301{324, 1987.

[2] N. L. Cramer. A representation for the adaptive
generation of simple sequential programs. In Pro-

ceeding of the International Conference on Genetic

Algorithms and their Applications, pages 183{187.
Texas Instruments, July 1985.

[3] R. M. Friedberg. A learning machine: Part I.

8

IBM Journal of Research and Development, 2:2{13,
1958.

[4] R. M. Friedberg, B. Dunham, and J. H. North. A
learning machine: Part II. IBM Journal of Research

and Development, 3:282{287, 1959.

[5] S. Handley. A new class of function sets for solving
sequence problems. In Proceedings of the Confer-

ence on Genetic-Programming, pages 301{308, July
1996.

[6] J. Holland. Adapation in Natural and Arti�cal Sys-

tems. University of Michigan Press, 1975.

[7] L. Huelsbergen. Toward simulated evolution of
machine-language iteration. In Proceedings of the

Conference on Genetic-Programming, pages 315{
320, July 1996.

[8] J. Koza. Genetic Programming: On the Program-

ming of Computers by the Means of Natural Selec-

tion. MIT Press, Cambridge, MA, 1992.

[9] Z. Michalewicz. Genetic Algorithms + Data Struc-

tures = Evolution Programs. Springer Verlag,
Berlin, 1992.

[10] R. Milner, M. Tofte, and R. Harper. The De�nition
of Standard ML. MIT Press, 1990.

[11] P. Nordin. A compiling genetic programming sys-
tem that directly manipulates the machine-code. In
K. Kinnear Jr., editor, Advances in Genetic Pro-

gramming, chapter 14, pages 311{331. MIT Press,
1994.

[12] U.-M. O'Reilly and F. Oppacher. A comparative
analysis of genetic programming. In K. Kinnear and
P. J. Angeline, editors, Advances in Genetic Pro-

gramming II, chapter 2, pages 23{44. MIT Press,
1996.

[13] E. Rich. Arti�cial Intelligence. McGraw-Hill, 1983.

9

