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Abstract

We use a simulated evolution search (ge-
netic programming) for the automatic syn-
thesis of small iterative machine-language
programs. For an integer register ma-
chine with an addition instruction as its
sole arithmetic operator, we show that ge-
netic programming can produce exact and
general multiplication routines by synthe-
sizing the necessary iterative control struc-
tures from primitive machine-language in-
structions. Our program representation is
a virtual register machine that admits ar-
bitrary control 
ow. Our evolution strat-
egy furthermore does not arti�cially re-
strict the synthesis of any control struc-
ture; we only place an upper bound on
program evaluation time. A program's �t-
ness is the distance between the output
produced by a test case and the desired
output (multiplication). The test cases ex-
haustively cover multiplication over a �-
nite subset of the natural numbers (N10);
yet the derived solutions constitute gen-
eral multiplication for the positive inte-
gers. For this problem, simulated evolu-
tion with a two-point crossover operator
examines signi�cantly fewer individuals in
�nding a solution than random search. In-
troduction of a small rate of mutation fur-
ther increases the number of solutions.

1 Introduction

Genetic programming (GP) [8] uses principles of evo-
lution (populations, �tness measures, recombination) to
perform directed non-linear searches in the space of com-
puter programs. GP has successfully produced solution
programs in many problem domains, e.g. [7, 9, 8]. For
the most part however, GP solutions are restricted to
non-iterative (non-looping) programs. To both broaden

the domain of GP applications and to scale to larger
problem sizes, it is necessary to extend GP to iterative
programs. To this end, we study the evolution of un-
restricted iteration in the context of machine-language
programs.

Little GP research to date addresses the problem of
general iteration. Early work modeled the synthesis of
machine-language programs as evolutionary processes
[5, 4], but did not outperform random search. Appli-
cations of genetic programming that do use iteration do
so by restricting its form to a single type of loop and
by bounding its extent to a �xed number of iterations.
Cramer [3] describes simulated evolution of programs in
a machine language with a high-level LOOP construct
parameterized by an expression e and an integer vari-
able denoting the number of iterative executions of e;
the system externally limits a program's running time.
Koza [8] similarly introduces the Do-Until (DU) itera-
tive language construct; parameterized by an expression
e and a predicate p, DU iteratively evaluates e until p is
true. Each DU operator in the program is, however, re-
stricted in that the number of its iterations is externally
bounded from above. Kinnear also uses a specialized
loop construct, dobl, to evolve sorting algorithms [6]. As
with iteration, GP experiments with recursion restrict
the scope and generality of the recursion. Recent work
by Brave [2] investigates restricted recursion over trees
to solve state-space exploration problems. The external
system again restrictively curbs the maximum depth of
a recursion. With constructs such as LOOP, DU, or
dobl as its only means of iteration, GP can only evolve
programs with structured control 
ow.

An alternate approach to the problem of GP iteration
is taken here|the automatic synthesis of general (i.e.
unrestricted) iteration from control-
ow primitives. Our
program representation is an instance of a virtual regis-
ter machine (VRM). The particular VRM under inves-
tigation (denoted VRM-M) is a small integer instruc-
tion set that includes add, move, increment/decrement,
set/clear, compare, and branch (conditional and un-
conditional) instructions. To synthesize a for loop in



Address Instruction Comment
0: Cmp(R2,R3) compare counter R2 to zero (R3= 0)
1: Je(+4) if counter zero, then exit
2: Add(R0,R1) R0  R0 + R1
3: Dec(R2) decrement counter
4: J(-4) and loop : : :

Figure 1: A hand-coded VRM-M program that solves the multiplication problem. The input multiplier and
multiplicand are initially in registers R1 and R2; other registers are initially zero. The product accumulates in R0.

VRM-M for example, GP must construct a counter, an
increment or decrement of this counter, a comparison
of the counter to its terminal value, and appropriate
branch instructions based on this comparison.1 Since
loops are not explicit in this representation, it is not
feasible to place time bounds on individual loops (cf.
Do-Until [8])|as in e.g. [3], we instead limit the total
number of instructions a program may execute, i.e. its
running time.
This paper's result is that GP can automatically syn-

thesize multiplication routines2 (solutions) by construct-
ing a loop that has the VRM-M's Add instruction at
its core. (A hand-coded solution to the multiplication

problem is in Figure 1.) Informally, the �tness of an
individual VRM-M program p is computed by exhaus-
tively evaluating p with inputs (i; j), for all i; j 2 N10,
and computing the distance of p's result from the de-
sired product ij. Although the test cases cover only a
small �nite subset of the natural numbers, they su�ce
to produce general multiplication (bounded only by a
machine's register precision) for the positive integers.
All solutions discovered to date are general.
Genetic programming �nds solutions to the multipli-

cation problem in the VRM-M language using a single
genetic operator (two-point crossover) to recombine �t
individuals during the construction of successive gener-
ations. Introduction of a mutation operator|applied
with low probability|further increases the likelihood
that a given GP run �nds a solution. This problem is
solved exactly by only a small percentage (� 3%) of the
GP runs. Even so, we �nd that GP solution of this prob-
lem (with and without mutation) processes signi�cantly
fewer individual programs than a random search.
The results presented here were obtained in a new

system|called Finnegan and brie
y described in the
next section|for experimentation with simulated evo-
lution of programs. Section 3 speci�es the virtual ma-
chine language; Section 4 details the experimental setup
for the multiplication problem. Results are in Section 5.
We conclude with a discussion in Section 6.

1A high-level if control structure also requires such synthesis
from primitive VRM-M instructions.

2Cramer [3] also studied simulated evolution of multiplication
in machine languages with high-level loop constructs.

2 Finnegan System

Finnegan is a framework for experimenting with simu-
lated evolution. It is written in the Standard ML (SML)
programming language [12] and implemented using the
Standard ML of New Jersey (SML/NJ) compiler [1].
The SML/NJ implementation supports parameterized
modules [10] which are indispensable in an experimen-
tation framework. SML's strong static typing ensures
that module implementations match their declared in-
terfaces (signatures). In Finnegan, one is therefore able
to quickly interchange GP's variable components (e.g.,
representations, �tness functions, selection mechanisms)
by selecting modules from libraries of such components.

3 Virtual Register Machine M

The representation used for the multiplication prob-
lem is an instance of a virtual register machine called
VRM-M. The notation VRM-M(m;n) names a partic-
ular VRM-M that consists of external state (m integer
registers), internal state (a program counter and 
ag)
and a sequence of n immutable instructions.

3.1 External State: Registers

We de�ne the register state as a vector

~R � hR0; : : : ; Rm�1i

of m integers; the register state constitutes the ma-
chine's mutable memory. The precision of a register is
inherited from the underlying implementation.3 Most
program instructions (e.g., Add) modify registers di-
rectly. All program input and output is communicated
through the register state; that is, program inputs are
supplied in the initial state ~Rinitial and outputs are

taken from the �nal register state, ~R�nal. Registers

may also be used to initially supply the program with
constants. Alternately, the program can synthesize nec-
essary constants in otherwise unused registers.

3Integers in the SML/NJ compiler used for Finnegan are signed
and 31 bit.
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3.2 Internal State: PC, Flag

In addition to the external register state, VRM-M
maintains two pieces of internal state: a program
counter (PC ) and a comparison 
ag (Flag). The pro-
gram counter is an integer that selects which instruc-
tion to fetch and execute. Branch instructions mod-
ify the PC to point to the branch's target; all other
instructions always increment the PC to point to the
next instruction. The Flag re
ects the result of the last
comparison instruction executed. It can assume the val-
ues less, greater , and equal . Flag is initially unde�ned
which we denote as ? (bottom). Only the comparison
instructions (see below) can modify the Flag state.

3.3 Instruction Set

A program is a vector of n instructions:

~I � hI0; : : : ; In�1i

The program counter naturally corresponds to an index
of ~I . A program terminates when PC = n; that is,
when evaluation steps o� the end of the program. (Our
evaluation strategy also limits the maximum number of
instructions evaluated; see Section 5.) Figure 2 con-
tains VRM-M's instructions and their operational se-
mantics. The instruction set consists of a single nullary
instruction Nop which does nothing, a single arithmetic
instruction Add, a register move instruction Mov, a regis-
ter comparison instruction Cmp, an unconditional branch
J, conditional branches (Jl, Jg, Je), instructions to ini-
tialize registers (Set and Clear), and instructions to
increment (Inc) and decrement (Dec) a given register.
Since any �nite implementation of integer arithmetic

may result in over
ow or under
ow, we de�ne the arith-
metic operators � and 	 (used in Figure 2) to be con-
ventional integer addition and subtraction respectively,
except that they produce zero when the result would
exceed the implementation's precision.
Branches are always relative to the program counter.

We chose to forego absolute branch addressing since rel-
ative addressing readily admits code relocation, which
is in essence what the application of genetic operators
(x4.4 below) to VRM-M code does. Note that the oper-
ational semantics rewrites a branch to an address < 0 as
a branch to I0 (i.e. PC  0) and a branch past the end
of the program (n � 1) as termination (i.e. PC  n). A
jump instruction Ij can therefore branch to any one of
n+ 1 distinct addresses.
The number of syntactically-distinct instructions for

VRM-M(m;n) is

S (m;n) � 3m2 + 4m + 4 (n+ 1) + 1 (1)

because there are three binary register instructions, four
unary register instructions, four relative branch instruc-
tions, and one nullary instruction (Nop). The number

of possible (syntactic) programs in a such a machine is
then:

S (m;n)n (2)

3.4 Evaluation Function

Evaluation of an n-instruction VRM-M(m;n) program ~I

is with respect to an m-register input state ~R and an in-
teger number (k > 0) of evaluation steps (instructions).
The evaluation function E maps a triple to a pair:

E :
�
~I; ~R; k

�
!
�
~R0;PC

�
(3)

E produces a pair consisting of the �nal register state
~R0 and �nal PC after evaluation of at most k instruc-
tions. A program that terminates within k instructions
has PC = n. Since our VRM-M evaluator is an inter-
preter (essentially Figure 2), it can be easily halted after
evaluation of k instructions.

4 Experimental Setup

In addition to a program representation, a GP experi-
ment is parameterized by a number of variable compo-
nents: a set of test cases, a �tness function, a popu-
lation selection mechanism, and a set of genetic oper-
ators. This section �xes the components used in our
experiments with the multiplication problem. We defer
elaboration of the quantitative settings (e.g., population
size) to the next section (x5).

4.1 Test Cases

A test case t for the multiplication problem is a pair
(i; j). The answer for t is the product ij. Over any
in�nite domain, the set of all test cases is also in�nite;
we therefore restrict ourselves to test cases over a �nite
subset of the natural numbers, N10.4 Denote the set of
all such test cases as T :

T � f(i; j) j8i; 8j 2 N10g (4)

4.2 Fitness Function

We de�ne registers R1 and R2 as input registers (mul-
tiplier and multiplicand) and register R0 as the output
register (product).5 The raw �tness of an n-instruction

program ~I for test-case t � (i; j) is given by

F(i;j)

�
~I
�
� jR0

0 � ijj + jPC � nj (5)

where, using (3), E(~I; ~R; k) = (hR0
0; : : :i ;PC ), input reg-

isters ~R � h0; i; j; 0; : : :; 0m�1i, and k is the maximum

4We note that GP driven by this set �nds exact solutions to
the multiplication problem; we have not ascertained whether a
smaller test-case set would also su�ce (see x5 and x6).

5A VRM-M that can solve the multiplication problem must
therefore contain at least m = 3 registers.
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Nop �
�
PC  PC + 1

Mov(Rdst,Rsrc) �

�
PC  PC + 1
Rdst  Rsrc

Add(Rdst,Rsrc) �

�
PC  PC + 1
Rdst  Rsrc �Rdst

Cmp(Ra,Rb) �

0
BB@

PC  PC + 1

Flag  

8<
:

less if Ra < Rb
greater if Ra > Rb
equal otherwise

J(o�set) �
�
PC  min(max (0;PC + o�set) ; n)

Jl(o�set) �

�
PC  

�
min(max(0;PC + o�set ) ; n) if Flag = less

PC + 1 otherwise

Jg(o�set) �

�
PC  

�
min(max(0;PC + o�set ) ; n) if Flag = greater

PC + 1 otherwise

Je(o�set) �

�
PC  

�
min(max(0;PC + o�set ) ; n) if Flag = equal

PC + 1 otherwise

Inc(Ra) �

�
PC  PC + 1
Ra  Ra � 1

Dec(Ra) �

�
PC  PC + 1
Ra  Ra 	 1

Set(Ra) �

�
PC  PC + 1
Ra  1

Clear(Ra) �

�
PC  PC + 1
Ra  0

Figure 2: Operational semantics for the virtual register machine VRM-M used to solve the multiplication prob-
lem. Evaluation commences with PC = 0 and Flag = ? (uninitialized). The arithmetic operators � and 	 are
de�ned to be conventional integer addition and subtraction respectively, except that when their result exceeds the
implementation's precision (over
ow or under
ow), they produce zero.
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number of evaluation steps. The total raw �tness of a
program ~I with respect to the test-case set T is the sum
of the raw �tness values of the individual test cases:

F
�
~I
�
�
X
t2T

Ft
�
~I
�

(6)

The �tness function has two parts: the distance of a
computed result from the desired product and the dis-
tance of the program counter (after k steps) from the
halting position n. The jPC � nj term favors|in some
sense|programs that after k steps are \close" to the
proper termination point, n. In this manner, F selects
for programs that resemble multiplication and that ter-
minate.

4.3 Population Selection

Population selection, for the construction of successive
generations, is performed via proportional selection (see,
e.g., [8, 11]). Let P be a population (set) of N programs.
Our selection mechanism �rst normalizes an individual's
raw �tness (6) to the unit interval:

bF �~I � � 1

F
�
~I
�P

p2P F (p)
�1

(7)

We then select a N random reals, X � fx1; : : : ; xNg, in

the unit interval. For each x 2 X, we select program ~I

for the next generation if x < bF �~I � and there does not

exist an ~I0 such that x < bF �~I0 � < bF �~I �.
4.4 Genetic Operators

We use a single recombination operator that performs
two-point crossover. For some experiments, we augment
this operator with mutation.

4.4.1 Two-Point Crossover

Crossover of two n-instruction programs ~Ii and ~Ij �rst
selects a subsequence of instructions starting at a ran-
dom point 0 � pi < n in program ~Ii. The length
l of the subsequence is chosen randomly such that
pi < pi + l < n. A random point pj , 0 � pj + l < n, is

then chosen in program ~Ij. Finally, the l instructions in
~Ii starting at pi are interchanged with the l instructions
in ~Ij starting at pj.
Crossover in a population P is performed by �rst se-

lecting a subset P 0 � P of programs from the popula-
tion; an individual program is randomly selected for P 0

with probabilityProbxover. The programs in P 0 are then
randomly paired and the crossover operator is applied
to each pair. The pairs resulting from crossover replace
the corresponding original pairs in the population.

4.4.2 Mutation

With probability Probmutate, a program instruction in
the population is changed to a random instruction. A
random VRM-M(m;n) instruction (x3) is generated by
�rst selecting an opcode at random and then, when nec-
essary, randomly generating the opcode's operands (i.e.
registers and relative addresses).

5 Results

We performed two sets of experiments for the multipli-
cation problem using the GP con�guration of the pre-
vious section (x4)|two-point crossover (Experiment I)
and two-point crossover with mutation (Experiment II).
We also compared the number of programs examined
by GP solution of this problem to the number required
for a successful random search. All experiments used
Finnegan compiled with SML/NJ version 108.15 and the
pseudorandom number generator from the SML/NJ li-
brary.
For experiments I and II, we studied VRM-M(4;8);

that is, VRM-M with four registers and eight instruc-
tions. Each experiment consisted of 2000 GP runs
with Probxover = 0:25 on a population of 1024 (ini-
tially random) programs. Evaluation of an individ-
ual was arbitrarily6 limited to k = 100 steps. A run
was deemed complete when the �tness of the best in-
dividual remained constant for 50 consecutive gener-
ations (stasis). Experiment I did not use mutation
(Probmutate = 0:0); experiment II had a slight muta-
tion rate (Probmutate = 0:001).
Experiment I evaluated 6:2� 107 programs overall

with a yield of 28 exact solutions to the multiplication
problem, or an exact solution approximately every 71
runs (2:2� 106 evaluations per solution).7 Experiment
II evaluated 6:8� 107 programs overall and gave 60 ex-
act solutions with an exact solution appearing approx-
imately every 33 runs (1:1� 106 evaluations per solu-
tion).
Some solutions discovered by experiment I are in Fig-

ure 3. Solutions (a) and (b) closely resemble a human's
coding of this problem (cf. Figure 1) with (b) exhibiting
unstructured control 
ow. Solution (c) always executes
at least one loop iteration and, in the case of a zero mul-
tiplier, then proceeds to undo this incorrect subcompu-
tation. Solution (d) is interesting because it accumu-
lates two separate products|in R0 and R2. In (d), R2
is used as multiplier input, loop counter, and product
accumulator. Unlike most solutions, (d) requires only

6A system might �nd suitable k values automatically by per-
forming runs using k = 2i for successive integer values of i until a
run yields a solution.

7Finnegan eliminates some redundant evaluations; a program
that moves unchanged from generation g to generation g+1 is not
reevaluated. Eliminated evaluations do not appear in reported
totals.
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Address Instruction
0: Cmp(R1,R3)

1: Je(+7)

2: Add(R0,R2)

3: Dec(R1)

4: Jg(-4)

5: Mov(R2,R3)

6: Jg(+2)

7: Add(R1,R1)

(a) Generation 30

Address Instruction
0: J(+6)

1: Jl(+7)

2: Je(-2)

3: Inc(R3)

4: Nop

5: Add(R0,R1)

6: Cmp(R2,R3)

7: Jg(-6)

(b) Generation 15

Address Instruction
0: Dec(R1)

1: Cmp(R3,R1)

2: Add(R0,R2)

3: Jl(-3)

4: Je(+4)

5: Jl(0)

6: Mov(R0,R1)

7: Inc(R0)

(c) Generation 13

Address Instruction
0: Cmp(R0,R2)

1: Dec(R2)

2: Je(+5)

3: Je(+3)

4: Cmp(R0,R2)

5: Add(R0,R1)

6: Add(R2,R1)

7: Jl(-6)

(d) Generation 28

Figure 3: Solutions to the multiplication problem discovered by GP using the VRM-M(m;n) representation and
halted after k = 100 steps. Instructions that do not a�ect a program's result have a line through them.

three VRM-M registers (but seven instructions).
Examination of 109 random VRM-M(4;8) programs

found 104 general solutions to the multiplication
problem.8 On average, a solution via random search
required examination of � = 9:5� 106 individuals per
solution with sample variance �2 = 7:2� 1013. In this
regard, GP's directed search strategy is quite e�ective.
However, examination of a program by random search
is usually much faster than examination by GP. This
is because a random search can discard the current pro-
gram as soon as a single test case fails whereas GP must
construct �tness values by evaluating programs against
all test cases. With respect to the multiplication prob-
lem, it is yet unclear how the absolute e�ciences of GP
and random search relate.

6 Conclusion

We have shown that|using a machine-language repre-
sentation with addition as its sole arithmetic operator|
genetic programming can e�ectively synthesize unstruc-
tured loops from primitive instructions (comparisons
and relative branches) to evolve general multiplication.
Furthermore, the number of unique programs processed
by GP solving this problem is signi�cantly less than the
number processed by a random search, on average.
Questions concerning the absolute e�ciency of a GP

solution relative to random search (as noted in the previ-
ous section) are of foremost importance. To this end, we
are pursuing a two-pronged approach. First, we are de-
signing optimizations for the Finnegan system that fur-
ther remove redundant program evaluations and that
reduce the costs of such evaluations. This can directly
increase GP's e�ciency. Second, we are turning our
attention toward harder problems (synthesis of multi-
plication overZinstead of N, for example), the assump-
tion being that unrestricted-iterative GP may e�ectively
scale to harder problems for which random search is in-

8Combined with equation 2, these empirical data suggest that
multiplication is surprisingly dense in the space of VRM-M(4;8)

programs.

tractable.
To establish unrestricted iteration as a valuable device

for genetic programming, future work must successfully
apply it to richer representations and solve problems of
higher complexity.
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