
A Representation for Dynamic Graphs
in Reconfigurable Hardware and its Application to

Fundamental Graph Algorithms

Lorenz Huelsbergen
Bell Labs, Lucent Technologies

Murray Hill, NJ 07974

lorenz@research.bell-labs.com

Appears in Int. Symp. on FPGAs

ABSTRACT
This paper gives a representation for graph data structures
as electronic circuits in recon�gurable hardware. Graph
properties, such as vertex reachability, are computed quickly
by exploiting a graph's edge parallelism|signals propagate
along many graph edges concurrently. This new representa-
tion admits arbitrary graphs in which vertices/edges may be
inserted and deleted dynamically at low cost|graph modi-
�cation does not entail any re-�tting of the graph's circuit.
Dynamic modi�cation is achieved by rewriting cells in a re-
con�gurable hardware array. Dynamic graph algorithms are
given for vertex reachability, transitive closure, shortest unit
path, cycle detection, and connected-component identi�ca-
tion. On the task of computing a graph's transitive clo-
sure, for example, simulation of such a dynamic graph pro-
cessor indicates possible speedups greater than three orders
of magnitude compared to an e�cient software algorithm
running on a contemporaneously fast uniprocessor. Imple-
mentation of a prototype in an FPGA veri�es the accuracy
of the simulation and demonstrates that a practical and e�-
cient (compact) mapping of the graph construction is possi-
ble in existing FPGA architectures. In addition to speeding
conventional graph computations with dynamic graph pro-
cessors, we note their potential as parallel graph reducers
implementing general (Turing equivalent) computation.

1. INTRODUCTION
Graphs are central data structures; algorithms to manip-
ulate them must be fast. In circuit and hardware design,
graph algorithms compute critical route and placement in-
formation. Across the computing landscape, graph algo-
rithms deduce connectivity in networks, compute the closure
of relations in databases, manage storage in operating and
runtime systems|among many other applications. Since

graphs naturally correspond to circuits, it seems bene�cial
to model a speci�c graph and algorithm as a hardware circuit
using a direct construction [3; 1]. With direct constructions,
however, the costs of compiling (�tting via place and route)
a graph to a circuit are prohibitive in practice and sharply
o�set or nullify most gains in speed. Furthermore, since
graphs are often dynamic structures|vertex/edge insertion
and deletion occur frequently|their properties continually
require recomputation and, with direct constructions, ex-
pensive recompilation.
This paper contains a novel hardware representation for com-
puting dynamic graph algorithms. That is, we describe a
graph-to-circuit construction that can store, modify, and
compute with arbitrary graphs. Since a graph is embed-
ded in hardware, the size of this resource governs the size
of the graphs that may be represented. (Graph representa-
tions require space quadratic in the size of the vertex set to
hold the edges of an arbitrary graph on that number of ver-
tices.) The representation is dynamic in that new edges and
vertices can quickly be inserted and old edges and vertices
quickly deleted. We give algorithms that use this construc-
tion to compute some fundamental graph properties (see,
e.g., [4]): reachability, transitive closure, shortest unit path,
connected-component identi�cation and cycle detection.
A graph G = (V;E) maintained as a graph circuit is a collec-
tion of gates (representing the vertices V) and wires connect-
ing the gates (representing the edges E). Circuit representa-
tions of graphs provide fast graph traversal since signals in
the circuit may traverse asynchronously many graph edges in
parallel. Comparable software algorithms|sequential and
parallel|can only traverse a single, or small bounded num-
ber, of edges simultaneously (see Section 2). In graph cir-
cuits, furthermore, edge traversals and vertex visits occur
at gate and signal propagation speeds; that is, at a signif-
icant fraction of the speed of light. We call a construction
that implements dynamic graph algorithms in hardware a
dynamic graph processor (DGP).
Compiling graphs into specialized hardware circuits in order
to attain rapid property computation was initially proposed
for integrated circuits [3] and then more directly for recon-
�gurable hardware arrays [1]. Section 3 contains a direct
construction similar to those of the prior work.
This paper's dynamic construction is in sharp contrast to
previous hardware [3; 1; 5] and conventional software (e.g.,
[4]) approaches in which either:

� the hardware graph is completely static [3; 1] and re-

V0

V1
V2

V3
V2out

V3out

V1out

V0out

V3in OR-3

V2in

V1in

V0in

OR-3

OR-3

(a) (b)

Figure 1: A sample graph Gs with four vertices and six edges (a) along with a static circuit for computing reachability in Gs

by direct construction (b). This paper gives a new construction for dynamic graphs that admits fast graph modi�cation.

quires expensive initial compilation and recompilation
when the target graph changes; or,

� large portions of the graph (such as the edge set) are
stored in in a conventional memory [4; 5] which cur-
tails utilization of a graph's parallelism, among other
things.

In the next section we provide further details of the related
work and a comparison of hardware graph algorithms to
their conventional software counterparts. We now continue
with a high-level overview of DGPs and an illustrative ex-
ample.

Paramount to DGP feasibility is quick vertex/edge insertion
into, or deletion from, the graph's hardware representation.
Recon�gurable hardware (RCHW) enables dynamic modi-
�cation of the graph representation.1 DGP edge insertion,
edge deletion, and vertex insertion are constant time, O(1),
operations. Deletion of a vertex v takes time O(jIvj) where
Iv is the set of edges incident on v. (The time complexities
count the operations that rewrite the recon�gurable hard-
ware.) The bulk of this paper (Section 4) describes the new
representation that enables such lightweight graph opera-
tions.

A DGP may be viewed as a form of graph co-processor|it
mirrors the structure of a graph that is also maintained, but
in some other form, on a conventional host processor. Op-
erations on the graph are initiated by the host and re
ected
by the DGP. Queries of graph properties may be answered
by consulting the DGP instead of traversing the host's rep-
resentation with a software algorithm. After a modi�cation
of the graph and hence of the RCHW array, graph queries
may again be run on the updated graph without re-�tting
the circuit. Bookkeeping tasks|such as maintaining the
set of free vertices in the DGP|will, for now, be relegated to

1General recon�gurability|such as a�orded by o�-the-shelf
�eld-programmable gate arrays (FPGAs)|is not strictly
necessary for this approach; PLAs may su�ce; custom cir-
cuits (ASICs) designed to have small (perhaps bit wide) ad-
dressable registers could also be used; Section 6.1.

the host, but could certainly be merged into a DGP. Host-
processor interface overheads may force DGP control logic
into (recon�gurable) hardware to make DGPs practical.

The sample graph Gs in Figure 1a serves to illustrate. It has
four vertices vi and six edges and contains cycles. During
the course of an algorithm, one may wish to obtain reach-
ability information about Gs: for example, is there a path
such that vertex V0 reaches (;) vertex V3? If the graph is
viewed as a circuit where edges are wires, a signal on an edge
(wire) V0 ! V1, for example, will propagate to that edge's
target vertex, V1. At V1, this signal is then routed onto
V1's out-edges (V1 ! V2); continuing in this manner, the
reachability V0 ; V3 is computed. Moreover, upon sub-
sequent edge/vertex insertions and deletions that derive a
modi�ed graph G0

s one may want to recompute reachability
without explicitly re-�tting G0

s. Section 5 contains|along
with DGP algorithms for transitive closure, shortest path,
cycle detection and connected component identi�cation|a
DGP reachability algorithm that accomplishes this goal.

Simulation of a non-trivial graph property (transitive clo-
sure) indicates that large speedups over fast uniprocessor
software|exceeding two orders of magnitude|are possible
in commercial FPGA cards (e.g., VCC Hotworks [11]). A
prototype DGP in a Xilinx XC6216 has been built; it can
quickly compute properties of small graphs and also serves
to substantiate our simulation parameters. Single contem-
porary FPGA designs, however, limit graph sizes to a few
hundred vertices at best. To handle larger graphs, we hy-
pothesize simple FPGA arrays that require connections only
between adjacent boundary cells between any two neighbor-
ing FPGAs. Over a range of inter-die communication delays,
simulation of transitive closure on such FPGA arrays indi-
cates the potential for extremely large speedups, exceeding
a thousand fold. Results of the implementation and simula-
tion are in Section 6.

We sketch a potential future application of DGPs as graph
reducers. Graph reduction is known to be a model of Turing-
equivalent computation. Design of a DGP containing logic
for graph reduction at its vertices could therefore perform
general computation. In the graph reduction model, a pro-

gram (code and data) is represented by a graph; compu-
tation proceeds by rewriting vertices that are currently re-
ducible; this process terminates when no reducible vertices
exist. Since multiple reducible vertices may coexist, in a
DGP implementation this form of computation extracts a
program's parallelism by concurrently rewriting all such ver-
tices in the computation graph. Other future directions and
enhancements of DGPs are in Section 7 as well.

2. RELATED WORK AND COMPARISON
TO SOFTWARE

In this section we �rst review the speci�c work related to
converting graph algorithms to hardware circuits. Then we
compare such approaches (including ours) to conventional
software solutions.

Two prior approaches aim to completely encode graphs in
static or recon�gurable hardware [3; 1]. Neither approach
has been directly implemented in hardware. Both only ad-
dress static graphs. That is, a �xed graph is �rst trans-
formed into a circuit and then �tted to the hardware before
queries about it may be answered. Though the resulting
circuitry stands to speed the computation, the cost of �t-
ting will most likely negate all such gains. Furthermore,
unlike this paper's construction, such approaches cannot
easily adapt a circuit once �tted even if its corresponding
graph only changes slightly. DGP graphs, on the other hand,
are inexpensive to change on the
y due to a general hard-
ware representation (x4) and the partial recon�gurability of
some modern FPGAs. Individual details of the two prior
static approaches are as follows. Chakradhar and Agrawal
[3] described a graph-circuit transformation for computing
a graph's independent sets. They use a direct construction
(cf. x3) to encode the input graph's connectivity as a static
circuit. Babb, et al. [1] describe graph-circuit transforma-
tions for closed semiring problems: shortest path and tran-
sitive closure. For example, given an input graph they cre-
ate VHDL that implements the Bellman-Ford shortest path
algorithm. They synthesize and emulate the resultant cir-
cuits for FPGA arrays. They do not, however, include the
large compilation times (several hours for relatively small
graphs; jV j � 512) that their system requires in the reported
speedups.

Dandalis, et al. [5] describe a processor that computes a
graph's shortest path also using the Bellman-Ford algorithm.
In their design, the graph's vertices form a pipeline in the
FPGA; edges, along with their weights, are stored conven-
tionally in memory; computation of the algorithm proceeds
by feeding the edges through the pipeline. An advantage of
this form of graph computation is that a graph's edge set
may be quickly modi�ed (by rewriting the edge memory).
The authors do not describe how to add or delete vertices
from the RCHW pipeline, however. A disadvantage of this
approach, compared to this paper's and to [3; 1], is that a
graph's edge parallelism is drastically restricted|a vertex
v's out-edge set is, in the worst case, not fully processed
until all edges have sequentially passed through v. Since a
graph on jV j vertices may have up to jV j out-edges at vertex
v, this serial computation limits Dandalis, et al.'s speedups.
In other words, their approach does not exploit the graph{
circuit correspondence of the other approaches. Since the
Bellman-Ford logic at each vertex is large, they report �t-
ting only four vertices in the 128x128 Xilinx XC6264; in con-

trast, this chip with our representation can hold graphs ap-
proaching 128 vertices (see Section 6.1). Dandalis, et al.'s [5]
speedups over software implementations are, for the above
reasons, small (a factor of four at best).
Perhaps most similar in spirit to the DGPs of this paper
is Kean's idea [8] of using recon�gurable logic to discover
plausible routes during circuit layout. Kean's scheme in ef-
fect solves reachability in a two dimensional mesh of cells
given that some cells are missing (i.e., in use elsewhere and
hence disabled). Unlike DGPs, his scheme is not inherently
graph based, computes cell reachability only in a restricted
domain (2D meshes with certain prescribed connectivity),
and does not allow for arbitrary insertion/deletion of wires
(i.e., edges) between circuit nodes without dismantling the
current circuit.
Software algorithms to compute graph properties are well
known and described in introductory algorithm texts (e.g.,
[4]). Breadth-�rst search, for example, can e�ciently com-
pute reachability and shortest unit path in time propor-
tional to the size of the input graph, O(jV j+ jEj). This
time, however, includes a constant representing the costs of
manipulating the graph's software representation (including
the non-trivial costs of fetching this representation into the
processor). This software constant is large relative to the
constants (signal propagation, gate delay) involved in digi-
tal circuits in general and graph circuits in particular. Fur-
thermore, uniprocessor software implementations can only
traverse a single edge at a time even though the search could
naturally proceed through multiple edges|and potentially
in multiple sections of the graph|concurrently. Note that
compiling a graph to hardware does not necessarily change
the asymptotic time complexity of the target algorithm;
graphs in hardware do, however, stand to signi�cantly re-
duce the constant overhead that software representation of
the graph entails and can thereby stand to greatly speed the
algorithm.
A multiprocessor with parallel software, on the other hand,
can explore some number of paths in parallel; this num-
ber being bounded by the (contemporarily small) number
of parallel processing elements. Additionally, a multiproces-
sor must furthermore coordinate and synchronize the search,
which also incurs expenses. Parallel graph algorithms are
known for many processing networks (see, for example, [9;
6]), but require explicit synchronization and communication.
Synchronization operations too have relatively large time-
complexity constants. The circuits described here operate|
for the most part2|asynchronously at the (unclocked) gate
and wire level. (We alleviate concerns of races due to this
asynchrony in the discussion of the implementation, Sec-
tion 6.1.) DGPs share the rather large hardware resource
requirements, O(jV j2), of graph algorithms implemented on
processor arrays [9]. Unlike processor arrays, DGPs do not
require construction of novel physical hardware since they
reside completely in commodity recon�gurable hardware.

3. BACKGROUND: REACHABILITY AND
THE DIRECT CONSTRUCTION

First we provide background on graph reachability. Then we
describe modeling graphs with a direct construction and elu-
cidate the weaknesses thereof. This section is independent

2Some DGP algorithms, such as for transitive closure, syn-
chronously invoke asynchronous subroutines (x5).

O-MI-N

OR-N

AND-2

RESET

OR-2

SOURCE

REACHED

I-1 O-1

Figure 2: Vertex implementation that supports self reach-
ability in the direct construction. This vertex supports n
input edges and m output edges. Vin is set high if this ver-
tex is the source of a reachability query; low otherwise. A
vertex's Vout output registers high if it is reachable from the
source vertex. This circuit also contains reset logic to clear
cycles.

of the core result and only included for completeness.

Given a source vertex vi in a directed graph G, graph reach-
ability computes the set of vertices R(vi) reachable from vi:

R(vi) = fvj jvi ; vjg

Given reachability information, other graph properties (e.g.,
transitive closure) may readily be computed. In Section 5
we use reachability as a \subroutine" to implement other
graph algorithms.
We now describe how graph reachability can rapidly and
simply be computed in hardware by wiring the target graph
as a circuit, placing a signal on the desired source vertex, and
monitoring whether this signal arrives at the sink vertex. A
trivial direct construction transforms G to its corresponding
reachability circuit|albeit not to one amenable to dynamic
recon�guration.
To construct directly a (static) circuit to solve reachability
on graph G, replace G's edges with wires and every n-input
m-output vertex in G with an n-input logical OR-gate fan-
ning to the m out-edges (wires). Figure 1b illustrates the
circuit resulting from the application of this construction to
the sample graph of Figure 1a. To compute the set of ver-
tices reachable from vertex vi, assert a high value on the
input to vertex vi and low values on all other inputs vj ,
j 6= i. After a time T su�cient to propagate the input sig-
nal along all paths and through all intervening gates, the
set of vertices R reachable from vi will be identi�ed by high
logic signals on their output. Concretely in the example,
a high value on V1's input will propagate to both V2 and
V3's outputs since they are reachable from V1. For non-
trivial graphs, the required gate and wire propagation time
T stands to be much shorter than the running time of a
software implementation (see Section 5.1.2).
Three comments on the direct construction|one major and
two minor|are in order. First, the direct construction does
not admit e�cient vertex and edge modi�cation. This is
because the circuit is \hardwired" and the placement of OR-
gates (vertices) and the routing of wires (edges) is circuit de-
pendent. Complex place and route algorithms are required
to map the logical circuit to physical hardware. Gate or
wiring changes require re-placing and re-routing the design.
The di�culty in performing updates on this construction

is basically that the resources between gates|i.e., wires|
may be restricted from future connection with new gates;
making such connections may require gate relocation. Sim-
ilarly, removing a route in the direct construction may re-
quire multiple, perhaps nonlocal, modi�cations. To sidestep
this problem, we will represent the graph as its adjacency
matrix in hardware|described in the next section.
The second comment on the direct construction is that it
does not correctly handle the case of a vertex reaching it-
self. In particular, this construction will indicate that a
source vertex vi always reaches itself (through a zero length
path) even if no proper path exists. The enhanced vertex im-
plementation of Figure 2 solves this problem by separating
the source of a vertex from its input edges with an addi-
tional two-input OR-gate. A vertex is now reachable from
the source if its REACHED output is high.
The third comment concerns resetting the circuit (upon hav-
ing computed reachability, for example). Cycles in the graph
that lie on paths explored by the reachability computation
will continue to exist in an active (high) state even after all
source inputs are reset to low. This is because every OR-gate
in the cycle has a high input which forces that gate's out-
put high; hence cycles are stable upon removal of the origi-
nal sources. (We exploit this \feature" in computing graph
cyclicity information; Section 5.5.) The two-input AND-gate
of Figure 2 provides a reset operation to clear cycles. A low
value on the RESET line (normally high), clears cycles.
In the following, we omit details of reset circuitry and other
easily resolved issues such as gate fan out, etc.

4. DGP GRAPH REPRESENTATION
This section describes our construction for mapping graphs
to circuits while permitting rapid modi�cation of the graph.
The construction is based on the adjacency-matrix repre-
sentation of a graph; we de�ne it �rst before describing the
DGP mapping proper.
The adjacency-matrix representation (see, for example, [4])
of a directed graphG = (V;E) is a jV j � jV jmatrixA = (aij)
such that

aij =

�
1 if (i; j) 2 E
0 otherwise

That is, aij is \true" if a directed edge from i to j exists
in G; \false" otherwise. Note that this representation re-
quires O(jV j2) space since it must be able to hold a complete
graph.
An active adjacency matrix (AAM) embodies this matrix in
recon�gurable hardware and supplies interconnect and glue
logic to implement a particular algorithm, e.g. reachability.
The AAM locates vertices at �xed locations in the hard-
ware array and permits a directed edge between any two
vertices, thereby supporting complete graphs. Edge insert
and delete operations in an adjacency matrix are O(1) time
operations (assuming constant-time array indexing). For an
AAM, these operations will require addressing (selecting) a
particular cell (or small �xed-size set of cells) in a RCHW
array and replacing (writing) a new set of values to that
cell (or set of cells). Some o�-the-shelf FPGAs have this
functionality, e.g., [12].
Vertex deletion in the AAM representation requires O(jV j)
steps; more precisely, to delete vertex v, the row and col-
umn corresponding to v's in- and out-edges must be cleared
(2jV j � 1 matrix elements). However, if, for every active

V3V1V0 V2 V3V2V1V0 V0 V2 V3V1

(a) (b) (c)

Figure 3: AAM distributor (a) and collector (b) networks. Together they form the complete AAM network (c). The source
signal of a vertex vi propagates down the ith column to every cell in the ith row; distributor/collector crossings locate graph
edges; when an edge from vi ! vj exists, crossing (j; i) will contain a physical connection. (c) represents a graph with no
edges since there are no connections between distributor and collector.

vertex v, the host maintains an edge incidence set Iv of the
edges entering and leaving v, deletion of v may be performed
in O(jIvj) steps.

3 In practice, it is possible to use the capa-
bility of contemporary RCHW arrays (e.g., [12]) to write an
entire row or column in a single operation; to delete v, reset
the row and column that correspond to v.
Inserting a vertex into the AAM representation requires ei-
ther locating an unassigned vertex (row and column) in the
matrix; or, failing that, extending the matrix by adding a
row and column. Here, we restrict attention to the former
case and �x the maximum vertex capacity of the matrix in
advance. AAM vertex insertion is handled primarily by the
host processor which maintains a list of free vertices in the
DGP. Vertex deletion places the prior, now unused, DGP
location on this list; new locations for vertex insertion are
taken from this list. Vertex insertion can therefore be per-
formed by the host and AAM in constant time.

Having given the time complexities of the various dynamic
graph operations, we now describe construction of an AAM
to support arbitrary dynamic graphs with up to N vertices
(jV j � N). Here, we give the construction in terms of hard-
ware gates and wires, independent of particular FPGA tech-
nologies; a prototype implementation (x6.1) indicates that
this construction readily and e�ciently maps to some FPGA
designs.
The AAM consists of two pieces: a distributor network and
a collector network. We �rst describe these networks. Then,
in the context of graph reachability, we examine a sample
graph's AAM and the dynamic AAM rewriting necessary to
re
ect edge/vertex insertions and deletions.

4.1 AAM Distributor
The �rst piece of an AAM is a distributor network. This
network distributes the input signal at a particular vertex
v along v's out-edges to its immediate successor vertices.
Figure 3a depicts the distributor network for a four vertex
graph. An arbitrarily large AAM distributor may be con-
structed by adding columns on the right and rows on the
bottom.

3The incidence sets I can be maintained on a conventional
host processor. Using dictionaries (see, for example, [4])
on the host, the incidence set for vertex v may be updated
in worst-case time O(log

2
jEj) per edge insertion/deletion

operation involving v. On average, this cost is O(log
2
jÎj)

where jÎj denotes the average size of the incidence sets.

In an AAM, the vertices are aligned along the top edge.
Associated with every vertex is an input for the incoming
value and an output for the outgoing value. The distributor
network contains the output line. For vertex vi in column i,
the distributor routes the value from this line to row i of the
AAM. That is, the value at vi is made available at another
vertex vj by a (potential) connection at (j; i). As we will
see, such a connection is made with another network|the
collector, described below|that feeds vertex inputs. Note
that the distributor is passive; it consists only of wires.
In what follows, we overload the notation V to denote not
only the vertex set but also the vector of (binary) values at
each vertex along an AAM's top edge. (V0 denotes the value
at the leftmost vertex.)

4.2 AAM Collector
The other piece of a generic AAM is the collector network.
The collector serves to route values along in-edges into a
vertex. Figure 3a depicts a four-vertex collector network; it
can be made arbitrarily large by lengthening the collection
wires and adding vertices (and wires) on the right. Values
carried by the collector stem from the distributor and are
routed onto the collector through graph-speci�c collector-
distributor connections; this is illustrated in the reachability
example below.
The collector, as the distributor, is passive and asynchronous.
Signals propagate through either network at the propagation
speed of the implementation medium.

4.3 Complete AAM
A complete AAM composed of distributor and collector net-
works is shown in Figure 3c. When representing a graph
without edges (as here), collector and distributor networks
are disjoint. Insertion of an edge will make a connection
appropriate to the graph algorithm under consideration.

5. DGP ALGORITHMS
This sections contains DGP algorithms for vertex reachabil-
ity, transitive closure, shortest unit path, connected compo-
nent identi�cation, and cycle detection. Since reachability
is central to these algorithms, we describe it �rst.

5.1 Reachability
The additional logic to implement reachability with an AAM
is described here and the DGP performance of reachability

Row 0

GND

O
R
2

V3V2

O
R
2

O
R
2

O
R
2

O
R
2

O
R
2

O
R
2

O
R
2

O
R
2

V0 V1

O
R
2

Row 1

Row 2

Row 3

Figure 4: Full AAM for the sample graph of Figure 1a. If
the graph contains an edge from vi ! vj , the distributor
network connects to the collector network with an OR-gate
at position (j; i). The logic in the dashed box implements
the graph reachability function by propagating the value of
a vertex's in-edges to its out-edges.

analyzed in terms of propagation delays. Additional cir-
cuitry is then presented that can further decrease the time
of this computation.

5.1.1 Construction
We embed a graph G = (V;E) in a general AAM (Figure 3)
to obtain reachability queries as follows. An edge e 2 E
from vertex vi ! vj will connect the distributor subnet em-
anating from vi to the collector subnet feeding into vj . Since
multiple edges may enter a vertex, OR-gates are used to com-
bine values along multiple in-edges. Figure 4 contains the
complete wiring for the four-vertex sample graph Gs of Fig-
ure 1a.
The OR-gates in the dashed box are speci�c to reachabil-
ity and serve to combine the algorithm input (i.e., source
vertex) with the values on in-edges and then to propagate
this combined value onto the vertex's out-edges. Algorithms
other than reachability may require other circuitry at a ver-
tex, but many graph algorithms have reachability at their
core (Section 5). Note that for reachability (at least) the
amount of per-vertex circuitry is quite small and scales with
jV j.
The OR-gates internal to the AAM (not in the dashed box)
form connections (edges) between vertices. An OR-gate in
the AAM corresponds directly to a non-zero entry in a graph's
regular adjacency matrix (x4). When the graph contains an
edge from vi ! vj , the distributor network connects to the
collector network with an OR-gate at position (j; i). (Note
that (0; 0) is the upper left corner.) The inputs to the gate
are the collector/distributor lines at that position; its out-

put is the collector line for position (j; i�1). The OR-gates in
the zeroth row, for example, connect the output of V0 to the
inputs of V1 and V2 respectively. The two gates in the third
(rightmost) column serve to combine the values entering V3
from itself (gate in third row) and from V2 (gate in second
row).
The initial value for a collector line is zero (ground) for
reachability. This is because a vertex with no in-edges in
essence always sees zeroes from these \non-edges."
Carrying the example forward, we now modify the depicted
AAM and associated graph with edge insertions and dele-
tions. Consider deletion of the edge V1 ! V2. In the AAM,
the OR-gate at position (2; 1) is rewritten with a wire that
connects the (now dangling) left input from the V2 collec-
tor to the left input of the gate at (2; 0). The V1 distributor
wire to the rewritten gate's right input is also deleted by this
operation. This modi�cation therefore consists of indexing
into the two dimensional AAM and rewriting the function-
ality of the logic and routing at the target location. Suppose
now that the edge V0 ! V3 is inserted. This requires writ-
ing an OR-gate into position (3; 0) with left input from the
V3 collector and right input from the V0 distributor output.
Figure 5 contains the updated graph (a) and the modi�ed
AAM (b) respectively.

5.1.2 Analysis
In contrast to conventional big-O analysis that counts algo-
rithm steps, we analyze DGP graph reachability in terms of
gate and signal propagation delays. (We use big-O when a
graph algorithm requires a series of asynchronous computa-
tions to capture the constant overhead of invoking such a
computation.)
Reachability in a graph is bounded by the number of vertices
n = jV j. That is, in the worst case a DGP must propagate
a signal along at most n edges serially. Worst-case prop-
agation of a signal along a single edge in a DGP requires
time

T = Td(n) + Tc(n)

where Td(n) is an upper bound on the time to propagate
along a distributor wire of length O(n). Likewise, Tc(n) is
an upper bound on the time to propagate along a collec-
tor wire|containing up to n gates for distributor-collector
connections|of length O(n). Combined with the worst-case
requirement of n serial edges, reachability therefore can be
computed in time nT .
Two comments on this conservative analysis are required.
First, Td(n) and Tc(n) are expected to be extremely small.
In a semiconductor chip, for example, Td(n) is essentially the
propagation of electrons through a conductive substrate|
typically at a signi�cant fraction of the speed of light. Tc(n)
may contain O(n) serial gate delays, each of which is typi-
cally on the order of nanoseconds. Even for large n, Tc(n)
is quite small.4 That said, propagation delays will impose
limits on attainable computation speeds as graph size in-
creases.
Secondly, reachability paths may not span the n = jV j ver-
tices assumed by the above analysis. That is, for many

4In an FPGA implementation for example, Td(n) and Tc(n)
are, to within a small factor, the time it takes to propagate
a signal the length of the die. Tc(n) can perhaps be further
reduced by using tristate logic to combine multiple values
reaching a single collector.

V0

V1
V2

V3

Row 0

Row 1

Row 2

Row 3

O
R
2

GND

O
R
2

V3V2

O
R
2

O
R
2

O
R
2

O
R
2

O
R
2

O
R
2

V0 V1

O
R
2

O
R
2

(a) (b)

Figure 5: (a) Graph of Figure 1a after deletion of V1 ! V2 and insertion of V0 ! V3. (b) Corresponding modi�ed AAM.

graphs a smaller number of reachability operations may suf-
�ce. It is safe to terminate the reachability algorithm as
soon as stasis|no changes during a time interval slightly
greater than T|is reached.

5.1.3 Stasis Detection
Stasis detection can be used to reduce reachability time for
graph queries from a vertex vi that need not traverse the
worst-case path; i.e., one passing from vi to vj with fewer
than n � 2 intermediate nodes. As we shall see, stasis de-
tection can signi�cantly boost performance (x6).
At regular intervals, a stasis detection circuit (SDC) syn-
chronously monitors the signal arriving at a vertex. The
SDC captures the current signal and compares it to the sig-
nal captured in the previous interval. If the values di�er at
any vertex, the reachability computation is still incomplete.
Key to proper SDC operation is the sampling interval|it
must be larger than T , the maximum edge propagation time,
to ensure that two consecutive samples allow time for traver-
sal of the longest edge.
An SDC can be implemented with a register and an AND-
comparator at every vertex (for storing and comparing the
current and prior sample) along with a combining tree of
AND-gates whose single output is asserted if the values at all
vertices did not change from the last sample. The depth of
this tree is log

2
(jV j) and contains O(jV j) gates. The clock

period of the SDC must be slightly longer than T . Since the
maximum propagation time grows faster than the depth of
the SDC, the delay of the tree is less than T for all but the
smallest values of jV j (see Section 6).

5.2 Transitive Closure
Transitive closure (TC) for a directed graph G = (V;E) is
de�ned as the graph G� = (V;E�) where

E
� = f(i; j) : 9 path from vi to vj in Gg

The adjacency matrix for E� can be built in n reachability
steps by computing the n vectors of vertices reachable from
each vi, for 0 � i < n. (DGP reachability computes a sin-
gle such vector asynchronously and in parallel.) Using the
complexity of DGP reachability derived above (x5.1.2), TC
therefore has a DGP complexity of O(n2T). Note that this
algorithm is cubic in complexity since T is dependent on
wire lengths proportional to n. Simulation results of DGP
TC are in Section 6.

5.3 Shortest Unit Path
Additional circuitry, described here, is required to compute
the length of the shortest unit5 path (SUP) from vi to vj .
The OR-gate at each vertex (see Figure 4) that gates the
collector signal to the distributor is replaced with a clocked
latch. That is, the signal reaching a vertex v is clocked into
the latch every clock period and, at the next clock, injected
into v's distributor. This circuit operates synchronously.
After initially asserting a signal at vi, the circuit is clocked
until either the signal propagates to vj or n = jV j clocks
have been issued. In the �rst case, the number of issued
clocks corresponds to the length of the shortest unit path
from vi to vj ; in the latter case, no path from vi to vj exists.
Since a clock can be issued after waiting a time slightly
greater than the worst-case propagation delay, T|as with

5All edges of length one.

stasis detection (x5.1.3)|computing the length of the SUP
requires at most time O(nT).
Note that this algorithm for SUP produces only the path
length and not the path itself. Additional hardware in the
AAM can be used for extracting the SUP; Section 7.2.
Design of a DGP algorithm to compute the shortest path in
the presence of variable edge weights is an open problem.

5.4 Connected Components
A connected component (CC) in an undirected graph G is a
set of vertices and edges C � G such that for all vi; vj 2 C
and i 6= j vertex vi reaches vj . The DGP CC algorithm for
undirected6 G is as follows. Initially, no vertex is in a CC
so a component Cv0 may be constructed �rst. For a vertex
vi that is not in a CC, construct the component Cvi and
place in it vi and the vertices reachable from vi; this set
of reachable vertices is computed using DGP reachability
de�ned above (x5.1). In the worst case (when the graph
has no edges), computing all components requires n = jV j
reachability steps|hence the DGP complexity of computing
G's connected components is O(n2T).
Either the host processor or the DGP can maintain state to
identify vertices that are not yet component members. If
handled by the host, DGP CC computation stands to su�er
from overheads in the host-RCHW interface since it relies on
many host operations which can be expensive. These opera-
tions can be accomplished in hardware as follows. Maintain
an n-bit register A where bit i set indicates that vertex vi is
already in a component. Initially A is clear. While there is
an unset bit u in A, reset the reachability AAM's vertices,
assert vertex u in the AAM, output the result vertex vector
as a new connected component, and update A with the \or"
of the result vector and A. Circuitry to detect unset bits
can be similar to that used by processor instructions that
�nd the least signi�cant set bits in a vector, for example.
A DGP algorithm for strongly connected components is an
open problem.

5.5 Cycle Detection
DGP reachability readily determines whether or not a graph
is acyclic. Recall that reachability uses OR-gates at vertices
to merge multiple in-edge signals (x5.1). When a vertex lies
on a cycle that is active, it receives and outputs a high value;
that is, its output is connected to its input via a potentially
circuitous path. Due to feedback, active cycles continue to
be active even after removal of the source inputs since a high
incoming signal su�ces to set the outputs. DGP reachabil-
ity, conducted with all source inputs initially high, reveals
vertices that lie on a cycle (or multiple cycles) when the
source inputs are subsequently lowered since such vertices
retain a high output value. The set of vertices that share
a cycle with a single vertex v can be computed by setting
only v's source input and capturing the set of vertices that
stay high after v's source input is lowered.
Cyclicity can thus be determined in time nT .

6. RESULTS
Results take two forms: an FPGA implementation of a DGP
network and simulation of DGP transitive closure with com-
parison to software.

6An undirected graph in a DGP uses two directed edges,
vi ! vj and vj ! vi, to denote an undirected edge vi $ vj .

6.1 Implementation
To explore DGP layout issues, a 16x16 DGP network has
been constructed and tested in a Xilinx XC6216 FPGA on a
VCC Hotworks PCI board with Webscope [11]. The XC62xx
[12] is a family of �ne-grain highly recon�gurable FPGAs.
Recon�guration of a single cell takes on the order of a mi-
crosecond (8 bit, 50Mhz bus). A cell is connected directly
to its nearest neighbors. Hierarchically, lines of length 4, 16,
and the length of the chip are available to some cells. Where
possible, our prototype uses the longest available line for ef-
�ciency.
Highly compact mappings of one vertex per row/column are
possible in the XC62xx device family. Aside from the small
amount of algorithm speci�c logic and the SDC that may
sit along the top rows of a DGP, an XC62xx device of size
NxN cells can hold graphs with nominally N vertices! Edge
insertion/deletion is currently manual via Webscope as is
extraction of the reachability result.
Since the DGP algorithms are asynchronous, the inexistence
of race conditions must be established. For the DGP algo-
rithms of this paper, races do not exist for the following rea-
son. During a speci�c computation (say reachability) a gate
changes state at most once. Gate states are reset only when
the circuit is reset. Furthermore, once a line goes high, it
stays high (until circuit reset). Hence, even though a graph
and its corresponding DGP circuit may contain cycles, races
leading to indeterminate results cannot occur.

6.2 Simulation
To determine the potential speedup of a DGP graph algo-
rithm over its software counterpart, we ran transitive closure
simulations for graph sizes jV j = 64, 128, and 1024. The
�rst two sizes correspond to possible DGP implementations
in the XC62xx family: XC6216 (64x64 cells) and XC6264
(128x128 cells). The 1024-vertex graph presupposes a hy-
pothetical 8x8 array of XC6264s. In general, NxN surfaces
of FPGAs could be constructed; we chose 8x8 since it is
attainable in today's technology. For this hypothetical ar-
ray, we require connection of edge cell inputs and outputs
at all FPGA boundaries (but no hierarchical routing be-
tween FPGAs); since pin packaging requires multiplexing to
support such connections, we presume the dies to be con-
nected directly, perhaps as a multichip module. We consider
a range (100ns to 1us) of inter-die communication delays
for the 1024-vertex simulations. Xilinx timing speci�cations
[12] for XC62xx7 gate and routing connection delays are:
logic gate, 2.5ns; length-1 wire, 1.0ns; length-4 wire, 1.5ns;
length-16 wire, 2.0ns; chip-length wire, 3.0ns. Timing anal-
ysis of the implementation (x6.1) via Xilinx tools indicates
that the simulation timing calculations are correct.
A simulation consists of computing reachability from every
graph vertex on random graphs holding 0 < E � jV j2 edges.
A simulation thus computes transitive closure over random
graphs varying in edge-set size. Simulations were performed
for the three graph sizes using DGP with and without stasis
detection circuitry8 (x5.1.3).

7Due to process improvements and a smaller feature size,
the timings for the XC6264's internal interconnects relevant
to this paper are very close to the timings of the XC6216 so
the published XC6216 timings were used for both; private
communication, Xilinx.
8For the DGP simulation with stasis detection, the period of
the SDC (assuming 20ns per tree level) for the three graph

0.1

1

10

100

1000

Empty S/4 S/2 3S/4 S

S
pe

ed
up

#Edges: S=|V|^2

Transitive Closure Speedup: DGP vs Software

S=|V|=1024 (8x8 XC6264, L=100ns)
S=|V|=1024 (8x8 XC6264, L=1us)

S=|V|=128 (XC6264)
S=|V|=64 (XC6216)

1

10

100

1000

10000

Empty S/4 S/2 3S/4 S

S
pe

ed
up

#Edges: S=|V|^2

Transitive Closure Speedup: DGP with Stasis Detection vs Software

S=|V|=1024 (8x8 XC6264, L=100ns)
S=|V|=1024 (8x8 XC6264, L=1us)

S=|V|=128 (XC6264)
S=|V|=64 (XC6216)

Figure 6: Transitive-closure speedup for DGP over software with and without DGP stasis detection. The Y-axis (log scale)
is the ratio of DGP to software running times. (Note the Y-axis in the bottom graph extends an order of magnitude further
than the top graph's Y-axis.) The X-axis' S parameter is jV j2 for vertex set sizes of jV j = 64, 128, and 1024 corresponding
to the XC6216, XC6264 and two 8x8 arrays of XC6264s (using two di�erent values, L, for inter-die delays) respectively. The
simulation is on random graphs; the text contains further description of this procedure and a discussion of the results.

Figure 6 contains the simulation results as DGP speedup rel-
ative to a uniprocessor software implementation. Note the
log scale on the Y-axis on both plots and the increased Y-
axis range on the bottom plot. For the hypothetical 8x8
FPGA array, each plot contains two curves representing
100ns and 1us inter-die communication delays. The soft-
ware algorithm used for comparison is a C program (com-
piled -O3) for breadth-�rst search on adjacency lists that
computes reachability from every vertex. The software ran
on a 500MHZ DEC Alpha and cycle counts were obtained
via pixie pro�les. Note that such counts are conservative
since they do not contain cache misses, among other things.
For both DGP and software, only the times for the reach-
ability computations were summed; the times to create the
initial graph and to reset the graph state after a reachability
query are not in the total.
From Figure 6 it is evident that DGPs with SDC stand to
signi�cantly outperform their software algorithm counter-
parts. Even without stasis detection, DGPs could provide
useful speedup. In the 64x64 and 128x128 DGPs with SDC,
maximum speedups exceed two orders of magnitude; in the
hypothetical array, speedup exceeds three orders of magni-
tude. Actual speedups are potentially even greater since the
simulations were conservative; for example, a AAM collec-
tor line (x4.2) always contained the maximum number of
OR-gates independent of graph size. DGP behavior on small
graphs �rst exhibits a dip (not visible) followed by a sharp
rise (visible) and then another sharp rise as the graph be-
comes complete. These e�ects are due to the non-linearity of
connectivity probabilities as a function of edges in random
graphs [2].

7. FUTURE DIRECTIONS
Here we address a couple of seemingly surmountable ob-
stacles that impede the practicality of DGPs: the quadratic
hardware requirement and extraction of solution paths. Then
we outline how DGPs might be used to realize general Turing-
complete computation via graph reduction.

7.1 Virtual DGPs
Future device integration promises smaller and denser fea-
tures; this should allow DGPs for larger graphs. Addi-
tionally, devices such as PLAs or ASICs could more e�ec-
tively utilize semiconductor resources in implementing DGP
functionality. (A DGP utilizes only a small fraction of the
XC62xx's resources.) It still seems necessary however to seek
other solutions to DGP's quadratic hardware requirements.
Since DGPs have regular structure, they are promising can-
didates for virtualization. For example, one can divide an
AAM (x4) in half vertically and alternately swap the left
and right halves into a rectangular RCHW array (e.g., 1x2
FPGAs) from a con�guration memory. Signals that propa-
gate out of one half are captured and retained for the other
half in registers at array edges. Many other virtualization
options are available. Since con�guration memory is local to
the RCHW, much bandwidth is available for reading/writing
con�gurations from this memory to the RCHW array. Even
so, the cost of swapping con�gurations can be large rela-
tive to the time spent computing in the currently resident
con�guration. Further study is required to understand the
time/space tradeo�s involved in virtualizing DGPs.

sizes is much less than the propagation time T along the
graph circuit's longest edge.

7.2 Path Extraction
For some graph-based applications, the existence of solution
paths|i.e., reachability information that is independent of
the path's vertex enumeration|su�ces. For example, tran-
sitive closure requires only reachability information without
the reaching paths having to be explicit. Other graph appli-
cations, however, require the list of vertices that constitute
the solution path.
For example, shortest path computations are often performed
in order to identify such paths for future use. DGP SUP
(x5.3) provides the length of the shortest path, but not the
path itself. Additional hardware in the AAM connections
can be used to extract the solution path at an extra, albeit
small, space cost. In Section 5, OR-gates implement graph
edges by making AAM connections from the distributor to
the collector networks. Here we augment this per-connection
circuitry to include a latch. This latch is set when the cor-
responding edge is traversed by a DGP computation. Fur-
thermore, this latch is active only when the edge's target
vertex has not yet been reached; i.e., a high signal on the
target vertex's distributor disables the latch. The latch's
state therefore indicates whether or not a signal that prop-
agated along its edge was in the set of edges to �rst reach
the target vertex. After a SUP computation, the path is
retraced (by a host processor or by specialized hardware)
from the target vertex to the source vertex along in-edges
that have their latch set. Note that multiple in-edges to a
vertex may have their latch set in which case multiple SUPs
exist; i.e., the target vertex was reached in the same SUP
clock cycle along multiple paths.
We anticipate that similar augmentation of the AAM's per-
edge circuitry can be used to extract the solution paths com-
puted by other DGP algorithms.

7.3 Parallel Graph Reduction
Parallel graph reduction represents a program (code and
data) as a graph. This graph is continually reduced (or
rewritten)|in parallel|until the program's result is ob-
tained. Graph reduction via combinatory logic is equiv-
alent to a Turing machine and forms the basis for some
functional language implementations (see [10; 7] for back-
ground). Since DGPs support dynamic graphs, it may be
possible to use vertices as combinators and edges as point-
ers in the combinator graph. Certainly, graph reduction is
much more complicated than the graph algorithms given for
DGPs in this paper. A DGP for graph reduction would
require complex vertex and edge logic.
A simple combinator system requires only two rewrite oper-
ations

� K x y) x

� S f g x) (f x)(g x)

to denote any computable function. Here, K and S are com-
binator literals. Lowercase identi�ers are variables bound
to combinator terms built from the two rules. The identi-
�ers on the left-hand side of the arrows are parameters to
the combinators. When parameter arguments arrive, the
left-hand side is rewritten (reduced) to the right-hand side.
Juxtaposition of combinator terms denotes function appli-
cation. A program's code and data is a combinator term
that forms a graph. This graph contains cycles to express
recursion (loops) and may share combinator terms. The K

combinator simply returns its �rst argument, discarding the
second. The S combinator takes two combinator expressions
that must be functions (f and g) and applies both to x. The
two results of S's application of f and g are then themselves
juxtaposed and evaluated as a function application.
In a hypothetical DGP graph reducer, vertices could repre-
sent combinator literals and application nodes. Evaluation
of a K rule would result in the vertex bound to x to be prop-
agated to all places in the combinator graph that reference
this particular K rule. That is, vertices have edges to their
containing combinator terms and, upon evaluation, would
propagate their identity to these terms. Since node indices
are required on node creation and are communicated among
nodes during rewrite, edges must be able to propagate ver-
tex indices; this requires the transmission of multiple bits
along edges, either serially or in parallel. The S rule is more
complicated since it requires allocation of application nodes
and their initialization. A suitable DGP must therefore sup-
port parallel vertex allocation and an automatic means for
reclaiming spent vertices (a process known as garbage col-
lection).
If DGP graph reduction is indeed possible, multiple reducible
nodes can be rewritten in parallel which gives �ne-grain par-
allel execution of general programs.

8. SUMMARY
This paper described a novel transformation that converts
graphs to circuits. Such circuits can solve a number of graph
algorithms extremely quickly and are, using recon�gurable
hardware, amenable to dynamic vertex and edge sets that
change over time. Simulation on random graphs indicates
that speedups over fast software algorithms|a factor >1000
in some cases|are possible with dynamic graph processors.
Implementation of a prototype DGP in an FPGA substanti-
ates the simulation results and demonstrates that compact
DGP mappings are possible in o�-the-shelf recon�gurable
hardware. Future work includes extension to larger graphs,
design of more DGP algorithms for other graph properties,
and exploration of DGP applications such as for general
computation via graph reduction.

Acknowledgments
Thanks to Miron Abramovici and Jose T. de Sousa for in-
sightful discussions of this work. Bob Slous at Xilinx sup-
plied important details of the XC62xx. Vishwani Agrawal
provided useful comments on a draft of this paper. The re-
viewers' comments improved the exposition and unearthed
a technical bug.

9. REFERENCES
[1] J. Babb, M. Frank, and A. Agarwal. Solving graph

problems with dynamic computation structures. In
SPIE Photonics East: Recon�gurable Technology for
Rapid Product Development & Computing, pages 225{
236, November 1996.

[2] B. Bollobas. Random Graphs. Academic Press, 1985.

[3] S. T. Chakradhar and V. D. Agrawal. A novel VLSI
solution to a di�cult graph problem. In Fourth Inter-
national Symposium on VLSI Design, pages 124{129.
IEEE, January 1991.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. MIT Press, 1990.

[5] A. Dandalis, A. Mei, and V. K. Prasanna. Domain
speci�c mapping for solving graph problems on re-
con�gurable devices. In 6th Recon�gurable Architecture
Workshop. IEEE, April 1999.

[6] W. D. Hillis. The Connection Machine. MIT Press,
1985.

[7] S. P. Jones. The Implementation of Functional Pro-
gramming Languages. Prentice-Hall, 1987.

[8] T. Kean. Using CAL to accelerate maze routing of CAL
designs. In Proceedings of 2nd Int. Workshop on Field
Programmable Logic and Applications. 1992.

[9] F. T. Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, and Hypercubes. Morgan{
Kaufmann, 1992.

[10] D. A. Turner. A new implementation technique for ap-
plicative languages. Software Practice & Experience,
9:31{49, 1979.

[11] Virtual Computer Corp. H.O.T. Works User's Guide,
Ver. 1.0, 1997.

[12] Xilinx Inc. The Programmable Logic Data
Book; XC6200 product speci�cation V1.0, 1996.
http://www.xilinx.com.

