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Abstract

Static program analysis limits the performance im-
provements possible from compile-time parallelization.
Dynamic program parallelization shifts a portion of the
analysis from compile-time to run-time, thereby en-
abling optimizations whose static detection is overly
expensive or impossible. Lambda tagging and heap

resolution are two new techniques for �nding loop
and non-loop parallelism in imperative, sequential lan-
guages with �rst-class procedures and destructive heap
operations (e.g., ML and Scheme).
Lambda tagging annotates procedures during com-

pilation with a tag that describes the side e�ects that
a procedure's application may cause. During program
execution, the program re�nes and examines tags to
identify computations that may safely execute in par-
allel. Heap resolution uses reference counts to dynam-
ically detect potential heap aliases and to coordinate
parallel access to shared structures. An implemen-
tation of lambda tagging and heap resolution in an
optimizing ML compiler for a shared-memory parallel
computer demonstrates that the overhead incurred by
these run-time methods is easily o�set by dynamically-
exposed parallelism and that non-trivial procedures
can be automatically parallelized with these tech-
niques.
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1 Introduction

Implicit parallelization of programs written in sequen-
tial programming languages is attractive|it eases pro-
gramming, allows e�ective maintenance of large sys-
tems, and extends a program's portability across par-
allel and sequential architectures. Existing techniques
for parallelizing imperative languages are primarily
static|in that the analysis, optimization, and paral-
lelization is performed at compile-time. Static tech-
niques for extracting parallelism from sequential pro-
grams are inadequate. Abstract interpretation [6],
data ow analysis [3, 8], and methods based on in-
ferencing [12] conservatively approximate a program's
dynamic behavior and typically underutilize the pro-
gram's potential parallelism in order to preserve its se-
quential semantics. In addition to being conservative,
static techniques are costly since they must be applied
interprocedurally on the entire text of a program.

This paper proposes dynamic parallelization of
\mostly functional" languages such as ML[14],
Scheme[17], and Lisp that allow side e�ects, in-
put/output, and higher-order procedures.1 Dynamic
parallelization is a hybrid, composed of static and dy-
namic components. Fast static analysis provides par-
tial information during compilation. Other informa-
tion, which is di�cult and ine�cient to collect stat-
ically, is gathered at run-time when it is often read-
ily available. Dynamic program parallelization sup-
plements, not supplants, existing analyses by extend-
ing them to expressive language features, such as �rst-
class procedures and heap side e�ects, and by reduc-
ing their cost and simplifying their implementations by
only computing partial information at compile-time.

We have developed and tested two dynamic par-
allelization techniques. Lambda tagging (�-tagging)

1Procedures that invoke abnormal control ow (e.g., explicit
continuations) are currently not handled by these techniques|
this does not, however, preclude parallelization of other proce-
dures within the same program.



fun map [] = []

| map f (a::x) = (f a) :: (map f x)

fun mapParallel [] = []

| mapParallel f (a::x) =

let val (y,z) = pcall(f a,mapParallel f x) in

y::z

end

(a) (b)

Figure 1: Sequential (a) and parallel (b) versions of map. Static analyses must select version (a) if f cannot be determined to be

side-e�ect free. The pcall [5] construct forks its arguments as parallel threads and tuples their results when the threads join.

discovers parallel threads in the presence of higher-
order procedures. The second technique, heap reso-

lution, permits threads to concurrently modify non-
overlapping heap structures. Both techniques uncover
loop and non-loop parallelism. We have implemented
�-tagging and heap resolution in the Standard ML of
New Jersey (SML/NJ) optimizing compiler [1] on a Se-
quent shared-memory parallel computer. Timings of
programs hand-annotated with �-tags and heap res-
olution information indicate that signi�cant speedup
can be obtained with these dynamic techniques and
an e�cient compiler.
The viability of dynamic parallelization hinges on ef-

�cient run-time components that introduce little over-
head into a program's execution. Our e�orts to-date
have been directed towards designing and implement-
ing e�cient run-time components. The static aspects
of �-tagging and heap resolution (analysis and restruc-
turing) were performed manually. The experiments in
this paper clearly demonstrate the practicality of the
approach, and consequently, we are proceeding with
the compiler.
Following an overview of �-tagging and heap resolu-

tion, the paper describes the static and dynamic com-
ponents required for �-tagging (Section 2) and heap
resolution (Section 3). Section 4 describes our imple-
mentation and presents empirical results of �-tagging
and heap resolution. Related work is discussed in Sec-
tion 5.

1.1 Lambda Tagging Overview

Higher-order languages with �rst-class procedures pose
di�culties for static analyses since an individual proce-
dure call site can invoke many procedures and the task
of determining the set of procedures invoked from a call
site is di�cult [16, 18]. Static parallelization systems,
therefore, do not precisely analyze programs involv-
ing �rst-class procedures [6, 10]. The ML procedure
map2 (Figure 1a) illustrates the problem and serves as
an example for dynamic parallelization with �-tags.

2map is a canonical example of potential parallel evaluation
obscured by unknown side e�ects of higher-order procedure pa-
rameters. Other common examples are procedures traversing

A call to map may safely use a parallel version of map
(Figure 1b) if application of the procedure parameter f
does not exhibit side e�ects. If the identity or behavior
of a procedure passed at a call site cannot be safely de-
duced, static methods must err conservatively and use
sequential code. Even when the procedures invoked
at a call site are known, compiler analyses statically
approximate multiple procedures reaching the site as
having the e�ect of the most destructive procedure,
although an actual call may invoke a side-e�ect-free
procedure.

�-tagging annotates procedures with a description
of their potential side-e�ects. A procedure's �-tag is
assigned at compile-time when possible. Otherwise, a
�-tag is constructed at run-time when the procedure's
closure is formed. �-tags are dynamically propagated
with procedures' run-time representations (closures).
Statically-inserted checks examine �-tags at run-time
to determine when parallel evaluation is safe (preserves
the sequential semantics). �-tags allow dynamic detec-
tion of parallel computations involving dynamically-
created procedures, as well as procedures propagated
through data structures too complex for static analy-
sis.

�-tagging sidesteps the problem of not knowing a
procedure's side e�ects at compile-time by examining
�-tags on higher-order procedures at run-time. Fig-
ure 2 is a restructured version of map containing both
sequential and parallel versions. On entry to map, the
e�ect of the higher-order parameter f (described by f's
�-tag) is used to select the parallel or sequential ver-
sion of map. Iterations of map may evaluate in parallel
if concurrent instantiations of f cannot interfere. The
call site from which the higher-order procedure origi-
nated is irrelevant. In addition, the cost of checking a
procedure's tag is small and is only incurred once upon
entry to map.

recursive data structures and sorting algorithms parameterized
by a comparison predicate.
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fun map [] = []

| map f l =

let fun mapSequential [] = []

| mapSequential (a::x) =

(f a) :: (mapSequential x)

fun mapParallel [] = []

| mapParallel (a::x) =

let val (y,z) = pcall(f a,mapParallel x)

in

y::z

end

in

(* select map based on f's �-tag *)

if safe f then mapParallel l

else mapSequential l

end

Figure 2: Transformed version of map that dynamically se-

lects sequential or parallel evaluation depending on the e�ects

of the procedure bound to f. The primitive predicate safe ex-

amines a run-time �-tag from the procedure bound to f.

1.2 Heap Resolution Overview

Heap resolution dynamically detects and resolves po-
tential heap side-e�ect conicts. At run-time, the ex-
act shape of dynamic data structures is known. Since
a structure's topology is often determined by program
input unavailable at compile-time, this problem is ide-
ally suited to solution by dynamic parallelization. Ex-
isting static analyses provide crude, yet expensive, ap-
proximations to dynamic structures. These compile-
time parallelization techniques are often forced to as-
sume structure sharing due to imprecise alias informa-
tion [7, 6, 10]. Heap resolution is based on the obser-
vation that heap reference counts identify sharing in a
heap structure.

The destructive quicksort qs of Figure 3 serves as
the example for heap resolution. qs sorts the ele-
ments of list l according to a comparison predicate
cmp. This version of quicksort partitions l in place.
If elements of l do not share structure, the arguments
to (destructive) append are disjoint and may evaluate
concurrently. If elements of l share structure, parallel
evaluation of these arguments must dynamically coor-
dinate access to shared structure. It is di�cult (or im-
possible) for a compiler or programmer to detect that
the arguments to append are disjoint.

Heap resolution is applicable to heap structures
with acyclic spines, e.g. a non-circular list of arbitrary
graphs. In the above example, a programmer has de-
clared the datatypes pair and rlist as acyclic. Note
that individual elements of the rlist being sorted may

contain cyclic structures.

The static component of heap resolution identi�es
expressions that modify the heap, but may execute in
parallel when the side e�ects are to disjoint portions
of the heap. These expressions are statically sched-
uled for parallel evaluation, but are altered to dynam-
ically examine a heap node's reference count before
accessing it. A linearization [20] of parallel threads
preserves the language's sequential semantics by coor-
dinating accesses to, and modi�cations of, potentially
shared nodes. A thread consults this linearization to
determine whether it may access a heap node that is
potentially shared or whether it must suspend until
prior threads in the linearization complete.

In the example, (qs left cmp) and (qs right cmp)

are statically selected for parallel evaluation using heap
resolution. The declaration that a pair is acyclic im-
plies that the partitioned sublists, left and right,
can reach a common heap node h only if all paths
from left to h (and right to h) contain a node with
reference count greater than one. (qs right cmp)

may evaluate in parallel with (qs left cmp) provid-
ing that evaluation of (qs right cmp) suspends upon
access to a heap node with reference count greater
than one. If elements of the list l being sorted are
not shared, the sort is completely parallel. Shared ele-
ments inhibit parallelism, but portions of the sort may
still execute concurrently.

2 Lambda Tagging

�-tagging statically annotates procedures at compile-
time with an approximation to their potential side ef-
fects. These �-tags are used at run-time to build con-
sistent �-tags for dynamically created procedures and
to make parallelization decisions.

2.1 Static �-tagging

The static component of �-tagging determines the side
e�ects potentially exhibited by a program's proce-
dures. Procedures whose e�ects cannot be fully de-
termined at compile-time are statically restructured
to compute these tags dynamically. Statically, checks
are generated to select parallel or sequential evaluation
based on �-tag information.

2.1.1 Describing Side E�ects

Side-e�ects are described using FX-like e�ect descrip-
tions [12]. An ML expression may perform input or
output, read or write data structures in the heap, or
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acyclic datatype 'a rlist = rNil | rList of ('a * 'a rlist ref)

acyclic datatype 'a pair = Pair of ('a * 'a)

fun qs rNil = rNil

| qs (rList(a,x as ref x0)) cmp =

let fun split rNil = Pair(rNil,rNil)

| split pivot l =

let fun split0 rNil less greater = Pair(less,greater)

| split0 (l as rList(a,x as ref x0)) less greater =

if cmp pivot a then (x := less; split0 x0 l greater)

else (x := greater; split0 x0 less l)

in

split0 l rNil rNil

end

val = x := rNil

val Pair(left,right) = split a x0

in

append (qs left cmp) (rList(a,ref (qs right cmp)))

end

Figure 3: Destructive quicksort procedure. Heap resolution evaluates the arguments to (destructive) append in parallel. The

declaration acyclic on the mutable 'a rlist datatype indicates that no part of the spine of the list participates in a cycle (elements of

the list may, however, contain cycles).

have no visible side e�ects. These primitive side ef-
fects are denoted i/o, read, and write.3 An expression
without side e�ects has e�ect pure. The e�ect of an
expression that performs multiple primitive operators
is a composite e�ect. A composite e�ect is an e�ect,
� = �1 t �2, where �1 and �2 are e�ects. E�ects induce
a �nite lattice, with bottom element pure and top ele-
ment i/otreadtwrite.
An ML expression that modi�es the contents of a

ref cell with the := operator produces a write in the
heap. This write potentially interferes with expres-
sions that read the heap (dereference pointers with !

or pattern match ref types) or may conict with other
expressions that also write the heap. The ML print

operator produces an i/o e�ect. Expressions that do
not have conicting e�ects are candidates for parallel
evaluation, whereas expressions with potentially con-
icting e�ects must evaluate sequentially.

2.1.2 Static Computation of E�ect Tags

Static e�ect tag assignment determines which proce-
dures of the program are purely functional (have no
side e�ects), potentially functional (the procedures de-

3The FX alloc e�ect is not included here. It is assumed that
parallel threads allocate storage from distinct sections of the
heap. Allocation, therefore, cannot cause conict. FX e�ects
are also parameterized by a region describing where the e�ect
may occur. For our purposes, read and write e�ects can occur
anywhere in heap and a region description is unnecessary.

pend on the e�ect of higher-order procedures or ap-
ply procedures whose e�ect cannot be statically de-
termined), or destructive (modify extant structures in
the heap or perform I/O). The e�ect of a procedure
p consists of the maximum e�ect of expressions in p,
including procedures invoked by p. E�ects of proce-
dures invoked by p are either determined statically or
computed dynamically.

The base e�ect of a procedure p is the portion of
p's e�ect that can be determined statically. If p's en-
tire e�ect can be determined statically, p's run-time
�-tag simply carries p's base e�ect. The base e�ect is
computed in a manner to similar to the e�ect compu-
tation of FX [12]. FX conservatively approximates the
e�ect of procedures whose e�ect depends on statically-
unknown procedures. Our analysis instead identi�es
procedures invoked by p whose e�ects are statically
unknown. Their e�ect is incorporated into procedure
p's e�ect at run-time rather than approximated at
compile-time. Statically, p has an incomplete e�ect.
In other respects, our computation of p's base e�ect
is identical to e�ect inferencing in FX. The e�ect of
procedure p is the least upper bound of the e�ects of
p's constituent sub-expressions.

Procedure p has a parametric e�ect if p's e�ect de-
pends on the e�ect of other procedures whose e�ects
are unknown at compile-time. A parametric e�ect may
represent the (yet unknown) e�ect of free procedures
in p or higher-order parameters to p. Parametric ef-
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fects (if any) in conjunction with the base e�ect form
a procedure's total e�ect. A procedure p that has a
parametric e�ect initially carries a �-tag denoting the
maximum e�ect (i/otreadtwrite). This initial, conser-
vative e�ect tag is necessary since p may be used as
a higher-order procedure, in which case the origin of
p's parametric e�ect component is yet unknown. A
parametric e�ect due to higher-order parameters to p

dynamically selects a specialized (e.g., parallel or se-
quential) version of p (x2.2). Procedure p is dynami-
cally re-tagged if components of p's parametric e�ect
are due to free procedures in p (x2.3).
If procedure p invokes a procedure f that is free in

p and f 's e�ect is not statically available, p's full e�ect
can be computed dynamically when a closure for p is
formed. At that point, a �-tag for p can be dynamically
computed from f 's e�ect (carried by f 's �-tag) and p's
base e�ect.
Procedure p's e�ect may also depend on the e�ect of

higher-order procedure parameters to p. In this case,
the e�ect of these parameters (as indicated by their �-
tags) can be dynamically examined when p is invoked
and an appropriate version of p executed (see Figure 2).
ML's static type checker [14] provides information suf-
�cient to determine which formal parameters to a pro-
cedure p represent higher-order procedures possibly in-
voked by p. For example, the type signature for proce-
dure map, map:('a -> 'b) -> 'a list -> 'b list,
indicates that map's �rst parameter is a higher-order
procedure.
Finally, it is possible that procedure p's e�ect be-

comes apparent only during p's execution. This occurs
when p acquires and applies an unknown procedure
during its execution. For example, p might retrieve
and apply an unknown procedure from a data struc-
ture. At compile-time, p is conservatively assigned a
�-tag with the maximum e�ect.
The procedure map (Figure 1) has a base e�ect of

pure since the list constructor :: has e�ect pure. map

also has a parametric e�ect since the higher-order pa-
rameter to map has unknown e�ect. Therefore, the
�-tag assigned to map corresponds to the maximum
e�ect, for if map itself is passed as a higher-order pa-
rameter, its eventual parameters (and hence its e�ect)
are unknown.
The algorithm to compute a procedure p's static ef-

fect �rst determines the types of p and expressions in p.
This information identi�es unknown procedures poten-
tially invoked by p. The e�ect of these unknown proce-
dures forms p's parametric e�ect component (supplied
at run-time). The base e�ect of p is then computed
using the FX e�ect-inferencing algorithms [9, 12]. Ef-
fect information for p is used to assign p's initial �-tag
(as previously described) and to restructure p (x2.2).

2.1.3 Time Complexity

Detection of higher-order parameters to a procedure
p and free procedures in p requires a type signature
for p and the types of the expressions in p. The ML
type checker [14, 13] provides this information. E�ect
reconstruction for a language with ML-style polymor-
phism requires a polynomial-time algorithm [9]. We
believe that we can compute static e�ect tags in at
most polynomial time since our e�ect system does not
need to statically approximate the e�ect of unknown
procedures. The e�ect of an unknown procedure is
merely noted as being available at run-time.
Static e�ect determination is tractable, even for

large programs, since the static analysis is applied to
each procedure separately. The time complexity is a
function of the size of a procedure|it is not a function
of the size of the entire program.

2.2 Using E�ect Information

A procedure's static e�ect information, its base and
parametric e�ects, allows restructuring of the program
to dynamically examine e�ect �-tags. Two types of
restructuring are necessary: creation of �-tags for dy-
namic procedures and inspection of �-tags for paral-
lelization. If a procedure p has a parametric e�ect due
to free procedures in p, the code that forms the clo-
sure for p is restructured to incorporate the e�ects of
p's free procedures into p's run-time �-tag. Dynamic
e�ect combination is described in Section 2.3.
Procedures with parametric e�ects due to higher-

order parameters present opportunities for paralleliza-
tion. A procedure p whose e�ect is dependent on a
higher-order parameter f can be compiled into multi-
ple versions, each optimized for a particular e�ect (or
set of e�ects) of f (cf. Chambers & Ungar's Self com-
piler [2]). For all possible e�ects �, if expressions in p

may safely evaluate in parallel given that f has e�ect
�, a new version of p, p� is built. A check to select p�
when f has e�ect � is inserted into p. For example, the
following dynamic version of procedure map (Figure 1)
is created by propagating possible e�ects of f into map
(and merging identical versions):

fun map [] = []

| map f (a::x) =

if safe f then

let val (x,y) = pcall(f a,map f x) in

x::y

end

else (f a)::(map f x)

When a pure (or read) e�ect is propagated into map as
f's e�ect, the parallel code in the consequent of the if
is generated. The original (sequential) code for map is
retained when f's e�ect contains a write or i/o. This
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naive restructured version of map can be further opti-
mized to create the e�cient dynamic map of Figure 2
by recognizing that f's e�ect is loop invariant.

If the procedure p being restructured receives k

higher-order parameters, all possible e�ect combina-
tions for these parameters can be propagated into p

and p restructured accordingly. This is viable if k and
the e�ect lattice are small. Alternately, for large k or a
large e�ect lattice, a bottom-up approach can be used
that examines p's sub-expressions and determines the
higher-order parameters of p for which a safety check
would lead to parallelization of these sub-expressions.
Appropriate versions of p and a corresponding check
are then generated.

2.3 Dynamic Computation of �-tags

At run-time, a procedure's e�ect is propagated with
the procedure's representation (closure) in the �-tag.
Furthermore, new �-tags are computed for dynamic
procedures whose e�ect was not available at compile-
time. When the closure for such a procedure p is dy-
namically created, its e�ect is computed from other
procedures' �-tags and p's current �-tag. Procedure
p is re-tagged with this updated e�ect. The static re-
structuring phase identi�es these closures and notes
the procedures required to compute the new �-tag. As
an example, the inner anonymous procedure in the ML
procedure
fun compose f = (fn g => fn x => f (g x))

to compose two procedures is dynamically assigned a
�-tag consistent with the composition of the e�ects
of f and g (as indicated by their �-tags) when a clo-
sure for (fn x => f (g x)) is formed. This dynam-
ically created �-tag is examined at run-time in the
same manner as statically assigned tags. Statically,
(fn x => f (g x)) has a parametric e�ect because
of the unknown free procedures f and g. Due to this
parametric e�ect, the procedure (fn x => f (g x))

is (conceptually) compiled to:
set (fn x => f (g x)) (combine (get f) (get g))

The procedure get retrieves a procedure's �-tag. set
sets the �-tag of its �rst parameter (a closure) to the
value of its second parameter and returns the closure.
combine computes the maximum e�ect (least upper
bound) of two �-tags. �-tags are combined using the
e�ect lattice of Section 2.1.1. To combine e�ects e�-
ciently, a run-time e�ect representation that admits a
fast, least upper-bound operator is used.4

4For our e�ect lattice, small bit vectors manipulated with
addition and bit-wise logical operations su�ce.

3 Heap Resolution

Heap resolution, our second dynamic parallelization
technique, allows concurrent modi�cation of heap
structures and is orthogonal to �-tagging. Heap resolu-
tion orders conicting heap accesses while permitting
parallel threads to execute concurrently. In particu-
lar, heap resolution permits structure traversals that
modify non-overlapping sets of objects to proceed in
parallel. These traversals can be expressed as recur-
sive loops with side-e�ecting bodies or as non-linear

recursion [10] over arbitrary structures.

Parallel evaluation of expressions that destruc-
tively access shared data must prevent read/write and
write/write conicts from altering the sequential se-
mantics of a program. Detecting and synchronizing
data races in dynamic shared data is di�cult for com-
pilers and programmers since sharing appears (and dis-
appears) dynamically and is often dependent on pro-
gram input. However, at run-time, shared data can be
detected and access to it correctly coordinated. For
example, a compiler may deduce that a list l of heap
elements might contain the same element more than
once (thereby sharing it with itself) and force access
to l to be sequential. For a given execution of the pro-
gram, however, l's elements may be disjoint so that
parallel access and modi�cation of them is safe. Even
if some elements of l are identical (shared), others can
be processed in parallel if sharing is detected dynami-
cally.

To preserve the sequential semantics of a program,
control-independent5 expressions evaluating in paral-
lel must see changes to the program's state in the or-
der produced by a sequential schedule of the expres-
sions. Let e1 and e2 be control-independent expres-
sions with a sequential schedule that evaluates e1 be-
fore e2. Semantics-preserving parallel evaluation of e1
and e2 must allow e1 to modify all state visible by e2
before e2 accesses this state. Furthermore, e2 must not
modify state shared with e1 until e1 has ceased access-
ing it. Heap resolution prevents e2 from modifying or
accessing heap structures shared with e1 until e1 com-
pletes. If e1 and e2 do not share data, both expressions
evaluate in parallel. Otherwise, evaluation of e1 and
e2 is parallel until e2 attempts to access potentially-
shared data, at which point evaluation of e2 suspends
until e1 completes.

Heap resolution requires information about which
heap structures are shared (accessible via multiple

5Expressions e1; : : : ; en are control independent if the eval-
uation of e1; : : : ; en is constrained only by data dependences.
Examples of control-independent expressions include arguments
in a procedure application, bodies (and bindings) in let clauses,
and sequential statement lists.
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a
b

c
d

Figure 4: A sample heap. If no paths from a to b or from b

to a exist, a thread t1 with access to a can detect an access to

heap nodes potentially shared with a parallel thread t2 that has

access to b, by examining node reference counts. The reference

count greater than one on node c indicates potentially-shared

data (c and d).

paths in the heap) and could be concurrently refer-
enced by multiple threads. Reference counts provide
a cheap and e�ective approximation to this informa-
tion. The following de�nitions are useful for describ-
ing when reference counts can be used to detect shared
heap nodes. Let H denote the heap and h and h0 nodes
in H.

De�nition 1 A node h 2 H reaches node h0 2 H if a
path from h to h0 in H exists. A node h reaches itself
if a non-zero length path from h to h exists.

De�nition 2 A popular node h 2 H is a node that is
directly referenced by two or more nodes in H.

We can now state the property that forms the ba-
sis of heap resolution. Suppose heap node h does not
reach heap node h0 and h0 does not reach h. If h and
h0 both reach a common node n, then all paths from
h to n (and h0 to n) must contain a popular node. A
popular node is an indicator of sharing. Not all nodes
shared by h and h0 are popular, but these can only
be reached through a popular node. A heap node's
dynamic reference count indicates its popularity.
The heap in Figure 4 provides an illustration. Nodes

a and b cannot reach one another. Nodes a and b,
however, reach commonnodes (c, and node d reachable
from c). Parallel threads, one accessing a and the other
accessing b, dynamically detect the potential reference
to a shared heap node when a popular node (a node
with reference count greater than one) is encountered.
Heap resolution relies on static analysis to select

expressions for parallel evaluation and to determine
static relations among variables pointing into the heap.
This static analysis, in conjunction with programmer
declaration of structures known to be acyclic, provides

information about the relationship of some heap nodes
at compile-time. We now describe the run-time sup-
port required for heap resolution (x3.1) and the pro-
grammer datatype declaration (x3.2). Section 3.3 de-
scribes a simple static analysis that is su�ciently pow-
erful to automatically parallelize a large class of expres-
sions. Markers, introduced in Section 3.4, augment ref-
erence counts in a case where the simpler mechanism
does not su�ce.

3.1 Operation of Heap Resolution

At run-time, heap resolution coordinates access to
potentially-shared heap nodes. The compiler produces
two versions of all procedures that can be invoked by
expressions evaluated with heap resolution (x3.3). Let
p be such a procedure. In addition to the original ver-
sion of p, the second version, p, detects and arbitrates
access to potentially-shared heap nodes. The origi-
nal version of p executes during sequential execution
of the program. p is called in lieu of p when paral-
lel threads with potential side e�ects are scheduled. p
examines reference counts to detect popular nodes on
heap accesses. As noted above, popular nodes delimit
potentially-shared structure, which must be accessed
sequentially to preserve the intended semantics.

3.1.1 Reference Counts

Heap resolution uses reference counts to detect dy-
namic sharing of heap nodes. Reference counts are
maintained only for pointers from heap nodes to other
heap nodes. References fromvariables pointing at heap
nodes are not counted since they do not expose infor-
mation about the heap's topology. Reference counts
must be maintained during the entire execution of a
program, but are examined only when expressions eval-
uate in parallel using heap resolution.
Reference counts are incremented when new struc-

ture is built or when existing pointers in the heap are
reassigned. A heap node's reference count is decre-
mented when a heap pointer to it is removed. While
parallel threads are evaluating with heap resolution,
a popular node may not be made unpopular, i.e., a
node's reference count may not be lowered from two
to one. This restriction is necessary since a thread
may maintain local pointers in variables which do not
a�ect reference counts. If a thread t has such a local
pointer to a popular node h and t makes h unpopular,
t may inadvertently grant a concurrent thread access
to h (which is now accessible by t through a pointer
variable and by some other heap node). Decrement-
ing the reference count of h must be delayed until all
parallel threads complete. This can be implemented
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by maintaining a list of nodes to be decremented and
decrementing the reference counts of these nodes when
sequential evaluation resumes. We expect this situa-
tion to occur infrequently.

Reference counts provide a conservative estimate
of sharing and can therefore indicate false sharing

(e.g., sharing due to structure not accessed by parallel
threads, or to discarded structure not yet removed by
the garbage collector). The safe approximation they
provide is, however, less conservative than static tech-
niques that approximate all heap aliases at compile-
time. This is because any static indication that sharing
may occur between expressions, requires the conserva-
tive assumption that sharing always occurs between
the expressions, whether or not it actually occurs at
run-time.

3.1.2 Linearization of Threads

Heap resolution detects access to shared structure
when a thread t running a parallel version p of a proce-
dure p accesses a popular node (a node with reference
count greater than one). To decide whether the thread
t may perform the shared heap access or must suspend
until other threads complete, p consults a linearization
of all active parallel threads [20]. A linearization is a
total ordering of all active parallel threads that is a se-
quential schedule of the expressions under evaluation
by these threads. If t is at the head of this lineariza-
tion, the access takes place and evaluation resumes.
If t is not the �rst thread in the linearization, t sus-
pends until all threads ahead of t complete. Upon its
completion, thread t removes itself from the lineariza-
tion, thereby enabling later threads to access shared
structure.

3.2 Programmer Declaration: Acyclic

In a language that allows side e�ects to the heap, a
program can build cyclic structure. Cyclic structures
make parallelization di�cult since a thread with access
to a node in a cyclic structure may \loop back" onto
itself. Consider the two-element list l=[a,b] where a

and b represent arbitrary heap structure. With cycles,
it is possible that a reaches l (e.g., a = l). A destruc-
tive procedure cannot be safely mapped over l in par-
allel since a reaches b through l. Furthermore, sharing
between a and b cannot be detected dynamically us-
ing reference counts since the standard representation
of the list l=[a,b],

b

l l’

a

contains no popular nodes indicating sharing. If, how-
ever, the spine of l is known to be acyclic (neither l
nor l0 lie on a cycle in the heap) at compile-time, sim-
ple static analysis (x3.3) shows that a and b can reach
shared structure only through a popular node, which
can be detected at run-time. Note that declaring l as
acyclic does not require a and b to be acyclic.
A programmer typically is aware of cyclic structure

since precautions must be taken when iterating over
it. Lists, tuples, trees and dags can easily be identi�ed
as acyclic by the programmer. To enable heap resolu-
tion, we introduce the acyclic datatype quali�er. An
acyclic datatype is an ML datatype whose spine, i.e.,
the heap nodes created by tuple and record construc-
tors in the datatype, is guaranteed by the programmer
to not lie on a cycle in the heap. This declaration im-
plies that a spine element of an acyclic datatype does
not reach itself. For example, the datatype
acyclic datatype 'a pair = Pair of ('a * 'a)

disallows a pair from reaching itself. Two pair ele-
ments can reach shared structure only if all paths from
a paired element to the shared structure contain a pop-
ular node.

3.3 Analysis for Heap Resolution

The static analysis required for heap resolution consists
of two parts: detection of candidate expressions for
parallel evaluation and subsequent analysis of these ex-
pressions to determine static relationships among heap
variables they use.

3.3.1 Expression Selection

Heap resolution selects a set of control-independent ex-
pressions, fe1; : : : ; eng, whose parallel evaluation po-
tentially conicts due to heap writes (read and write
e�ects). The compiler must know the set of variables
through which an ei accesses the heap. Therefore, pro-
cedures invoked by ei may not have access to the heap
through global heap variables or heap values in their
closures (curried parameters). The following de�nition
characterizes the procedures an ei may invoke:

De�nition 3 Procedure p is a true function if p does
not reference free variables and p does not invoke pro-
cedures that reference free variables not bound in p.

A true function is a procedure that operates on state
transmitted entirely through its parameters. For ex-
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ample, the procedure:
fun f (a,b) =

let fun g x = (x,a) in

g b

end

is a true function whereas procedure g is not since g

uses the free variable b. The procedure qs (Figure 3) is
a true function if its parameter cmp is a true function.6

An ei 2 fe1; : : : ; eng may only invoke true functions.
If ei only invokes true functions, any state accessed
and modi�ed by ei is completely described by ei's free
variables. Let FV (e) denote the set of free variables in
an expression e. The free variables FV (ei) denote the
\inputs" to expression ei. Subsequent analysis (x3.3.2)
examines ei's set of free heap variables,

Hi = fhi jhi 2 FV (ei) and hi is a heap variableg
and determines the structural relationship among the
Hi sets.
In the destructive quicksort of Figure 3, the expres-

sions e1=(qs left cmp) and e2=(qs right cmp) are
control-independent. FV (e1) = fqs; left; cmpg and
FV (e2) = fqs; right; cmpg. The procedure qs is a
true function if cmp is a true function. If cmp is a true
function, then H1 = fleftg and H2 = frightg repre-
sent the heap variables available to e1 and e2 respec-
tively. The analysis of the following section deduces
relationships between heap nodes dynamically bound
to the heap variables in H1 and H2 and schedules e1
and e2 in parallel using heap resolution.

3.3.2 Local Structure Analysis

Heap resolution requires static detection of heap vari-
ables that reach shared structure only via paths cer-
tain to contain popular nodes. The analysis in this
section statically veri�es that the free heap variables
Hi of expression ei can access structure accessible to
ej (through its free heap variables Hj) only if they
�rst encounter a popular node, for all i and j (i 6= j).
If this property cannot be veri�ed, the expressions
fe1; : : : ; eng are rejected as candidates for heap res-
olution and must evaluate sequentially.
ML decomposes dynamic data by matching it

against patterns. A data pattern recursively consists
of variables, constants, constructors and patterns [15].
When a pattern matches a piece of dynamic data, vari-
ables in the pattern are bound to the piece of the data
they represent. If the pattern contains acyclic datatype
constructors, the dynamic relationship of heap vari-
ables within the pattern can often be deduced stat-
ically. The relationship of variables within patterns
and relations among multiple patterns is captured in a

6A run-time �-tag (x2) that identi�es higher-order parame-
ters as true functions can be used to determine this property.

structure graph. A structure graph for an expression e

is a directed graph G = (V;E) that describes the struc-
ture of patterns lexically visible to an expression e. G's
vertices V consist of variables and patterns visible to
e. Heap resolution requires free heap variables of e to
correspond to variables in G. Edges E in G are of two
types: pointer edges and path edges. A pointer edge
represents a statically known pointer between a pair of
vertices. Path edges represent possible (but statically
unknown) paths between a pair of vertices.

In the procedure qs (Figure 3), for example, the
structure graph

Pair(  ,  ):acyclic

left        right

corresponds to the pattern Pair(left,right) in the
expression: val Pair(left,right) = split a x0.
The graph reveals that any heap node bound to the
variable left (right) can reach the heap node bound
to right (left) only if the node bound to right

(left) has a reference count greater than one (
is a pointer edge and a path edge). All paths
from left (right) to right(left) must contain a
popular node. Furthermore, if left and right reach
shared structure, a path to this structure must contain
a popular node. Therefore, shared structure accessible
by left and right can be detected dynamically using
reference counts and the expressions (qs left cmp)

and (qs right cmp) are compiled to evaluate in par-
allel using heap resolution.7 Note that if the pair

datatype were not acyclic, the structure graph would
contain path edges from left to the pattern and from
right to the pattern. These additional edges would
allow left (right) to reach right (left) without ac-
cessing a popular node (through the vertex represent-
ing the pattern) and dynamic detection of sharing with
reference counts would not work.

This static analysis �rst annotates expressions in a
procedure p with the structure graph that lexically
reaches them. The expressions e1; : : : ; en must be an-
notated with the same structure graph G for parallel
evaluation with heap resolution. For each pair of free-
heap-variable sets, Hi and Hj (i 6= j), the analysis
examines G to verify that for all hi 2 Hi and hj 2 Hj,

7A run-time optimization to reduce false sharing is applicable
here. If left (or right) has a reference count equal to one, this
count can be lowered to zero before evaluation of (qs left cmp)

(or (qs right cmp)) and incremented to restore the true count
after evaluationof the expression completes. This is valid since a
single pointer to left or rightmust be from Pair(left,right).
The destructive quicksort of Figure 3 requires this optimization
to remove false sharing created by the return value of split.
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hi can reach hj (and hj can reach hi) only via a path
that contains a popular node in G. If a path from hi to
hj (or from hj to hi) in G does not contain a popular
vertex, heap resolution cannot be used since potential
sharing cannot be dynamically detected using reference
counts.
This analysis is simple, yet able to schedule par-

allel evaluation of a large class of expressions. It is
particularly well suited for parallel structure traver-
sals. It is, however, unable to detect relationships be-
tween unrelated patterns such as those representing
multiple parameters to a procedure. It is also unclear
how e�ective this analysis is when applied to many
control-independent expressions involving many free
heap variables. We are developing a more sophisticated
static/dynamic analysis that addresses these issues.

3.4 Markers

The following is a case where heap resolution is not
applicable: statically, it may be known that heap node
h cannot reach heap node h0, but that h0 can reach
h. Reference counts do not work in this situation since
there is no guarantee of a popular node on a path from
h0 to h. A marker can be placed on h to indicate
that h (and nodes accessible from h) are in use by a
thread. A heap node's marker is dynamically examined
with its reference count, as explained above. A marker
identi�es the thread t that placed it, thereby granting
t access to the node. Markers allow the expression

let val p as Pair(a, ) = x in

f a; g p

end

to evaluate (f a) and (g p) in parallel. After a is
marked, (g p)may evaluate. If g does not access a, or
f removes or relocates a's marker, parallelism ensues.

4 Implementation and Results

We added �-tagging and heap resolution prototypes
to the SML/NJ compiler [1]. We also built a parallel
ML system from SML/NJ, sml2c, and SML Threads.
sml2c [19] is a code generator for SML/NJ that pro-
duces C code. SML Threads [4] provides thread cre-
ation and synchronization primitives. sml2c combined
with SML Threads allowed us to execute ML pro-
grams on a 386-based 20-processor Sequent Symme-
try shared-memorymultiprocessor (for which SML/NJ
does not directly generate native code). In order to
retain portability across architectures supported by
SML/NJ, the only modi�cation made to the sml2c

code generator is support for reference counts.
The parallel threads allocate storage from distinct

sections of the heap. A single processor performs stop-
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Figure 5: Timings of symbolic matrix multiply of two

100x100 integer matrices using �-tags versus explicit fork/join

parallelism. The multiply is parameterized by higher-order pro-

cedures that provide the addition and multiplication operations

on matrix elements.

and-copy garbage collection after suspending all other
active processors. All reported times include the time
required for garbage collection.

4.1 �-tagging Results

To implement �-tags, a single integer tag was added
to the run-time procedure closures generated by
SML/NJ. SML routines are used to inspect and mod-
ify a procedure's �-tag. These routines correspond di-
rectly to the safe predicate and the tag-manipulation
primitives set, get, and combine (x1 and x2). Re-
trieving a pointer to a tag requires 39:7�sec. Checking
if a procedure's tag indicates no side e�ects requires
56:5 �sec, and modifying the tag requires 47:9 �sec.
These times represent hundreds of machine instruc-
tions, whereas a direct implementation of these oper-
ations would require very few instructions and would
further reduce the already small run-time overhead in-
curred by �-tagging.
Figure 5 gives times for symbolicallymultiplying two

list-based 100x100 integer matrices using �-tags. Two
higher-order procedures to the matrix multiply routine
supply the operators for adding and multiplying ma-
trix elements. If these operators are side-e�ect free,
inner loops of the routine can evaluate in parallel (map
is invoked repeatedly). In the test, neither higher-order
operator had side e�ects. The program was manually
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restructured to check �-tags and re-assign �-tags upon
closure formation using the tag-manipulation primi-
tives.
Figure 5 also compares our implicit parallel version

of matrix multiply (through �-tags) against an explic-
itly parallel version of the same routine. �-tag times
approach those of the explicitly parallel version. In
this program, �-tag overhead relative to the explicit
parallel version ranged from 2% (one processor) to 9%
(4 processors). This overhead is easily o�set by the im-
plicit parallelism obtained by our dynamic technique.

4.2 Heap Resolution Results

An implementation of heap resolution requires refer-
ence counting of pointers within the heap, a lineariza-
tion of active parallel threads, and a primitive to in-
spect a heap node's reference count and suspend eval-
uation if necessary. A reference-count �eld was added
to every dynamic SML/NJ record. The sml2c C back-
end was modi�ed to increment count �elds upon record
construction and to decrement �elds when pointers are
re-assigned. Markers (x3.4) can be implemented simi-
larly. The linearization of threads required to maintain
the sequential semantics was implemented in ML as a
doubly-linked list of thread descriptors. A primitive
(written in C) was added to SML/NJ to create a new
descriptor at a given location in the linearization. This
operation is time critical since it occurs every time a
thread is created. Insertion into the linearization may
occur in parallel. Inlined SML procedures are used
to inspect reference counts. If a thread t must sus-
pend, t's continuation (available through SML/NJ's
non-standard callcc) is stored with t's descriptor in
the linearization. The continuation is invoked when t

moves to the head of the linearization (after all prior
threads have completed).
The destructive quicksort given in Figure 3 was re-

structured by hand to perform the recursive calls in
parallel and to check reference counts. Figure 6a gives
timings for sorting a list of 10000 random integers.
The sequential version performed no reference count-
ing. The overhead due to heap resolution in this pro-
gram is 12% of the explicitly parallel time for 6 proces-
sors, but heap resolution provides better performance
than sequential evaluation with only two processors.
The timings of a program to topologically sort a for-

est of trees are given in Figure 6b. The program sorted
25 balanced trees of depth 13. The trees did not share
structure. Programmer or compiler parallelization of
this program is di�cult since sharing among the trees
is unknown. The graph therefore lacks a curve with
explicit parallel times. As reected by the graph, this
program is very pointer intensive, and heap resolution

incurs signi�cant overhead. Even so, heap resolution
improves on the sequential performance when more
than 4 processors are used. This program was also
restructured manually.
To measure the e�ect of sharing, the topological sort

was applied to a forest of trees where each tree shared
a leaf node common to all trees. Heap resolution re-
quired 37.2 seconds to perform the sort with 8 proces-
sors. This is still an improvement over the sequential
sort (40.5 seconds). With sharing in the middle of the
tree, the time required for the parallel sort increased
to 65.0 seconds since most of the computation was
performed sequentially with reference counts checked.
This indicates that heap resolution in the presence of
sharing is viable only if run-time overheads can be fur-
ther reduced.
The overhead of heap resolution can be substantially

reduced by allowing the lead thread in the lineariza-
tion to read/write the heap with the conventional se-
quential code. Only threads not at the head of the
linearization must respect reference counts. This al-
lows heap resolution to operate one thread at original
speed and only slows the progress of additional par-
allel threads that check reference counts. To do this
e�ectively, an implementation must be able to switch
between the conventional version of a procedure and
the version that checks reference counts. This opti-
mization has not yet been incorporated into our im-
plementation. Additionally, examination of reference
counts must be moved to the backend of the compiler,
instead of being performed by a procedure call.

It is interesting to note that overhead due to main-
taining �-tags, a thread linearization, reference counts,
and markers is \parallel" and the detrimental impact
of this overhead diminishes as the number of processors
increases. Even so, we expect the run-time overhead of
�-tagging and heap resolution to decrease as we re�ne
the implementation.

5 Related Work

ParaTran [20] dynamically parallelizes Scheme by
modeling heap accesses as database transactions and
is most similar to our work. Evaluation in Paratran

proceeds optimistically. Upon detection of a conict,
the computation must be rolled back to a point where
the linear access order is intact. Reversing large com-
putations is expensive. By contrast, our heap resolu-
tion technique suspends a conicting expression and
immediately begins evaluation of another pending ex-
pression in parallel. Heap resolution always makes for-
ward progress. The amount of dynamic information
required by heap resolution is small (reference counts)
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Figure 6: Timings of heap resolution applied to destructive quicksort (a) and topological tree sort (b). In both programs, heap

resolution provides speedup over the sequential versions as the number of processors increases. No dynamic structures are shared.

Explicit parallel timings for the topological sort are not given since this program is di�cult to explicitly parallelize due to unknown

sharing.

in comparison to the complex time-stamps Paratran

retains for heap objects.

The Parcel [6] and Curare [10] systems restructure
Scheme after performing expensive data-ow analysis
for detecting heap aliases. Complex heap dependences
often force these static techniques to make safe, se-
quential assumptions. Higher-order functions are not
rigorously traced by these techniques. However, static
analysis of side e�ects in higher-order languages is ad-
dressed by Neirynck [16]. This conservative analysis
is unable to e�ectively trace higher-order procedures
propagated through data structures. The analysis re-
quired for �-tagging is less expensive and potentially
detects more safe higher-order applications at run-time
than these techniques statically uncover. Recent work
[3, 7, 8] addresses static analysis of heap structures,
pointers, and recursive data structures. Work by Lu
and Chen [11] uses a static analysis in conjunction with
dynamic information to detect loop dependences be-
tween array references at run-time.

6 Conclusion

�-tagging and heap resolution permit dynamic paral-
lelization of expressive languages that admit higher-
order procedures and allow side e�ects to the heap.

These techniques reveal and exploit implicit parallel
computations that are statically undetectable. Dy-
namic parallelization supports interactive development
environments and separate compilation since static
analysis is performed at the procedure, not program,
level.
An implementation of �-tagging and heap resolution

in the SML/NJ optimizing compiler indicates that the
costs inherent in run-time techniques|dynamic main-
tenance, propagation, and utilization of information|
are more than o�set by the dynamic discovery of par-
allel threads.
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