
DYNAMIC LANGUAGE

PARALLELIZATION

By

Lorenz F. Huelsbergen

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN { MADISON

1993

c
 Copyright 1993

by

Lorenz F. Huelsbergen

ii

DYNAMIC LANGUAGE PARALLELIZATION

Lorenz F. Huelsbergen, Ph.D.
University of Wisconsin{Madison 1993

Dynamic language parallelization is a new method, for the automatic parallelization

of imperative programs, that �nds parallelism during program execution. Dynamic

parallelization uncovers more parallelism|and better selects useful parallelism|than

is statically possible at compile time. It requires only inexpensive compile-time analyses,

allows separate compilation, and admits interactive programming environments.

This thesis describes the design and implementation of the �rst dynamic paralleliza-

tion techniques for imperative higher-order languages such as ML, Scheme, and Lisp.

Prototype implementations, in an optimizing ML compiler on a shared-memory parallel

computer, con�rm the thesis that dynamic language parallelization is feasible, inexpen-

sive, and often e�ective. The dynamic techniques address parallelization in the presence

of four language attributes that inhibit static parallelization: imperative higher-order

functions, side e�ects to dynamic structures, expressions with variable amounts of com-

putation, and automatic storage reclamation.

�-Tagging dynamically propagates information about a function's side e�ects with

the function's physical run-time representation. A �-tagging compiler can insert checks

to �-tags that select parallel evaluation only when �-tag side-e�ect information indicates

that parallel evaluation is safe.

Dynamic resolution determines at run time when updates to a dynamic data struc-

ture may safely occur in parallel. It dynamically detects shared data, and correctly

coordinates access to this data at run time. Dynamic resolution can automatically par-

allelize some non-trivial functions that elude static parallelization (e.g, a destructive

list-based sort).

Dynamic granularity estimation maintains size approximations on dynamic data

iii

structures (e.g., lists) at run time. Dynamically, the program consults these approxima-

tions to decide when parallel evaluation of an expression will always speed the program's

execution. A compiler can statically identify expressions whose evaluation cost always

depends on structure sizes, and can insert checks to data sizes that select parallel eval-

uation when bene�cial.

A concurrent garbage collector reclaims a program's spent storage in parallel with the

program's computation proper. The thesis describes the design and implementation of

the �rst concurrent copying collector that does not require special hardware or operating

systems support. The collector relies on the language or compiler to identify all program

accesses to mutable data. Measurements of the collector's implementation indicate that

it removes all perceptible garbage-collection pauses from a program's execution.

iv

To my mother and father

v

Acknowledgements

Foremost, I thank my advisor. Jim Larus provided the insight, encouragement, and

patience without which this thesis would not exist.

The other members of the thesis committee|Charles Fischer, Tom Reps, Susan

Horwitz and Arnold Johnson|challenged, and improved, the underpinnings of dynamic

language parallelization. My further research in this area will certainly embody their

ideas. Readers Charles Fischer, Tom Reps, John Reppy, and Phil Pfei�er greatly im-

proved the content, exposition, and style.

Todd Proebsting unwittingly taught me new ways of approaching and solving prob-

lems. Tom Ball took the time to carefully read and critique the initial drafts and the

conference submissions that are now the technical core of the thesis. Discussions with

programming-languages students Paul Adams, Sam Bates, Satish Chandra, Doug Hahn,

Steve Kurlander, and G. Ramalingam spurred many an idea or improvement.

Andrew Appel, Greg Morrisett, John Reppy, and David Tarditi provided assis-

tance with the New Jersey implementation of Standard ML. Sarita Adve and Je�

Hollingsworth answered my computer architecture and operating systems questions,

respectively.

For two months in the Spring of 1993, the FL language group at IBM Almaden|

John Williams, Alex Aiken, Ed Wimmers, and TK Lakshman|introduced me to an-

other language and its inner workings. During this period, Alex Aiken suggested an

operational approach to counting program time steps; this considerably simpli�ed the

vi

development in Chapter 5.

I would like to thank my teachers at Grinnell College and atWisconsin. In particular,

Anita Solow, John Stone, Gene Herman, Emily and TomMoore, Eric Bach, and Charles

Fischer imparted wisdom upon me.

I gratefully acknowledge the support of the NSF (Grant CCR-9101035), the Uni-

versity of Wisconsin (Graduate School Grant), and DARPA (Fellowship in Parallel

Processing).

Finally, I thank my family: My parents instilled in me the value of an education and

gave me the tools and means to attain it; my brothers were (and are) a constant source

of perspective and encouragement.

vii

Contents

Abstract iii

Acknowledgements vi

1 Introduction 1

1.1 Dynamic Language Parallelization : 2

1.1.1 Dynamic Parallelization Techniques : : : : : : : : : : : : : : : : 2

1.1.2 Measuring Dynamic Parallelization : : : : : : : : : : : : : : : : : 6

1.2 Rationale : 7

1.2.1 Imperative versus Functional Languages : : : : : : : : : : : : : : 7

1.2.2 Implicit versus Explicit Parallelism : : : : : : : : : : : : : : : : : 8

1.3 Thesis Overview : 9

1.4 Notes : 9

2 Language, Compiler, and Machine 13

2.1 Notation : 13

2.2 �v-S Language : 14

2.2.1 �v-S Syntax : 14

2.2.2 �v-S Semantics : 16

2.2.3 Extended �v-S : 18

2.3 Parallelism in �v-S : 24

viii

2.4 ML Compiler : 24

2.5 Shared-Memory Multiprocessor : 25

2.6 Experimental Measurements : 25

3 �-Tagging 26

3.1 Static Component : 29

3.1.1 E�ects : 29

3.1.2 Using Static E�ect Information : : : : : : : : : : : : : : : : : : : 36

3.1.3 Parallelization with �-Tags : 40

3.1.4 Invariant-E�ect Optimization : 43

3.2 Dynamic Component : 44

3.2.1 �-Tag Propagation : 44

3.2.2 �-Tag Manipulation : 45

3.2.3 �-Tag Examination : 46

3.3 Examples : 46

3.4 Implementation : 47

3.5 Results : 48

3.6 Other �-Tag Uses : 51

3.7 Notes : 52

4 Dynamic Resolution 55

4.1 Preliminaries : 58

4.2 Overview : 61

4.2.1 The Idea : 61

4.2.2 Dynamic Resolution Property : 62

4.3 Static Component : 63

4.3.1 Data-Constructor Classi�cation : : : : : : : : : : : : : : : : : : : 64

4.3.2 Reaching-Relation Inference : 68

4.3.3 Expression Selection : 70

ix

4.3.4 Check Placement : 71

4.4 Dynamic Component : 72

4.4.1 Join-Node Detection : 72

4.4.2 Parallel-Thread Linearization : 74

4.4.3 Expression Scheduling : 75

4.5 Extensions : 77

4.5.1 Specialized Function Versions : 78

4.5.2 Head-Thread Optimization : 78

4.5.3 Reconstitution of Reference Counts : : : : : : : : : : : : : : : : : 78

4.6 Example : 80

4.7 Implementation : 82

4.8 Results : 83

4.9 Notes : 87

5 Dynamic Granularity Estimation 90

5.1 Preliminaries : 93

5.2 Static Component : 94

5.2.1 Standard Semantics S : 95

5.2.2 Abstract Semantics A : 98

5.2.3 Termination : 102

5.2.4 Program Restructuring : 103

5.3 Dynamic Component : 104

5.4 Extensions : 105

5.4.1 Other Data Structures : 105

5.4.2 Mutable Dynamic Data : 106

5.5 Examples : 106

5.6 Implementation : 108

5.7 Results : 108

x

5.8 Notes : 110

6 Concurrent Garbage Collection 113

6.1 Assumptions : 115

6.2 Sequential Copying Collection : 115

6.3 Concurrent Copying Collection : 117

6.4 Implementation : 124

6.5 Results : 125

6.6 Extensions : 126

6.6.1 E�ciency Improvements : 126

6.6.2 Generations : 127

6.6.3 Parallel Mutators : 128

6.7 Notes : 128

7 Conclusions and Future Work 131

7.1 Contributions : 132

7.2 Directions for Future Work : 134

xi

Chapter 1

Introduction

A program's text is a static description of dynamic computations. Automatic program

parallelization performed at compile time is fundamentally limited|in order to preserve

a program's semantics, compilers must statically compute a conservative approximation

of the program's dynamic behavior. Dynamic language parallelization combines static

program analysis with dynamic information about the program's actual computation.

Parallelization decisions are made on the
y. Dynamic parallelization uncovers more

parallelism|and better selects useful parallelism|than is statically possible. It re-

quires only inexpensive compile-time analyses, allows separate compilation of program

modules, and admits interactive programming environments.

The design of dynamic parallelization techniques for imperative languages and the

implementation of these techniques in an optimizing compiler for a parallel machine,

con�rm the thesis that dynamic language parallelization is feasible, inexpensive, and

e�ective.

1

2

1.1 Dynamic Language Parallelization

This work studies the automatic parallelization, at run-time, of imperative dynamic

languages. Dynamic languages are general-purpose; their programs construct and mod-

ify dynamic data structures, manipulate functions as values, perform general I/O, and

automatically manage their storage. This thesis develops dynamic parallelization for

the ML language [78, 79], but the underlying concepts also apply to other languages

with dynamic features (e.g., to languages in the Algol [84], Lisp [76], Prolog [22], and

Simula [17] families).

The next sections describe the new parallelization techniques, methods for measuring

their e�cacy, and a rationale for the implicit parallelization of imperative languages.

1.1.1 Dynamic Parallelization Techniques

Dynamic language parallelization comprises a family of run-time parallelization tech-

niques. A dynamic parallelization technique is a hybrid : a static component computes

inexpensive, but partial, information about the program at compile time; a dynamic

component gathers basic information about the program at run time and augments the

precomputed static information with this dynamic information. Using this combined

information, the run-time system makes semantically-correct (safe) parallelization deci-

sions during the program's execution that preserve the program's meaning. Figure 1.1

depicts the static-dynamic components in a conventional compiler and run-time system.

Dynamic language parallelization supplements|not supplants|existing static anal-

yses. In doing so, it not only improves parallelization, but also reduces the cost of static

analyses since only partial information about the program's dynamic behavior need be

computed at compile time. Dynamic methods stand to substantially improve implicit

parallelization because they have complete access to the program's state. Techniques

that are entirely static must base their parallelization decisions on conservative, hence

3

Analyzer

Conventional Compiler

Parallel Computer

Inserts
Collection Code

Identifies
Parallelization Points

Inserts
Dynamic Checks

Collects
Information

Evaluates
Dynamic Checks

Manages
Memory

Provides
Parallel Support

Compiled Dynamically−Parallel Program

Dynamically−Parallel Compiler

Sequential Program

Dynamically−Parallel Run−Time System

Figure 1.1: A dynamically-parallel compiler is a conventional sequential compiler with additional

static analyses that compute partial information about the program. The dynamically-parallel run-time

system gathers dynamic information that augments these (partial) analyses. The static component of

a dynamic parallelization technique consists of compiler analyses that identify program points at which

dynamic information can guide parallelization. Checks on the dynamic information are inserted at

these points at compile time. The dynamic component in the run-time system collects information

per the static component's instruction. Checks to combined static-dynamic information select parallel

evaluation only when it is safe. Since the program's state is mostly memory, the dynamic component

may also manage memory.

4

imprecise, approximations to this state. Dynamic techniques need not rely on crude

static estimates, but may rather defer decisions until run time when more precise es-

timates exist. Precise approximations enable precise parallelization decisions; these, in

turn, yield more parallelism and can better select parallelism for a speci�c machine.

Utilizing run-time information is not free|maintaining and manipulating dynamic

information introduces overheads into the program's execution. For the dynamic tech-

niques of this thesis, however, empirical evidence suggests that the speed improvement

resulting from the additional (dynamic) parallelism can o�set their run-time overhead.

I have designed and implemented new dynamic techniques that address four prob-

lems facing automatic language parallelization: analyzing imperative higher-order func-

tions, allowing concurrent1 updates to dynamic data structures, deducing expression

granularities, and reclaiming storage concurrently. The implementations of the dynamic

techniques are prototypes; though amenable to full compiler automation, they focus on

the e�cient implementation of a technique's dynamic component since this component

governs the technique's e�ectiveness.

Imperative Higher-Order Functions

�-tagging (Chapter 3) is a new technique that dynamically identi�es and parallelizes an

imperative program's functional subcomputations|computations that do not produce

side e�ects. �-tagging annotates a function's run-time representation with a tag de-

scribing the imperative operations that the function may perform. Examining a �-tag

at run time selects parallel evaluation when it is safe to do so. �-tagging overcomes the

di�culty of statically tracking functional values|often created dynamically|through

complex data structures and unpredictable control
ow.

1The terms \parallel" and \concurrent" are used synonymously in this thesis.

5

Updates to Dynamic Data

Dynamic resolution (Chapter 4) is a new technique that detects when concurrent modi�-

cation of a data structure is possible. Static techniques can only imprecisely approximate

the structure of a program's dynamic data. Precise characterization of this structure is,

however, critical to e�ective parallelization. Dynamic resolution directly consults a pro-

gram's dynamic data structures in order to decide when concurrent structure updates

are safe.

Expression Granularity

Dynamic granularity estimation (Chapter 5) is a new technique that matches a pro-

gram's parallelism to the underlying machine's granularity at run time. Since computa-

tion in dynamic languages builds data structures of variable size, the time complexities

of the program's functions often hinge on the size of the data to which they are applied.

Dynamic granularity estimation maintains a bounded estimate of a datum's size at run

time. Statically, this technique identi�es functions whose application costs vary with

their parameter's data sizes. Dynamic examination of the run-time size estimates then

selects parallel evaluation only when bene�cial.

Concurrent Storage Reclamation

A new concurrent garbage collector2 (Chapter 6) reclaims a sequential program's dis-

carded storage in parallel with the program's computation proper. This collector is

the �rst concurrent copying collector that does not need special hardware or operating

system support. It does, however, require static support (language or compiler) for

e�ciency, I describe the design and implementation of this collector as well as a design

extension that can reclaim the storage of parallel programs.

2Garbage collection it is not a new dynamic technique per se; most conventional garbage collectors,
sequential and concurrent, are entirely dynamic.

6

1.1.2 Measuring Dynamic Parallelization

Dynamic parallelization is more powerful than static parallelization. A demonstration

of this does not, however, require direct comparison of a dynamic technique to its

static counterpart(s). This is fortunate since only few static approaches have been

implemented, and these often require experimental systems (e.g., [68]).

I measure dynamic-parallelization's e�cacy with two (new) criteria: necessity and

e�ciency. A dynamic parallelization technique, D, is necessary when programs exist for

which D �nds parallelism and no static technique �nds this parallelism. Necessity entails

all existing and future static parallelization techniques. To show that D is necessary, it

su�ces to �nd a program P that D can parallelize, but for which static parallelization

is impossible.3 Necessity arguments are qualitatively strong|they are independent of

the underlying systems.

E�ciency measures the performance of a dynamic technique D relative to other

(static) parallelization techniques. Foremost, I compare the sequential execution time

of a program P to the execution time of P dynamically parallelized with D. For D

to be e�ective, D must|given a (small) number of processors|improve P 's execution

time relative to its sequential execution time. Additionally, I measure D's e�ciency

relative to an explicitly parallel version of the program.4 This latter measure provides

an indication of D's performance relative to static parallelization. E�ciency measures

are quantitative; they are particular to a speci�c program, input data set, compiler, and

computer.

3Such a P usually contains a conditional C with a predicate whose value is unknown at compile time.
To ensure correctness, a static technique must assume that either branch of C is dynamically taken. A
dynamic technique, however, can detect|for individual instances of C|which branch is actually taken.

4Explicitly parallel versions were coded manually and utilize no dynamic information. Since in general
D may be necessary, an explicitly parallel program is always supplied data for which its operation is
known a priori to be correct.

7

1.2 Rationale

In this section, I provide rationale for pursuing the implicit (automatic) parallelization

of imperative dynamic languages. The argument is in the context of dynamic languages.

1.2.1 Imperative versus Functional Languages

Functional languages (e.g., Pure Lisp [76], FP [13], Haskell [52]) forbid direct program-

mer manipulation of state. The resulting absence of side e�ects enables equational

reasoning about functional programs [13]. It also readily exposes parallelism; expres-

sions whose subexpressions are evaluated may safely evaluate in parallel. Some common

algorithms, however, are di�cult to express without mutable state [93]. More severely,

functional implementations of many algorithms are often ine�cient.

Although parallelism is easily extracted from functional languages, the task of select-

ing expressions with granularities suitable for parallel evaluation remains [40]. Further-

more, functional languages assume an in�nite space in which to place fresh values. Since

machines are �nite, these languages rely on automatic storage reclamation to recycle

spent storage. Garbage collection must not become a bottleneck in a parallel system.

This work addresses the issues of identifying expressions with suitable granularities and

of garbage collection in parallel language implementation.

Imperative languages (e.g., Scheme [95], ML [78, 79]) routinely allow modi�cation

of the program's state through assignment operators.5 This makes algorithm speci�ca-

tion expressive and e�cient. Shared mutable state in parallel systems also provides a

convenient mechanism for interprocessor communication. However, a language's gain

in imperative expressiveness complicates reasoning about its programs. Nevertheless, I

adopt the view that access to mutable state is necessary to utilize realizable computers

5Functional programs can simulate \state" by rebuilding a data structure to incorporate \up-
dates" (cf. [59]). However, this strategy restricts parallelism since it must sequentially thread all
\mutable" data structures through the computation.

8

e�ciently and that assignment is characteristic of e�cient general-purpose languages (cf.

[31]).

In the presence of side e�ects, parallel evaluation of imperative expressions may

produce indeterminate results because of uncoordinated concurrent access of mutable

data. Coordinating correct parallel access to common mutable data is a critical problem

facing the parallelization of imperative languages. The techniques of this thesis directly

approach this goal.

1.2.2 Implicit versus Explicit Parallelism

Parallel language constructs (e.g., threads, synchronization mechanisms, and commu-

nication channels) allow programmers to introduce explicit parallelism into a program.

Explicit parallelization speeds programs. However, explicit parallelization comes at

great di�culty and cost. In addition to programming a solution to the problem at

hand, the programmer is now also responsible for explicitly specifying its parallel solu-

tion. Furthermore, explicitly parallel programs often exploit idiosyncrasies of the target

architecture. Such programs are not portable; nor are they simple to maintain. Fi-

nally, the use of explicit constructs must avoid common parallelization pitfalls (e.g.,

race conditions, dead or live lock), lest indeterminate behavior ensue.

Implicit parallelism is parallelism that is extracted automatically from the program

by a compiler.6 Implicit parallelism is desirable because the language implementation|

not the programmer|matches the program's parallelism to the target machine. With

multiple, machine-speci�c compilers for a language, programs are potentially portable

across a spectrum of uni- and multi-processors. An implicitly parallel language imple-

mentation preserves the language's semantics and sidesteps programmer parallelization

errors entirely. As this work shows, implicit parallelization also reveals parallelismwhose

explicit demarcation is cumbersome and subtle.

6In the case of dynamic language parallelization, the compiler and run-time system cooperatively
�nd implicit parallelism.

9

Note that implicit parallelization does not imply the automatic parallelization of

inherently sequential algorithms or programs. Programs must contain parallelism. A

recursive divide-and-conquer programming style, if consistently applied, exposes abun-

dant parallelism (cf. [83])|yet this programming style does not require the programmer

to reason about concurrent evaluation. For a program written in this style, the language

implementation should identify and coordinate as much useful parallelism as possible.

1.3 Thesis Overview

Chapter 2 describes the language under consideration for dynamic parallelization, the

compiler that implements it, and the target parallel machine. Beyond description of the

systems, this chapter also identi�es sources of parallelism in the language, characterizes

the side e�ects of the language's imperative features, and de�nes the kinds of con
icts

that parallel evaluation of these imperative features can cause.

Chapters 3{6 constitute the core of the thesis. Each core chapter describes one of the

four dynamic techniques (x1.1.1 above). Since the individual techniques are orthogonal,

these chapters are|for the most part|independent.

Chapter 7 concludes with a summary of the new techniques and provides a perspec-

tive view of dynamic language parallelization.

1.4 Notes

This section examines previous work on run-time parallelization and various parallel

systems for dynamic languages. Subsequent chapters supply further comparison to

related work.

10

Run-Time Parallelization

Dynamic language parallelization is in its infancy. Run-time parallelization [72, 101,

102, 92, 123] exists for static array-based languages (e.g., Fortran).7 These methods

parallelize loop nests containing indirect (and hence statically unknown) array refer-

ences by dynamically pre-executing a loop to �nd a parallel schedule for its iterations.8

A good parallel schedule absorbs the cost of pre-execution. Lu and Chen [73, 72] ex-

tend these array techniques to loops with simple pointer calculations. However, none

of these techniques is general: procedure invocation is not supported; indirect array in-

dicies and data structures are constrained to remain �xed during the loop's execution.

Furthermore, compiler automation of these techniques requires extensive static analysis.

Dynamic language parallelization, as proposed here, incrementally collects infor-

mation about a program's dynamic data and computation structure. During parallel

evaluation, the costs of this collection are distributed. Available run-time information

guides decisions at parallelization points; complex evaluation schedules are unnecessary.

Implicitly Parallel Systems

Harrison's PARCEL [45, 44] and Larus's Curare [68, 67] statically transform sequential

Scheme [95] programs for parallel execution. Both compilers perform an interprocedural

side-e�ect analysis. They do not use run-time information. As is characteristic of static

analyses, PARCEL and Curare compute a conservative semantics-preserving estimate

of a program's dynamic behavior. Therefore, they usually only �nd small amounts of

parallelism in the presence of modi�cations to large dynamic structures. In contrast,

dynamic techniques construct and consult sharp approximations to a program's run-

time behavior and can consequently �nd more parallelism. PARCEL's and Curare's

7[63] surveys run-time techniques that optimize sequential programs.
8For regular access to direct array indicies, static methods of scheduling parallel loop bodies have

met with success (e.g., [66, 4, 3, 121]). Not surprisingly, static parallelization performs well for programs
with statically-predictable behavior. I do not study array parallelism in this thesis.

11

analyses are over entire program texts; their time complexities (i.e., compile-time costs)

hinge on a program's size. This expense hinders interactive development [67]. The

dynamic techniques of this thesis, on the other hand, only require inexpensive static

analysis|analysis that is often local to a function's de�nition. That is, all interproce-

dural information is obtained at run time.

Katz's ParaTran [62, 111] models a Scheme program as a parallel database. Access

to a value is a transaction under this model. Parallel evaluation proceeds optimistically;

upon detection of a transaction (access) con
ict, rollback restores the computation to

a stable state. Examination of timestamps on values detects con
icts dynamically.

A transaction t commits when timestamps indicate that further transactions will not

con
ict t. ParaTran's rollback and timestamp mechanisms introduce large overheads

into a program's execution. It is unclear whether Scheme programs contain enough

con
ict-free parallelism to o�set these costs. ParaTran relies on extensive static analysis

and has not been implemented on a parallel machine.

Gray [40] and Boyle et al. [18] automatically parallelize Pure Lisp [76]. Pure Lisp

is entirely side-e�ect free. This simpli�es implicit parallelization since shared mutable

state does not exist. However, the parallel programs produced by these approaches

create large numbers of small threads; scheduling overheads plague these approaches.

The di�culty lies with static analyses that cannot, with enough precision, determine

how much computation an expression contains. As this thesis demonstrates (Chapter 5),

incorporation of dynamic information partially alleviates this problem.

Functional data
ow languages (e.g., Id [87, 12]) automatically evaluate in parallel on

data
ow machines [27]. Id's extension to concurrent M-structures [15] provides mutable

state for the e�cient expression of certain algorithms, but renders Id imperative and

indeterminate. Automatic techniques for the determinate use of state in Id do not yet

exist.

12

Explicitly Parallel Systems

Reppy's Concurrent ML (CML) extends ML with explicit synchronous communica-

tion [96, 97]. In CML, programmers construct powerful higher-order synchronization

and communication abstractions from message-passing operations based on CSP [50].

Other research also introduces explicit communication into ML (e.g., [94]) and explores

the semantic issues that these mechanisms entail [16]. Cooper et al. designed a portable

platform, called MP [82, 24], for creating explicitly parallel ML programs and have

ported it to several parallel machines. MP provides thread creation, parallel memory

allocation, and synchronization facilities (see 2.4). Similar packages exist for many

languages (e.g., C [23], Scheme [57]).

Halstead's MultiLisp [42] was the �rst parallel Lisp. It extends Lisp with explicit

language constructs: pcall evaluates the arguments in a function application in parallel;

(future e) immediately returns a placeholder for expression e and begins e's concurrent

evaluation|when the value of an undetermined future is required, evaluation suspends

until the future's computation completes. Mul-T [65] and MultiScheme [77] are deriva-

tive systems that emphasize performance. Concurrent garbage collection [42, 43] and

e�cient thread creation [81, 80, 40] are also studied in these systems.

Qlisp [36, 39] is another early Lisp with parallel language constructs. It too burdens

the programmer with the tasks of identifying suitable parallelism and, in the presence

of side e�ects, of reasoning about determinate behavior.

Chapter 2

Language, Compiler, and

Machine

This chapter describes the language under consideration for dynamic parallelization,

the compiler and run-time systems that implement it, and the target parallel machine.

It also gives the method used for the experiments.

2.1 Notation

If A and B are sets, then A [B is their union, A \ B is their intersection, and AnB

is their di�erence. The empty set is denoted by ;, and Fin(A) denotes the set of �nite

subsets of A. If f is a map, then the domain and range of f are Dom(f) and Rng(f).

A �nite map from A to B is a partial map with �nite domain. Denote the set of �nite

maps from A to B as

A
fin
! B

where any f 2 A
fin
! B can be written in the form:

fa1 7! b1; : : : ; an 7! bng

The empty map is written fg. If f and g are maps, then f � g is the map with f

13

14

modi�ed by g and has the domain Dom(f)[Dom(g) and the values:

(f � g)(a) =

8<
:
g(a) if a 2 Dom(g)

f(a) otherwise
A sequent of the form A ` phrase ! B holds, with respect to A, if phrase ! B

where ! is some ternary relation between A, phrase, and B. An inference rule has the

form

P1 � � �Pn
C

where n > 0. Successful inference of the premises, Pi, infers the conclusion C. The

premises are either sequents or mathematical side conditions.

2.2 �v-S Language

�v-S [122] is the call-by-value �-calculus, �v [91, 98], extended with operators on mutable

state. �v-S is an imperative dynamic language; it forms the core of Standard ML

(SML) [78, 79]. Here, I present the base syntax and relevant semantics of �v-S. I then

extend it with ML syntax. The individual parallelization techniques of the following

chapters further extend or restrict the �v-S language as necessary.

2.2.1 �v-S Syntax

Exposition of the �v-S syntax follows that of Felleisen and Friedman [32]. The ground

terms of �v-S are variables and constants:

x 2 Var variables
b 2 Const = BConst [FConst constants

BConst = f(),true,false,0,1,: : :g base constants1

FConst = f+,-,not,: : :g function constants

0In addition to the int and bool base constants, the base constant () denotes the only value of the
unit type.

15

Terms are expressions (e 2 Exp)

e ::= v value
j e e application
j let x = e in e let
j if e then e else e if
j ref e allocate
j set e e store
j get e fetch

and values (v 2 Val � Exp):

v ::= b constant
j x variable
j �x:e �-abstraction

Although application and �-abstraction derive the let and if terms directly, they

are included here as terms for the following reasons. Inclusion of the let term admits

programmer de�nition of polymorphic functions [26]. This is subsequently used (x3) to

automatically infer a term's result type and its possible side e�ects. Since condition-

als introduce imprecision into analyses, I explicitly include the if term to expose its

analytical consequences.

Operators on mutable state (the imperatives: ref, set, and get) are also included

as expression terms since their treatment is central to the development of dynamic

parallelization. However, they are also viewed as function constants when this simpli�es

the exposition.

Variable x is free in term e if x occurs in e and e does not contain a �-abstraction

or a let term that binds x. Otherwise, when a �-abstraction or a let term in e binds

x, variable x is bound in e. The free variables in term e, FV(e), are de�ned inductively

by:

16

FV(b) = ;

FV(x) = fxg

FV(�x:e) = FV(e)n fxg

FV(e1 e2) = FV(e1) [FV(e2)

FV(let x = e1 in e2) = FV(e1) [(FV(e2)n fxg)

FV(if e1 then e2 else e3) = FV(e1) [FV(e2)[FV(e3)

FV(ref e) = FV(e)

FV(set e1 e2) = FV(e1) [FV(e2)

FV(get e) = FV(e)

I assume that the program's variables bound in �-abstractions and let terms have

been uniquely renamed. This avoids the unintentional capture of free variables. The

textual replacement of term e for variable x in term e0 is denoted as e0[e=x].

2.2.2 �v-S Semantics

Formal semantics for �v-S can be found in [122, 112]. Two aspects of the semantics are

particularly relevant to parallelization: the operation of the imperative forms and the

order of expression evaluation.

The notation e! v denotes the evaluation of expression e to a value v.

Evaluation Order

Call-by-value �v-S is an eager language. Value terms are irreducible and evaluate to

themselves. Evaluation of expression terms proceeds from left to right. Let ei ! vi. In

an application term, (e1 e2), expression e1 evaluates before e2. After v2 is obtained,

the functional v1 is applied to v2. The imperative expression terms similarly evaluate

their arguments from left to right. The conditional, (if e1 then e2 else e3), is non-

strict; that is, it does not evaluate all of its subexpressions. The boolean value true

for v1 selects evaluation of e2 and returns v2; false evaluates e3 and returns v3. A let

17

term, (let x = e1 in e2), �rst produces v1 and binds it to x before evaluating e2 and

returning v2.

Imperatives and Con
icts

The imperative expression terms create (ref), update (set), and retrieve (get) the

contents of reference values. A reference value is a mutable value whose contents is a

�v-S value. The imperatives operate as follows (where ei ! vi):

(ref e1) creates a new reference value r and initializes r to v1. The result of a ref

expression is the reference value r.

(set e1 e2) changes the contents of reference value v1 to v2. The result of a set

expression is always the unit constant ().

(get e1) fetches and returns the contents of reference value v1.

The expression (set x (get y)), for example, fetches the contents v of the reference

value bound to y and stores v in the reference value bound to x.

The notion of con
ict captures the possibility of imperative interactions between

expressions. Expressions e1 and e2 con
ict if either e1 or e2 sets some reference value

and the other accesses (sets or gets) some reference value.2 Since actual evaluation

of e1 and e2 may cause no imperative interactions|if, for example, e1 and e2 access

disjoint sets of reference values|this de�nition of con
ict captures the possibility of

such interactions.

Con
icts do not lead to indeterminate behavior under sequential left-to-right eval-

uation. However, if expressions e1 and e2 con
ict and access a common reference value

r, naive parallel evaluation of e1 and e2 may produce indeterminate behavior because

multiple access orders involving r are possible. For example, naive parallel evaluation

2Concurrent allocation of new reference values with ref does not introduce con
icts; it is a simple
implementation matter for multiple processors to concurrently create new values (e.g., [43, 67, 82]).

18

of (set x 0) and (set x 1) yields either the value 0 or the value 1 for x (assuming

atomic stores to reference values).

2.2.3 Extended �v-S

This section extends the syntax of �v-S to a (large) subset of ML. Syntactic additions

include multiple let bindings, function de�nitions, recursive datatypes, patterns, and

control structures. Since ML statically infers the types of a program's expressions (cf.

x3.1), I �rst describe type notation and the implications of statically typing �v-S. I then

compare extended �v-S to ML.

Static Type Inference

Algorithms to statically infer the type of �v-S expressions exist (e.g., [26]). A �v-S

program P is well-typed if a static type for P exists. A well-typed program cannot

fault during execution due to a type inconsistency. In this thesis, I only consider �v-S

programs that are well-typed.

The notation e : � denotes that expression e has type � . For example, 5 : int and

(not x) : bool. A �-abstraction is a function and maps a value of type �1 to a value

of type �2. It has a function type written as �1 ! �2. For example, the function that

returns the boolean true when its integer parameter is negative has type:

(� x.x < 0): int! bool

Type inference places slight restrictions on �v-S programs. For example, in a conditional

(if e1 then e2 else e3), static type inference constrains the types of the conditional's

subexpressions to e1 : bool and e2;3 : � .

Type inference extends to structured datatypes. I introduce further type notation

as necessary.

19

Value Binding

In �v-S, a let expression binds a value to an identi�er. ML syntax allows multiple value

bindings within a let; i.e., nested let expressions may be
attened. For example, in

let val x = y

val xsquared = x * x

in

e
end

x is �rst bound to the value of y from the let's enclosing scope. The identi�er xsquared

is then bound to the square of x. The identi�ers x and xsquared, in addition to bindings

inherited from the enclosing scope, are accessible in e.

Recursive Functions and Polymorphism

The val rec syntax de�nes recursive functions.3 The de�nition

val rec f = e

binds identi�er f to the value of e|which must always be a �-abstraction|and makes

this binding of f accessible in e. Additional syntax further simpli�es function de�nition.

The �-abstraction �x:e is written as (fn x => e). The fun syntax

fun f x = � � �f � � �

names and de�nes a recursive function f of a single parameter, x. This syntax is

equivalent to the val rec binding

val rec f = (fn x => � � �f � � �)

Currying provides multiple parameters to functions. For example,

fun g x y = � � �g � � �

de�nes a function g of two parameters, x and y. The binding

val rec g = (fn x => (fn y => � � �g � � �))

3The call-by-value Y combinator implements recursion [98]:
Yv � �f:�x:(�g:f(�x:g g x))(�g:f(�x:g g x)) x

20

is g's val rec equivalent. As an example, consider the function that composes two

higher-order functions:

fun compose f g = (fn x => f (g x))

The function compose, after application of its arguments f and g, returns a new function.

Subsequent application of this new function computes f (g x), e.g., the application

compose (fn x => x - 1) (fn x => x * x)

creates an anonymous function of a single parameter that computes f(y) = y2 � 1.

The compose function has polymorphic type

compose : (� !
)! (�! �)! (�!
)

that is, individual instances of an application of compose may compose functions of dif-

ferent types. Polymorphism is indicated by the appearance of type variables (�; �;
) in

compose's type. The type of compose's �rst functional parameter f is � !
; functional

parameter g is of type �! �. Upon application of its two parameters, compose creates

and returns a function of type �!
. The above example applies compose to functions

of type int! int. Therefore, the static type-inference algorithm instantiates the type

variables �, �, and
 to int in this particular application. The result type of the above

application is therefore int! int.

Basic Types

It is a straightforward matter to augment the ground types of �v-S (int, bool, and

unit) with ML's additional ground types, i.e., the real and string types.

References

A ref expression (ref e), where e : � , creates a mutable reference value (x2.2.2) of

type:

(ref e): � ref

Static typing imposes restrictions on values stored in reference values [112]. The only

21

restriction relevant to this thesis is that the type of a reference value is �xed; that is,

updates to a reference value r of type � ref may only place values of type � into r.

Extra syntax provides concise access to reference values. The ! operator fetches

a reference value: !e � (get e). The in�x assignment operator := performs a set

operation: (e1 := e2) � (set e1 e2).

Tuples

Tuples are aggregates of values and introduce dynamic data structures into the lan-

guage. The syntax (e1,: : :,en) creates an n-tuple. A tuple expression �rst evaluates

its subexpressions in left-to-right order (ei ! vi) and then forms a tuple of the n result

values vi. A tuple has the product type:

(e1 : �1,: : :,en : �n): (�1 � : : : � �n)

For example, (true,(1,2,3)): (bool � (int � int � int)) is a binary tuple|it pairs a

boolean value with a ternary tuple of integers.

Extension to records (tuples with labelled components) and reference arrays (aggre-

gates of reference values) is straightforward.

Algebraic Recursive Datatypes

ML's datatype syntax permits programmer declaration of new recursive datatypes.

Recursive datatypes give rise to dynamic data structures. In languages with higher-order

functions and reference values as here, dynamic data structures cause the parallelization

di�culties addressed in this thesis.

The list type constructor, declared with

datatype � list = Nil | Cons of (� � �list)

is a central datatype. Type variable � parameterizes the list datatype and enables

the list constructors (Nil and Cons) to build a family of homogeneous lists. The

identi�er Nil is a nullary constructor that constructs the empty list. Cons is a binary

22

constructor that, when applied to a tuple with �rst component s1 : � and second

component s2 : �list, builds a new list with head element s1 and tail s2. For example,

the expression

Cons(1,Cons(2,Cons(3,Nil)))

is of type int list and constructs a three-element list of integers. Since lists are

ubiquitous in dynamic languages, additional syntax aids in their construction and access:

[e1,: : :,en] creates an n element list; and [] denotes the constructor Nil. The in�x

operator :: denotes the Cons constructor, i.e., Cons(e1,e2) � (e1::e2). The binary

in�x operator @ appends two lists. Selector functions hd and tl respectively return the

head and tail of a non-empty list.

Pattern Matching

A pattern is a data template. If a datum matches a pattern, the variables in the pattern

are bound to the corresponding components of the datum. A match fails if the datum

and pattern do not concur. For example, the pattern (x,y) in

let val (x,y) = e in : : : end

is matched to the value of e, which must be a binary tuple (v1; v2). This match binds

identi�er x to v1 and identi�er y to v2 in the scope of the let.

Pattern matching is useful for de�ning functions|a series of n patterns can select

from a function's n cases. The | symbol separates pattern-case pairs. Matching proceeds

serially from left to right. A successful match causes evaluation of the corresponding

function case. The matching process faults if no pattern matches the function's argu-

ment value. Using patterns, a function to compute the lengths of lists is:4

fun length [] = 0

| length (x::xs) = 1 + (length xs)

4An equivalent de�nition of length that does not use patterns is:
fun length l = (if l = [] then 0 else 1 + (length (tl l)))

23

When length is applied to the empty list, the �rst pattern ([]) matches and length

returns 0; otherwise, length's argument matches the :: list constructor in the second

pattern (x::xs). This match binds x to the head element of the list and xs to the

tail. Since the length function does not require a binding for a list's head element,

the pattern (x::xs) is more informatively written as (_::xs) where the wildcard (_)

matches|but does not bind|anything.

The keyword as decomposes a datum d with respect to a pattern while retaining

a binding for d proper, e.g., the pattern (l as (0::xs)) matches a list whose head

element is the integer 0; a successful match binds l to the entire list and xs to the list's

tail.

As with the variables bound by �-abstractions or let terms, I assume that the

program's pattern variables have unique names (renaming if necessary).

Control Flow

Mechanisms for explicit expression sequencing are desirable in imperative languages.

The sequence (e1; : : : ;en) evaluates ei before ej, i < j, and returns en's value, vn.

Additionally, the boolean junctions ^ and _ are available as ML's short-circuit in�x

operators: andalso and orelse, respectively.

Comparison to ML

Extended �v-S comprises most of ML. �v-S and dynamic parallelization do not address

two aspects of ML: the module facility and the exception mechanism.

Modules encourage programming with abstract datatypes and enable separate com-

pilation of program components. Although parallelization in the presence of modules is

not the central concern of this thesis, modules do not impede dynamic parallelization|

indeed, as opposed to static parallelizationmethods, dynamic techniques support modu-

lar programming since parallelization information propagates seamlessly across module

24

boundaries at run time.

ML's exception mechanism allows programmers to declare, raise, and handle excep-

tions. Exceptions are imperative and, as such, can be treated as a form of side e�ect.

For simplicity, I develop dynamic parallelization for programs that do not use excep-

tions. Note that this restriction does not preclude the dynamic parallelization of the

functions within an ML program that do not raise or handle exceptions.

2.3 Parallelism in �v-S

The application term, e � (e1 e2), is the primary source of parallelism in �v-S. If e1

and e2 do not con
ict, then e1 and e2 may safely evaluate in parallel; that is, their

parallel evaluation is safe. The application proper occurs after parallel evaluation of

e's subexpressions.

The symbol jj stands for parallelism. It is a compiler-produced annotation|attached

to an expression by the compiler only when parallel evaluation is known to be safe|

and not a language mechanism. It is used in the following contexts: ejj indicates that

expression e (potentially) contains parallel subexpressions; fjj where f is a function

indicates that the argument expressions to f evaluate in parallel; (e1 jj e2) indicates the

parallel evaluation of an application term's subexpressions; (e1,: : :,e2)jj denotes parallel

evaluation of n-tuples. The separator ;jj in a sequence indicates that the expressions it

separates evaluate in parallel.

2.4 ML Compiler

Implementation is based on the Standard ML of New Jersey ML compiler (SML/NJ) [11,

9]. SML/NJ is an optimizing compiler that|except for some C routines in the run-time

system|is written in ML. SML/NJ compiles to a continuation-passing style [9, 107, 64]

and, from this, generates native code for many computer architectures. The compiler

25

can also produce portable C code with the sml2c [110] code generator. Version 0.73 of

SML/NJ and sml2c was used to implement the techniques described in this thesis.

The MP [82, 24] queue-based multiprocessing platform provides concurrency mech-

anisms (thread creation, synchronization, and run-time support5) for SML/NJ. MP

primitives su�ce to build the concurrency constructs necessary for implementing dy-

namic parallelization.

2.5 Shared-Memory Multiprocessor

Since dynamic languages build large pointer-based structures, a global address space

simpli�es the layout and access of such structures. The techniques of this thesis, there-

fore, assume that the target machine's parallel processors access a common global ad-

dress space.

Implementation is on a 20 processor Sequent Symmetry with 40MB of shared mem-

ory. Each of the Sequent's 20-MHZ 80386 processors connects via a 64KB two-way

set-associative cache to a bus to the shared memory. The word size of the machine is

32 bits. Word-size memory reads and writes are atomic. The Symmetry's operating

system is a UNIX variant.

2.6 Experimental Measurements

Reported program execution times are the average of at least three trials and include the

time required for garbage collection. All measurements were taken on an idle machine

with standard compiler-optimization settings.

5Garbage collection is performed sequentially by a single processor in MP. The lack of concurrent
collection capability prompted the design of the concurrent garbage collector (Chapter 6).

Chapter 3

�-Tagging

Languages with both higher-order functions and imperative features pose di�culties

for static compiler parallelization, because many di�erent higher-order functions may

reach, and may be applied in, a given expression during the program's evaluation.

Since higher-order languages manipulate functions as values, statically determining a

good approximation to the set of functions actually applied in a higher-order appli-

cation expression is di�cult in practice [85, 104].1 Therefore, existing static paral-

lelization systems (e.g., [45, 68]) cannot precisely analyze|and hence do not e�ectively

parallelize|program expressions involving higher-order imperative functions.

This chapter describes the design and implementation of a dynamic technique called

�-tagging that uncovers parallelism in the presence of imperative higher-order functions.

�-tagging dynamically propagates information about a function's potential side e�ects

with the function's run-time representation. The map function of Figure 3.1 illustrates

the problem and serves as an example of automatic parallelization using �-tags.2

1In general, �nding the exact set of higher-order functions reacing an application is undecidable.
2The map function is representative of a large class of functions that obscure parallelism by receiving

and applying higher-order parameters (e.g., sorting algorithms parameterized with comparison predi-
cates and generalized data-traversal operations).

26

27

fun map f [] = []

| map f (x::xs) = (f x) :: (map f xs)

Figure 3.1: The map function applies its higher-order parameter f to every element of its list

parameter and returns a new list containing the results of the individual applications.

If a compiler cannot deduce the identity or behavior of the function f in an applica-

tion expression e, the compiler must err conservatively and assume that f 's application

always exhibits worst-case behavior. Even when the set F of higher-order functions

reaching e is statically known, static analyses conservatively approximate the side ef-

fects of an f 2 F as an upper bound of the side e�ects of all the functions in F . However,

a dynamic instance of e may actually invoke a side-e�ect-free function. This, in turn,

may expose dynamic parallelism that static methods are unable to utilize.

For example, application of map may safely use a parallel version (mapParallel of

Figure 3.2) if map's higher-order parameter f cannot produce interfering side e�ects,

e.g., when f is functional. In the expression

e � map (nth n [: : :,g,: : :,h,: : :]) l

let the functions bound to g and h be functional and imperative, respectively. Expression

e is an example of a program that static compilers cannot parallelize. The function nth

uses its �rst argument, integer n, to select the nth element of its second argument, a list.

In e, nth's second argument is a list of functions. If n's value is unknown at compile

time, a conventional compiler may not transform map into mapParallel because nth

can select an imperative function from its list|imperative functions as arguments to

mapParallel can cause indeterminate behavior.

As the above example illustrates, static approaches forego valuable parallelismwhen

instances of statically-unknown functions are dynamically functional. Dynamic paral-

lelization, however, often �nds this statically-undetectable parallelism. By the de�ni-

tion of necessity (x1.1.2), this example demonstrates that|in the presence of imperative

28

fun mapParallel f [] = []

| mapParallel f (x::xs) = (f x) ::jj (mapParallel f xs)

Figure 3.2: Parallel version of map. A compiler may safely substitute mapParallel for map only if

it statically ascertains that f does not produce side e�ects. The parallel in�x list constructor ::jj forks

its arguments as parallel threads and performs the Cons construction when the threads join.

fun mapDynamic f [] = []

| mapDynamic f (x::xs) = if (safe f) then

(f x) ::jj (mapDynamic f xs)

else

(f x) :: (mapDynamic f xs)

Figure 3.3: Dynamically-parallel version of the map function using �-tags. The predicate safe

examines a function's �-tag and returns true if the function cannot exhibit interfering side e�ects.

higher-order functions|dynamic parallelization techniques such as �-tagging are nec-

essary.

�-tagging sidesteps the problem of not knowing a function's identity at compile-time

by examining tags on functions at run-time. Such a tag is called a �-tag and describes the

possible side e�ects that an application of its function produces. Statically, �-tagging

infers a function's potential side e�ects from the program text and attaches an initial

�-tag to the function. In the case of a dynamically-created function f , static �-tag

information describes the �-tag to be dynamically created upon f 's dynamic instantia-

tion. �-tags propagate dynamically with functions' run-time representations. Checks

to �-tags|automatically inserted at compile time|dynamically determine when par-

allel evaluation is safe. In this manner, �-tags enable dynamic detection of parallel

computations involving statically-unknown higher-order functions.

Figure 3.3 depicts a dynamically-parallel version of map. A �-tagging compiler can

automatically generate mapDynamic from map's conventional de�nition (Figure 3.1). On

entry to mapDynamic, the potential side e�ects of higher-order parameter f (described

by f's �-tag) select parallel or sequential mapping. Note that the expression from

which the actual higher-order function originates is irrelevant. Further optimization

29

makes mapDynamic more e�cient|a compiler may replace the recursive application of

mapDynamic in the conditional's false branch with that of sequential map since f's side

e�ects are invariant in mapDynamic; similarly, application of mapParallel may replace

that of mapDynamic in the true branch. This can substantially reduce the number of

checks to �-tags that mapDynamic performs.

This chapter develops �-tagging for the �v-S language. I �rst describe �-tagging's

static (x3.1) and dynamic (x3.2) components. I then describe the �-tagging implemen-

tation (x3.4) and discuss empirical results (x3.5).

3.1 Static Component

Static type and side-e�ect (e�ect) inferencing methods [108, 109, 61, 75] are used to

assign initial �-tags to a program's functions at compile time. After introducing the

algebras and notation used by static e�ect inferencing, I describe how this static e�ect

information is used for �-tag parallelization.

3.1.1 E�ects

An expression's type describes what e computes. An expression's e�ect [75] describes

how it produces a result; i.e., e�ects capture the potential side e�ects that can occur in

computing an expression's value. Here, I follow Talpin and Jouvelot [108] and describe

an algebra of e�ects and types for �v-S.

The ground terms of the algebra Effect are e�ect variables and e�ect constants:

" 2 EffectVar e�ect variables
� 2 EffectConst = f?�; read;writeg e�ect constants

The constant ?� denotes the absence of e�ects; that is, a purely-functional expression

has e�ect ?�. The e�ect constants read and write denote the e�ects produced upon

30

application of the get and set operators of �v-S, respectively.3

The e�ect terms (� 2 Effect) are:

� ::= " e�ect variable
j � e�ect constant
j � t � e�ect join

Since an e�ect � may include e�ect variables ("), e�ects are polymorphic. The least

upper-bound operator t combines e�ects. Equality among e�ect terms is modulo the

axioms of the t operator:

(� t �0) t �00 = � t (�0 t �00) associativity
� t �0 = �0 t � commutativity
� t � = � idempotency
� t ?� = � unity

The e�ect read t write is the maximum e�ect that a �v-S expression can exhibit and is

denoted >� � read t write.

The v relation introduces sube�ects. De�ne v as:

�0 v �() � = � t �0

For example, the read e�ect is a (proper) sube�ect of read t "0; that is, read v read t "0.

The e�ects � � read and �0 � write are incomparable (� 6v �0 ^ �0 6v �). The v relation

induces a partial order on the e�ect terms. Figure 3.4 depicts the lattice of constant

e�ects constructed from v, t, and the e�ect constants. As we shall see, the elements of

this lattice are the only e�ects carried dynamically in a function's �-tag.

By itself, the algebra Effect cannot completely describe the e�ect of �v-S expres-

sions. This is because �-abstractions (functions) harbor side e�ects. The direct e�ect

of an expression e is the e�ect of evaluating e to a value v. The latent e�ect of e is

the e�ect produced in subsequent application of e's value v to further arguments. For

3Augmenting the set of e�ect constants|to admit languages with IO or exceptions, for example|is
straightforward. I omit such extension here.

31

>� � read t write

writeread

?�

�
�
�

@
@
@

@
@

@

�
�

�

Figure 3.4: Constant-e�ect lattice built from v, t, and EffectConst.

example, evaluation of the following expression

einc � fn x => (set x (1 + (get x)))

exhibits no direct e�ect in producing the value vinc; that is, it has direct e�ect ?�.

This is because �-abstractions are values in �v-S and simply evaluate to themselves.

However, subsequent application of vinc invokes get and set (to increment an integer

reference value) and therefore produces einc's latent e�ect read t write.

A standard polymorphic type system (e.g., [26]) serves to characterize an expres-

sion's latent e�ect. The algebra Type accommodates the latent e�ects of higher-order

imperative functions. Ground types are type variables and type constants:

�; �;
 2 TypeVar type variables
� 2 TypeConst = funit; int; bool; : : :g type constants

A type (� 2 Type) is de�ned by:

� ::= � constant type
j � variable type
j � ref reference type

j �
�
! � function type

Note that the function type �
�
! � is labelled with its latent e�ect �.

Given the Effect and Type algebras, it is now possible to denote the complete

e�ect of a �v-S expression. An expression e's e�ect is a pair: h�; �i. This pair consists of

e's type � (which contains e's latent e�ect, if any) and e's direct e�ect �. The notation

32

ref ! h�
?�! � ref; ?�i

set ! h� ref
?�! �

write
�! unit; ?�i

get ! h� ref
read
�! �; ?�i

Figure 3.5: E�ect of the �v-S imperative operators.

e ! h�; �i

states that e has type � and direct e�ect �. When � = ?�, I often omit it and write e ! �

for e's e�ect.

Example Static E�ects

Figure 3.5 gives the static e�ects of the ref, get, and set operators. Foremost, note

that the direct e�ect of these operators is always the empty e�ect ?�. This is because

the trivial evaluation of (function) constants to themselves is without e�ect. However,

subsequent application of their values can incur side e�ects. Applying ref to an ar-

gument of type � simply creates a new reference value of type � ref and produces no

visible side e�ects (see x2.2.2). Update (set) of a reference value of type �ref returns

type unit; in doing so, it produces its latent write e�ect since it overwrites a mutable

value. Note that this write occurs only after application of set's second parameter (of

type �). A get operation on a value of type � ref exhibits a read e�ect since it retrieves

the contents (type �) of a mutable value.

As with its type, the e�ect of a function may also be polymorphic. For example, the

map function (Figure 3.1) has e�ect:

map ! (�
"
! �)

?�! � list
"
! � list

Here, the e�ect variable " represents the e�ect of map's higher-order parameter. This ef-

fect is produced after application provides two arguments to map. The compose function

of Figure 3.6 has e�ect:

33

val rec compose = (fn f => (fn g => (fn x => f (g x))))

Figure 3.6: The compose function.

(�
"0!
)

?�! (�
"1! �)

?�! (�
"0t"1!
)

The latent e�ect of compose's result function, (�
"0t"1!
), is the least upper bound of

the e�ects of its functional parameters f and g. These parameters, respectively, have

the variable types (�
"0!
) and (�

"1! �) with latent e�ects "0 and "1. Their combined

latent e�ect, "0 t "1, captures all potential side e�ects that can occur in computing the

composition f (g x). Note that compose's latent e�ect (in its type) contains all e�ects

that compose and its result values can ever exhibit.

E�ect Inference Rules

The inference rules of Figure 3.7 statically deduce a conservative approximation to the

e�ect of a �v-S expression. These rules associate an environment and an e�ect with an

expression.

An e�ect environment E 2 Env is a �nite map from �v-S identi�ers (Id = Var [

Const) to types:

E 2 Env = Id
fin
�! Type

A sequent of the form E ` e ! h�; �i holds if one can infer, with respect to environment

E , that e has type � and direct e�ect �.

The inference rule (var) deduces that identi�er x has type � and no direct e�ect if

x maps to � in the environment E . This re
ects an identi�er's status as a value term in

�v-S. The (abs) rule creates latent e�ects. The direct e�ect of a �-abstraction's body|

in an environment extended with formal parameter x mapped to type �|becomes a

latent e�ect in the �-abstraction's function type. The (app) rule is used to infer, for an

application (e e0), a direct e�ect composed from three e�ects: the direct e�ects � and

�0 of evaluating e and e0, respectively; and e's latent e�ect �00. The (sub) rule increases

34

x 7! � 2 E
E ` x ! h�; ?�i

(var)

E � fx 7! �g ` e ! h� 0; �i

E ` (�x:e) ! h�
�
! � 0; ?�i

(abs)

E ` e ! h�
�00

! � 0; �i E ` e0 ! h�; �0i

E ` (e e0) ! h� 0; � t �0 t �00i (app)

E ` e ! h�; �i � v �0

E ` e ! h�; �0i (sub)

E ` e ! h�; �i

E ` (ref e) ! h� ref; �i (ref)

E ` e ! h� ref; �i

E ` (get e) ! h�; � t readi (get)

E ` e ! h� ref; �i E ` e0 ! h�; �0i

E ` (set e e0) ! hunit; � t �0 t writei (set)

E ` e ! hbool; �i E ` e0 ! h�; �0i E ` e00 ! h�; �00i

E ` (if e then e0 else e00) ! h�; � t �0 t �00i (if)

:expansive (e) E ` e ! h�; ?�i E ` e0[e=x] ! h� 0; �0i

E ` (let x = e in e0) ! h� 0; �0i (let)

expansive (e) E ` e ! h�; �i E � fx 7! �g ` e0 ! h� 0; �0i

E ` (let x = e in e0) ! h� 0; � t �0i (e-let)

Figure 3.7: E�ect inference rules for �v-S.

35

(with respect to v) an expression's e�ect. This rule says that if e has direct e�ect � and

� v �0, one can then also infer the direct e�ect �0 for e's direct e�ect. The (ref) rule

states that the direct e�ect of creating a reference value is the e�ect of evaluating ref's

argument. The (get) and (set) rules, respectively, combine the read and write e�ect

constants with the e�ect of evaluating their argument(s).

The e�ect of the conditional is deduced via the (if) rule. Its e�ect consists of

the (direct) e�ect of its predicate and the e�ects of both conditional branches. This

potentially introduces imprecision into e�ects since a dynamic instance of a conditional

expression evaluates only a single branch. Hence, an expression may be assigned an e�ect

that it never produces. Dynamic parallelization with �-tagging, however, propagates

function e�ects at run time and thereby circumvents some of this imprecision. For

example, in the expression

e � map (if p then f else g) l

let f be e�ect-free and let g be imperative: f ! �
?�! � 0 and g ! �

>�! � 0. Assuming that

the predicate p has no e�ect, the static rules deduce the conditional's latent e�ect as

the least upper bound of f and g's latent e�ects:

(if p then f else g) ! h�
>�! � 0; ?�i

In e, this conservative maximum e�ect prohibits static compiler transformation of map

to mapParallel (Figure 3.2). With dynamic �-tagging, however, a dynamic instance of

e propagates the �-tag from either f or g into the dynamically-parallel version of map

(mapDynamic of Figure 3.3).

Two inference rules are required for let expressions: let and e-let. This requirement

permits de�nition of functions with polymorphic types and e�ects; a polymorphic type

and e�ect arises for a function only in a let binding [26]. The let rule assigns a

polymorphic type and e�ect to the expression being bound (e.g., a function). The e-

let rule, on the other hand, is used to infer the type of the expression once (at the

binding); therefore, the binding variable is not polymorphic in the body of the let.

To decide which rule to use, it is necessary to syntactically di�erentiate expressions as

36

expansive or non-expansive [112]. An expression is non-expansive if it is a variable or

a �-abstraction; all other expressions are expansive. Non-expansive expressions in let

bindings have polymorphic e�ect (and type) and can, therefore, be multiply instantiated

in the let body. Polymorphism is achieved by syntactically copying the expression into

the let body; the non-expansive (let) rule replaces occurrences of the bound identi�er x

in the let body, e0, with the text of the binding expression, e. The expansive (e-let) rule

simply infers the e�ect of the binding expression and assigns it to the binding identi�er.

The following expression illustrates how the let rule introduces polymorphism:

let fun id x = x

in

� � � (id 5) � � � (id true) � � �
end

Since the identity function id is non-expansive, it can have the polymorphic type �
?�! �.

This allows id's type to be multiply instantiated (to the di�erent types int
?�! int and

bool
?�! bool) in the let body.

E�ect Algorithm

This e�ect inference system is decidable; a procedure exists|algorithm I [108, 109]|

that infers the minimal observable e�ects of expressions. An expression e's minimal

observable e�ect is the least e�ect with respect to the v relation that includes all e�ects

that e can produce. Algorithm I is consistent [108, 109] with respect to the e�ect

inference system.

3.1.2 Using Static E�ect Information

Given the static e�ect information for a �v-S program, it is now possible to assign a

�-tag for every function in the program. These �-tags will propagate with the functions

at run time and will be examined to make safe parallelization decisions.

I �rst describe (static) �-tag assignment. Then, I give an algorithm for generating

dynamically-parallel functions given that higher-order functions carry dynamic �-tags.

37

Finally, I describe an optimization that can reduce the number of times a program

checks �-tags.

�-Tag Assignment

Static e�ect information reveals whether a function is purely functional (has no e�ect),

potentially functional (applies functions with unknown e�ects, i.e., variable e�ects)

or imperative (sets or gets mutable values). This e�ect information is used to give

every function f in the program a �-tag 2 Effect that safely approximates the e�ects

that f can produce. A function f 's �-tag is permanently assigned at compile time when

possible. Otherwise, every dynamic evaluation instance of f forms a consistent �-tag for

f . The following description of �-tag assignment assumes that static e�ect information

has been computed for all expressions in the program. Following this description, I give

some sample �-tag assignments.

�-tag assignment proceeds in two phases: �-tag assignment �rst computes the e�ect

for a function's �-tag (computation phase); then, �-tag assignment determines when

(compile or run time) to assign the e�ect to the function's �-tag (determination phase).

The �-tag propagated at run time is always a constant e�ect. A constant e�ect is an

e�ect built entirely from the e�ect constants (� 2 EffectConst); i.e., it is an element

in the e�ect lattice of Figure 3.4. Furthermore, the �-tag e�ect is the least constant

e�ect that describes all the e�ects in its function's type.

To explain the computation of a function's �-tag, I introduce further notation. A

tagged function f is noted

f � (� x:e) ! �
�
! � 0

where 2 Effect is f 's �-tag. Since application of f can return functions (e.g., when

f is curried), f 's result type � 0 may contain further latent e�ects. These latent e�ects

appear only when the result of applying f is then applied to arguments. The �-tag for

f incorporates these additional e�ects as well. This allows for e�cient implementation

of the run-time checks to �-tags (x3.1.3 below) that need to determine whether f 's

38

application and result value are e�ect free.

The e�ect to be carried by a function's �-tag is computed as follows. The general

function f � (� x:e) ! �
�
! � 0 has the �-tag e�ect

 = Latent �(�
�
! � 0)

where a type's recursive latent e�ect, Latent �, is computed thus:

Latent �(�) =

8>>>>><
>>>>>:

� t Latent �(� 00) if � = � 0
�
! � 00

Latent �(� 0) if � = � 0 ref

?� otherwise

If type � contains a function type, Latent �(�), gathers the latent e�ect of this function

type and, recursively, the latent e�ects in the function's return type. Note that if the

e�ect system deduces that the f 's parameter x contains latent e�ects (i.e., that x itself

is a function or contains functions), these e�ects always appear in f 's latent e�ect or as

latent e�ects in f 's return type.

Upon static computation of function f 's �-tag e�ect , it remains to determine

whether to assign to f 's �-tag at compile or run time. Although conservative �-tags

can always be assigned statically, assignment at run time can potentially produce better

(i.e., more precise) �-tags. This, in turn, can result in the detection of more parallelism.

Static �-tag assignment is precise|and consequently occurs|when for function

f � (� x:e) does not contain e�ect variables; that is, when 6 9" 2 EffectVar such that

" v . In this case must be a constant e�ect and can be assigned statically. Otherwise,

when 9" 2 EffectVar such that " v , the e�ect contains e�ect variables; is then

a variable e�ect. When is a variable e�ect, a precise static �-tag assignment is not

possible because the presence of variable e�ects in indicate the application, within f ,

of functions with unknown e�ect. In this case the static assignment of the maximum

e�ect >� as the �-tag is valid, albeit conservative. This conservative approximation,

however, can often be avoided by instead assigning the �-tag dynamically.

39

id�
�
�?� x.x

�
! �

?��! �

zero�
�
�write x.set x 0

�
! int ref

write
�! unit

compose�
�
�"t"

0

f.�"t"
0

g.�"t"
0

x.f (g x)
�
! (�

"
!
)

?�! (�
"0

! �)
?�! (�

"t"0
!
)

map�

�
�" f.�" l.if l = [] then []

else f (hd l)::(map f (tl l))

�
! (�

"
! �)

?�! � list
"
! � list

Figure 3.8: Examples of �-tag e�ects immediately after their static computation.

When the �-tag e�ect for function f contains e�ect variables, assignment of f 's

�-tag at run time may yield a precise �-tag. This is because the e�ects of the functions

responsible for 's variable e�ects are present (on their �-tags) at run time. If every

e�ect variable "i in represents the e�ect of some function gi and every gi's �-tag is

available when f evaluates, the combined e�ect of the gi's �-tags can be dynamically

incorporated into the �-tag for f . In other words, if f 's e�ect is variable due to

the application of function variables free in f , then dynamic assignment of f 's �-tag is

possible. Dynamic assignment combines the �-tags from the functions that are free in

f (and hence bound with an assigned �-tag when f evaluates) into f 's �-tag.

For example, the function

f � (� x: get (g x)) ! �
"tread
�! �

has the �-tag e�ect = " t read, where the variable e�ect " stems from g's (unknown)

e�ect. The function f is therefore a candidate for dynamic �-tag assignment because

contains the e�ect variable ". Since g carries a �-tag at run-time that is available for

inspection when f evaluates, a consistent �-tag for f can be assigned dynamically. This

�-tag for f is written = g t read to re
ect the run-time inclusion of g's e�ect. For the

dynamic instances of f where g is functional, f carries the precise �-tag read.

Example �-tags after their static computation are given in Figure 3.8. The same

40

id�
�
�?� x.x

�
! �

?��! �

zero�
�
�write x.set x 0

�
! int ref

write
�! unit

compose�
�
�>�f.�>�g.�ftg x.f (g x)

�
! (�

"
!
)

?�! (�
"0

! �)
?�! (�

"t"0
!
)

map�

�
�>� f.�f l.if l = [] then []

else f (hd l)::(map f (tl l))

�
! (�

"
! �)

?�! � list
"
! � list

Figure 3.9: Examples of �-tag e�ects after determining when to assign the e�ects.

�-tags after determination of when (run or compile time) to assign the e�ect are in

Figure 3.9. An e�ect that will be dynamically assigned contains the function identi�ers

of the functions whose e�ects are to be included at run time. The �-tags for id and zero

are static (since they do not contain e�ect variables) and are therefore identical in both

�gures. The compose and map functions, however, assign (some) �-tags dynamically.

After application of its functional parameters, compose constructs a �-tag for its return

value from the �-tags of its parameters. Note that the function returned after supplying

a single argument to compose has e�ect >� (assigned statically) because the e�ect

of compose's second argument (formal g) is yet unknown. Upon receiving its �rst

parameter f, the map function constructs the �-tag for its inner function from the �-tag

bound to f. Functions created by the applications (map id) and (map zero), for

example, carry the �-tags ?� and write, respectively.

3.1.3 Parallelization with �-Tags

In addition to the static e�ect information, �-tags supply dynamic e�ect information

about functions. A program can now be restructured. Restructuring inserts parallelism

annotations|and the necessary �-tag checks to dynamically ensure their correctness|

into the program.

41

R� : Exp� Fin(Var)! Expjj � (Var
fin
! Effect)

R�(e; F) = case e of

b; x) (e; ff 7! ?� j f 2 F g)

(e1 e2)) let (e0i; S
0
i) = R�(ei; F); 1 � i � 2

T =
n
S 2 F

fin
! C j (e01 jj e02) is safe with respect to S

o

in if T = ; then ((e01 e02); S
0
1 t S

0
2)

else ((e01 jj e02); (
F
T) t S01 t S

0
2)

� x:e) let (e0; S0) = R�(e; Fn fxg)

in (� x:e0; S0 � fx 7! ?�g)

Figure 3.10: �-tag restructuring algorithm R�.

Restructuring occurs at the function level. Let f � (�x1:�x2: : : :�xn:e) be the func-

tion of interest. X = fx1; : : : ; xng is the set of f 's formal parameters and H � X is the

set of f 's higher-order parameters that are �rst order.4 Higher-order parameters to f

that are not �rst order are not included in H and are assumed to have maximum e�ect

>�.
5 Let C = f?�; read;write; read t writeg be the set of constant e�ects.

Figure 3.10 contains the �-tag restructuring algorithmR�. To restructure a function,

apply algorithm R� to function f 's body e and its set H of higher-order parameters.

4De�ne a function g to be �rst order if it has type � ! � 0 and � and � 0 do not contain function types.
That is, g is �rst order when it does not use its parameter in a function context (e.g., application) and
g does not create and return a function.

5The restriction that the set H only contain �rst-order functions is necessary for the following
reason. A parameter that is higher-order (and without e�ect) can be applied to a function h and
thereby produce h's e�ect. However, the origin of h depends on the higher-order parameter, and it
is not possible to statically identify|and hence to statically insert a check to|this function h. For
example, the parameter y of the function

(�x:�y:�z:x y z) : (�! (� !
))! �! �)
can be a function (when � is instantiated to a function type), but the type of parameter x obscures this
fact. By only considering �rst-order parameters to a function, all of the function's parameters that can
be applied in the function are statically identi�ed as such by their type.

42

R�(e; H) returns an annotated expression ejj and a safety map S where

S 2 Var
fin
! Effect

is a map fromH to the constant e�ects C. This map indicates the conditions that must

exist on entry to f for the parallel body ejj to be safely used in lieu of e; that is, an

element h 7! � 2 S indicates that the higher-order parameter h to function f must have

an e�ect (on its �-tag) that is v � for safe evaluation of ejj.

Restructuring function f proceeds in a bottom-up fashion. Algorithm R� descends

into an expression e with the set F of variables, visible in e, that represent the parameters

to f that are �rst-order functions. If e is a constant or variable, no parallelization is

possible and R� simply returns e along with the constant map from F to the e�ect ?�.

Parallelism annotations arise only in application expressions (x2.3). For an applica-

tion (e1 e2), its subexpressions ei are �rst recursively restructured. This returns new,

potentially annotated, expressions e0i (1 � i � 2) and the corresponding safety maps

S0i. For an h 2 F , such a map S0i contains the greatest e�ect that h may have for the

parallelism in ei to be safe. After restructuring the application's subexpressions, R�

restructures the application proper. For all maps S 2 F
fin
! C from the higher-order pa-

rameters F reaching the application to the e�ect constants C, algorithm R� examines

(e01 e02) in conjunction with the static e�ect information for (e01 e02). If the e�ect infor-

mation for (e01 e02), augmented with e�ect bindings in S, reveals that e1 cannot con
ict

with e2 under parallel evaluation, then R� retains S in the set T of such maps. After

examining all such maps S, the annotated application (e01 jj e
0
2) is returned if T con-

tains a map; that is, if conditions exist under which (e01 jj e02) is safe. The safety map

returned in this case is the least upper bound6 of the maps in T and the maps S0i. Oth-

erwise, when no safety map S 2 F
fin
! C exists such that e1 and e2 can safely evaluate

in parallel, R� returns an (unannotated) application of the restructured subexpressions

e01 and e
0
2. Finally, a �-abstraction is restructured by restructuring the �-abstraction's

6The least upper bound of two maps is formed by applying t pointwise.

43

body. Before doing so, R� removes identi�ers identical to the �-abstraction's variable

from the set of higher-order parameters reaching the �-abstraction.

As an example of restructuring with �-tag information, consider the concrete func-

tion:

f � (fn g => fn h => fn x => (g x) (h x))

R� applied to f 's body and higher-order parameters, R�((g x) (h x); fg; hg), yields

the annotated body (g jj x) jj (h jj x) and the safety map fg 7! read; h 7! readg.

Evaluation of this parallel body is therefore valid when both g's �-tag v read and

h's �-tag v read. That is, when g and h do not set reference values. This leads di-

rectly to a dynamically-parallel version of f :

(fn g => fn h => fn x => if (reads g) andalso (reads h) then

(g jj x) jj (h jj x)
else

(g x) (h x))

The predicate reads examines the �-tag on its argument (a function) and returns true

if the e�ect on this �-tag is v read.

Parallelism that R� demarcates should not (and need not) always be used. In the

above example, evaluating the variables g and x (and similarly, h and x) in parallel is

likely to slow, rather than speed, evaluation because the cost of evaluating a variable

(or constant) is negligible whereas parallel-thread creation incurs overhead. Therefore,

it is necessary to apply heuristics (e.g., Gray's quickness [40]) to select an expression's

useful parallelism.7 Useful parallelism in the above example is (g x) jj (h x).

3.1.4 Invariant-E�ect Optimization

�-tag examination at run time incurs costs. Removal of redundant checks to �-tags can

improve �-tagging's performance. A check c to function f 's �-tag may be safely removed

if the compiler can prove that a prior check c0 to f 's �-tag always asserts c's condition

7Chapter 5 develops a technique that, for some expressions, dynamically determines whether their
parallel evaluation is worthwhile.

44

fun mapDynamic f [] = []

| mapDynamic f (x::xs) = if (safe f) then

(f x) ::jj (mapParallel f xs)

else

(f x) :: (map f xs)

Figure 3.11: Dynamically-parallel map with invariant-e�ect optimization.

before evaluation reaches c (note that once assigned, a �-tag's e�ect does not change).

Loop-invariant e�ects, in particular, provide signi�cant optimization opportunity. Static

compiler invariance analyses su�ce to implement this optimization [9, 2, 35].

Figure 3.11 illustrates invariant-e�ect optimization of the dynamically-parallel ver-

sion of map. A compiler can discover that the e�ect of map's higher-order parameter f

is invariant within map. The recursive applications of mapDynamic can therefore be re-

placed by the applications of sequential map (Figure 3.1) and mapParallel (Figure 3.2).

Contrast this optimized version of mapDynamic with the unoptimized version in Fig-

ure 3.3. The number of dynamic �-tag checks performed when mapDynamic is applied

to a list l drops from jlj to one with this optimization.

3.2 Dynamic Component

Construction of �-tagging's dynamic component is straightforward. Mechanisms to

propagate, manipulate, and to examine �-tags are needed.

3.2.1 �-Tag Propagation

�-tags propagate with a function's run-time representation; i.e., with its closure. A

function's �-tag can be either stored in its closure or merged with its closure's address.

The former is simple to implement because it only requires an additional �eld in a

closure to hold a �-tag. The latter is more e�cient because retrieval of a function's

closure is not necessary to obtain the function's e�ect; examination of the closure's

45

fun split l pivot p =

let fun split' [] less greater = (less,greater)

| split' (x::xs) less greater =

if (p x pivot) then

split' xs (x::less) greater

else

split' xs less (x::greater)

in

split' l [] []

end

fun qs p [] = []

| qs p (x::xs) =

let val (l,g) = split xs x p

in

(qs p l) @ (x::(qs p g))

end

Figure 3.12: Sequential higher-order quicksort.

address su�ces. In a parallel system, this can potentially reduce contention for the

contents of shared closures. However, this latter approach requires that there be space

in the closure's address for the �-tag e�ect encoding.

3.2.2 �-Tag Manipulation

The compiler and run-time system provide primitives to place, retrieve, and combine

�-tags:

(setTag f �) places the e�ect � in function f 's �-tag.

(getTag f) retrieves and returns the e�ect from function f 's �-tag.

(combineEffects � �0) returns the constant e�ect � t �0.

46

val rec compose =

(setTag (fn f =>

(setTag (fn g =>

(setTag (fn x => f (g x))

(combineEffects (getTag f) (getTag g))))

ReadWrite))

ReadWrite)

Figure 3.13: �-tag assignment for compose.

3.2.3 �-Tag Examination

For every e�ect � 2 EffectConst the compiler and run-time system provide a predi-

cate (e.g., safe, reads, and writes) that accepts a single function argument and returns

true only if the function's �-tag e�ect is v �.

3.3 Examples

Automatically�-tagged and restructured versions of compose (Figure 3.6) and quicksort

(qs, Figure 3.12) are in Figures 3.13 and 3.14, respectively. The static �-tag-assignment

phase inserts the setTag, getTag, and combineEffects primitives.8

The compose function contains no useful parallelism because application of f must

follow that of g (control dependence). Dynamically-parallel qsDynamic sorts sublists in

parallel when the comparison predicate p cannot perform set operations. Restructuring

�nds no useful parallelism in the quicksort's auxiliary function split. Invariant-e�ect

optimization (x3.1.4) can produce a version of qsDynamic that performs the (reads p)

check only once since p, and hence its e�ect, does not change during the sort. With this

optimization, the recursive calls are then to the sequential qs or to an automatically-

generated, but not dynamic, parallel version of qs.

8Static function escape analysis (e.g., [9]) can sometimes statically determine that a function f cannot
be used in any higher-order application expression. When this is the case, f need not be assigned a
�-tag.

47

val rec qsDynamic =

(setTag (fn p =>

(setTag (fn [] => [] |

(x::xs) =>

if (reads p) then

let val (l,g) = split xs x p

in

(qsDynamic p l) @jj (x::(qsDynamic p g))

end

else

let val (l,g) = split xs x p

in

(qsDynamic p l) @ (x::(qsDynamic p g))

end

(getTag p)))

ReadWrite)

Figure 3.14: Dynamically-parallel quicksort with �-tag assignment.

3.4 Implementation

Static e�ect inferencing (x3.1.1), �-tag assignment (x3.1.1), and restructuring (x3.1.3)

were implemented in ML for ML's �v-S subset (x2.2). A heuristic, similar to Gray's

quickness9 [40], statically selects viable parallelism. Automatic invariant-e�ect optimiza-

tion (x3.1.4) was not implemented. A restructured parallel �v-S program is manually

converted to its ML equivalent for execution with a �-tagging run-time system.

�-tagging's dynamic component was implemented in the SML/NJ system. A small

integer encodes the constant e�ects that a �-tag carries. The SML/NJ compiler was

modi�ed to allocate an additional word in every function closure to hold its �-tag. Rou-

tines to access �-tags (getTag and setTag) and to combine the e�ects encoded therein

(combineEffects) were also added to the compiler. These routines were directly imple-

mented using existing (non-standard ML) primitives present in SML/NJ that provide

unrestricted access to ML data structures. Since the implementation of these routines is

9The quickness heuristic statically computes a lower bound on the number of applications an expres-
sion always performs. As such, it is extremely conservative.

48

at a high level in the compiler, they require tens of machine instructions to execute. By

building low-level primitives for these routines into the compiler's back end, �-tagging

performance could be further improved. However, the current implementation of these

routines is simple and su�ciently e�cient to demonstrate that �-tagging is viable.

3.5 Results

Programsmeasured were quicksort (qs, Figure 3.12) and a symbolicmatrix-multiplication

routine (mm). The qs function sorted a list of 10000 integers using the e�ect-free integer

< relation as its comparison predicate. This predicate is a higher-order parameter to

qs. The mm routine is parameterized by two matrices and by two higher-order func-

tions: addition and multiplication functions for individual matrix elements. Parallelism

in mm stems entirely from parallelism in the map function|mm uses map to transpose

matrices and to perform the matrix multiplication proper. The mm routine was applied

to 100� 100 integer matrices|e�ect-free integer addition and multiplication functions

were supplied as the higher-order parameters to mm.

Timings for qs and mm are in Figures 3.15 and 3.16. Up to four versions of each pro-

gram were measured: sequential, explicitly parallel, �-tagging, and optimized �-tagging.

Absolute speedup is not the point of these execution times; rather, the point is the dif-

ferences in execution time between the �-tag versions and the sequential and explicitly

parallel versions of a program that demonstrate �-tagging's e�ciency. The optimized

�-tag version was built by manually performing e�ect-invariance analysis (x3.1.4) to

remove redundant �-tag checks. The explicitly parallel version of a program was built

from the unoptimized �-tagging version by removing all �-tag checks and enabling all

�-tag parallelism. Since the resulting explicitly parallel program is potentially unsafe, it

was always supplied higher-order parameters that were e�ect free. The sequential and

explicitly parallel versions used the unmodi�ed run-time system; i.e., closures did not

contain the extra word for the �-tag.

49

Processors

1 2 3 4 5 6 7 8

Sequential 31.3 { { { { { { {

Explicit Parallel 49.1 20.8 17.7 15.0 12.8 12.2 13.1 15.0

�-tags 50.5 21.9 17.7 15.5 13.1 13.5 14.4 15.5

0

10

20

30

40

50

1 2 3 4 5 6 7 8

S
e
c
o
n
d
s

Processors

Lambda-Tags
Explicit Parallel

Sequential

Figure 3.15: �-tag times for quicksort (qs).

50

Processors

1 2 3 4 5 6 7 8

Sequential 142.5 { { { { { { {

Explicit Parallel 168.8 91.0 61.2 44.7 36.0 28.9 24.0 23.8

�-tags 216.9 118.7 82.8 64.8 52.0 47.1 43.0 38.5

Optimized �-tags 172.2 94.7 66.5 48.1 39.0 31.4 28.0 25.1

0

50

100

150

200

1 2 3 4 5 6 7 8

S
e
c
o
n
d
s

Processors

Lambda-Tags
Optimized Lambda-Tags

Explicit Parallel
Sequential

Figure 3.16: �-tag times for symbolic matrix multiply (mm).

51

As is evident from Figure 3.15, automatic parallelization of qs with unoptimized

�-tags introduces negligible overhead into the program's execution. Hence, e�ect-

invariance optimization is not necessary for qs and is not shown. Automatic paralleliza-

tion of mm with unoptimized �-tags, however, incurs overhead|on a single processor as

much as 29% of the explicitly parallel time. This is because all parallelism in mm arises

in applications of map. Without �-tags, the compiler produces an e�cient loop for map.

With �-tag checks, however, the compiler is unable to compile map (now mapDynamic

of Figure 3.3) into an equally e�cient loop. Even with this ine�ciency, unoptimized

�-tagging improves on the program's sequential execution time with just two proces-

sors. Further improvements occur with additional processors. For mm with redundant

�-tag-check elimination (Figure 3.11), the cost of optimized �-tag parallelization is less

than 10% of the explicitly parallel execution time (for all tested processor counts).

Beyond eight processors, times for parallel versions of both programs level and then

rise. I surmise that this is not due to a lack of parallelism in the programs, but rather

to insu�cient memory bandwidth.10 That is, the Sequent's bus is able to sustain mem-

ory requests for ML programs only for a small number of processors. However, this

e�ect is not related to �-tagging, but rather to the hardware implementation of the

computer's shared-memory system. Additionally, both programs generate many small

threads whose scheduling costs outweigh their computation.11 This, too, can restrict

continued speedup with additional processors.

3.6 Other �-Tag Uses

The �-tagging idea|propagating information with functions at run time|is general.

In addition to side-e�ect information, a function's �-tag can carry other information

10Morrisett and Tolmach [82] also observed this e�ect for explicitly parallel ML programs using the
same run-time system and computer.

11Chapter 5 describes a technique that can dynamically estimate the bene�t of evaluating an expres-
sion in parallel.

52

about the function's properties.

For example, in a lazy (call-by-name) language (see [60, 34]), �-tags can dynamically

carry strictness information12 with functions. Precise strictness information permits

(parallel and sequential) optimization: the strict arguments in a function application

may evaluate in parallel; in a sequential implementation, strict arguments may be fully

evaluated immediately, instead of being evaluated only when they are actually used.

Another use for �-tags is in load-balancing a parallel language system. A function f

can carry a �-tag that describes the (approximate) cost of applying f ; applications of

functions containing little computation relative to their parallel-scheduling cost should

evaluate sequentially. Resource requirements (e.g., memory demands) can also be en-

coded in a function's �-tag.

3.7 Notes

�-tagging was previously published in [53].

All previous work concerning imperative function analysis in higher-order languages

is solely static. These analyses fall into two categories: inference of a program's ef-

fect from the language's static semantics and a static approximation of the program's

dynamic semantics.

Lucassen and Gi�ord's FX language [75, 74, 38] introduced e�ects and e�ect infer-

ence in the framework of polymorphic e�ect systems. Formalization of FX's e�ect sys-

tem [61] lead to Talpin and Jouvelot's algorithm I [108, 109] that infers an expression's

e�ect. These systems di�er from the e�ect inference system used for �-tag assignment

(x3.1.1) in two respects: they have an allocation e�ect and they infer the region in which

an e�ect occurs. Reference value creation with ref produces an allocation e�ect. In

implementations where allocations do not con
ict|as in the �-tag implementation|an

allocation e�ect is unnecessary. It can, however, be added to the inference system for

12A function f � (�x:e) is strict in parameter x if application of f always uses the value bound to x.

53

�-tags if necessary. In addition to an expression's type and e�ect, FX (and algorithm

I) also consider and infer the expression's region. A region speci�es where reference

values are located in the store. Reference value creation associates a reference value

with a region. Base e�ects (e.g., read and write) are no longer constants, but are unary

functions parameterized by the region in which they occur (e.g., write(�) indicates a

write e�ect to region �). Region inference can detect that accesses to di�erent reference

values in disjoint regions do not con
ict. This, in turn, permits parallelization of these

accesses. Furthermore, region inference reveals e�ect masking (e.g., [108]). An expres-

sion masks its e�ect if the reference values it modi�es are internal to the expression.

That is, if the expression creates a reference value, modi�es it (perhaps repeatedly),

but does not relinquish this value to the enclosing context, then the expression is ref-

erentially transparent and its evaluation cannot con
ict with that of other expressions.

Region information could improve �-tag assignment since a function that completely

masks its e�ect can be assigned the pure e�ect ?�.

The second class of static analyses for higher-order imperative languages approxi-

mates the program's dynamic behavior at compile time. These methods statically re-

quire access to the entire program text to perform an interprocedural analysis since they

approximate the program's entire behavior at compile time. This limits their practical

use for large programs. �-tagging's static component, on the other hand, performs its

analysis at the function level and only requires an environment containing the types and

e�ects of prior function de�nitions. �-tagging, therefore, admits separate and interactive

compilation of large programs. Neirnyck [85] describes a static side-e�ect analysis for an

imperative call-by-value language similar to �v-S. She uses abstract interpretation [25, 1]

to determine alias information. Her analysis can be used to (conservatively) decide if

two expressions can interfere. Shivers [104, 105] attributes the di�culty of higher-order

language analysis to the lack of an explicit static control-
ow graph at compile time. He

presents a technique that statically (conservatively) recovers the control-
ow graph of a

higher-order Scheme program. Shivers develops several sequential optimizations based

54

on this control-
ow information. Two parallel systems|Harrison's PARCEL [45, 44]

and Larus's Curare [68, 67]|extract static parallelism from Scheme programs. Both

systems primarily target �rst-order programs; they do not e�ectively track higher-order

functions embedded in dynamic data.

Though diverse in their methodology, all static approaches to higher-order side-e�ect

analysis introduce imprecision into their result for identical reasons: multiple higher-

order functions may reach function applications via many control-
ow paths. Static

techniques and systems must|and do|approximate a function reaching an application

as the least upper bound of the functions that can actually reach the application. The

dynamic �-tagging technique described in this chapter avoids this imprecision since

it examines the e�ect of the exact function reaching an application expression at run

time. Consequently, �-tagging can �nd parallelism that eludes static parallelization

techniques.

Chapter 4

Dynamic Resolution

The functional subcomputations in an imperative program are a fruitful source of paral-

lelism. However, the program's imperative subcomputations may contain plentiful par-

allelism as well. One source of such parallelism is imperative expressions that traverse

and modify dynamically-allocated data structures. When an expression's imperative

subexpressions access and modify disjoint portions of a data structure, safe parallel

evaluation of the subexpressions is often possible. This chapter develops a technique,

called dynamic resolution (dr), which automatically parallelizes some functions that

manipulate a single dynamic data structure. The dr technique dynamically detects and

dynamically schedules con
icting expressions; it resolves con
icts at run time.

Parallel evaluation of expressions that modify (get and set) shared data|data that

multiple expressions may concurrently access|must prevent read/write and write/write

con
icts from violating the sequential semantics of the program. Detecting and syn-

chronizing accesses to dynamic shared data is di�cult for compilers (e.g., [44, 68]) and

programmers alike since sharing appears (and disappears) dynamically. Furthermore, a

program's data-sharing characteristics depend on the program's data structures, which

are often dependent on the program's input. At run time, however, shared data can be

detected and access to it correctly coordinated.

55

56

datatype � tree = Leaf of � | Node of (� tree � � tree)

fun incnode (Leaf x) = (set x (1 + (get x)))

| incnode (Node(left,right)) = (incnode left ; incnode right)

Figure 4.1: The incnode function. Dynamic resolution can safely evaluate expressions

(incnode left) and (incnode right) in parallel since it detects con
icts, due to sharing in incnode's

argument, dynamically.

For example, a compiler may statically deduce that a list l of mutable reference

values could contain the same element a more than once (thereby sharing a with itself).

This forces the compiler to perform operations on individual elements of l sequentially

because, at compile time, it is not known when (at run time) or where (in l) such a shared

element exists. For a given dynamic instance of l, however, l's elements may be disjoint

so concurrent access and modi�cation is safe. Furthermore, even if some elements of

l are identical (shared), others can be modi�ed concurrently if sharing detection and

expression scheduling are dynamic.

The incnode function of Figure 4.1 illustrates the problem and serves as an example

of automatic parallelization using dynamic resolution. The incnode function operates

on dynamic data of the tree datatype. In particular, its single parameter is of type

int ref tree; that is, leaf nodes contain integer reference values. When supplied a

leaf node, the incnode function increments the integer reference value in that leaf.

Otherwise, when supplied an internal node, incnode recursively descends into the left

and right portions of the node's structure to increment their respective leaves.

The sequential semantics of the language requires that all modi�cation (with set) of

a reference value r by the expression (incnode left) occur before (incnode right)

accesses r. Similarly (incnode right) may not set r until (incnode left) completes

its last access of r. Parallel evaluation of (incnode left) and (incnode right) is,

however, safe when (incnode left) and (incnode right) access disjoint sets of ref-

erence values; i.e., when the dynamic data bound to left and right do not share

57

Tree DAG

Figure 4.2: Possible tree and DAG arguments to incnode.

structure. Static detection of this parallelism requires the compiler to ascertain whether

(and where) sharing exists in incnode's argument. This, however, is di�cult because

the tree datatype can be used to construct directed cyclic and acyclic graphs (DAGs)

as well as trees;1 e.g.,

let val n = Node(n1,n2)

in

Node(n,n)

end

creates a DAGwith sharing using the tree datatype. Figure 4.2 depicts valid arguments2

to incnode with and without sharing: a tree and a DAG (the one constructed in the

above let expression). A naive parallel version of incnode that simply evaluates the

expressions (incnode left) and (incnode right) concurrently without coordinating

leaf-node accesses cannot ensure correct result values for leaf nodes. This is because

concurrent get and set operations to shared structure may produce indeterminate val-

ues in leaves. With naive parallel evaluation, for example, incnode applied to the �

node in the DAG of Figure 4.2 may produce indeterminate results since expressions

1Although it may be the programmer's intention to only construct trees with the tree datatype,
a compiler must consider all structures that a datatype can produce. Hendren [47] and Hummel et
al. [55] describe programmer annotations for dynamic datatype de�nitions that express such intent to
the compiler.

2Cyclic structures cannot be arguments to incnode since it is impossible to introduce a cycle into a
structure of type int ref tree.

58

can concurrently modify the same reference values|the reference values in the leaves

accessible from the � node.

Even when a data structure contains sharing, it is still possible to (dynamically)

discover and utilize parallelism in expressions that access portions of the structure that

are not shared; e.g., incnode can safely modify the leaves of disjoint trees that are

subgraphs within a DAG (such as the structure below the � node in Figure 4.2). Since

static methods that approximate the structure of a program's dynamic data can, in

general, only do so imprecisely, it is possible to design a program using incnode that

a given static technique cannot parallelize: incnode applied to a DAG whose size and

shape (i.e., connectivity) exceeds the static technique's limit of precise approximation

(see x4.9). As another example of such a program, consider the tree and DAG of

Figure 4.2 both reaching an application of incnode via a conditional whose predicate

is statically unknown|in this case, static techniques forego parallelism in incnode

since they must conservatively approximate incnode's argument as always containing

sharing. By the de�nition of necessity (x1.1.2), therefore, dynamic methods such as

dynamic resolution are necessary for the parallelization of imperative expressions that

modify shared dynamic data.

This chapter develops dynamic resolution for the extended �v-S language. After

preliminary de�nitions and notation (x4.1), I describe the underlying idea (x4.2.2). I

then describe dr's static (x4.3) and dynamic (x4.4) components, present extensions

(x4.5) and an example of dr operation (x4.6), and discuss the implementation (x4.7)

and empirical results (x4.8).

4.1 Preliminaries

Datatype constructors build dynamic values; that is, the reference values, tuples, and

recursive data structures created with (non-nullary) data constructors are values that

reside in dynamically-allocated storage in the program's heap. Denote the heap as H.

59

Implementations represent a program's dynamic values as nodes in H. A node h 2 H,

representing a dynamically-allocated value, contains basic values directly (e.g., integers)

and links to other nodes in H. For example, the expression Node(Leaf 1,Leaf 2) of

the tree datatype (Figure 4.1) creates the structure

Leaf 1 Leaf 2

Node(,)

in H that consists of three nodes and two links. The heap H is a directed graph with

nodes as its vertices and links as its edges. A node h's in-degree, in-degree(h), is the

number of links incident on h.

De�nition 1 (Simple Node) A node h 2 H is a simple node if in-degree(h) � 1.

De�nition 2 (Join Node) A node h 2 H is a join node if in-degree(h) > 1.

Join nodes, as we shall see, serve as indicators of potentially-shared dynamic data.

De�nition 3 (Path) A path of length n in H is a sequence of nodes, hh1; : : : ; hni 2 H
where n � 1, such that 8i, 1 � i < n, there exists a link from hi to hi+1.

Denote the existence of a path from h 2 H to h0 2 H as h =) h0. The nonexistence of

a path from h to h0 is noted h 6=) h0. If h =) h0, then node h is said to reach node h0.

De�nition 4 (Simple Path) A simple path of length n in H is a sequence of nodes,
hh1; : : : ; hni 2 H where n � 1, such that 8i, 1 � i < n, there exists a link from hi to
hi+1, and 8i, 1 � i � n, node hi is simple.

Denote the existence of an simple path from h 2 H to h0 2 H as h �! h0. The notation

h 6�! h0 denotes that no such path exists. If h �! h0, then node h is said to simply

reach node h0.

The relations =), 6=), �!, and 6�! collectively comprise the reaching relations for

nodes.

60

De�nition 5 (Acyclic Node) An acyclic node is a node h 2 H such that all paths
from h to h are of length 1.

That is, h is acyclic when it does not lie on a cycle in H. Dynamic resolution's static

component determines when a dynamic value is always represented by an acyclic node.

Identi�cation of the free variables (x2.2.1) of an expression that can bind dynamic

values or functions will also be necessary. The free dynamic variables of an expression

e are:

FDV(e) = f x 2 FV(e) j x can bind a dynamic value g

An identi�er's type indicates whether it can bind dynamic values. The free function

variables of an expression e are:

FFV(e) = f f 2 FV(e) j f can have type � ! � 0g

That is, a free variable f in e is a free function variable if it can be used as a function

(i.e., can be applied). Finally, characterize a function f as true if the dynamic values

accessible in f are either created in f or are parameters to f . Otherwise, f is untrue.

De�nition 6 (True Function) A recursive function f � (�x:e) is a true function if
FDV(f) = ; and if 8g 2 FFV(f)n ffg the function g is a true function.

That is, f is a true function when f does not contain free dynamic variables and does not

apply free functions that contain free dynamic variables. For example, in the function

de�nition

fun f (x::xs) =

let fun g y = (y+1)::xs

in

g x

end

f is a true function because FDV(f) = ; and FFV(f) = f::; +g, where f denotes

the �-abstraction bound to f. The in�x list constructor (::) and integer addition (+)

61

are true functions. The function g is an untrue function since it accesses the dynamic

value bound to xs (i.e., FDV(g) = fxsg, where g is the �-abstraction bound to g).

Other examples of true functions are incnode (Figure 4.1), map (Figure 3.1), compose

(Figure 3.6), and qs (Figure 3.12).

4.2 Overview

In this section I brie
y state the idea and the property that underlie dynamic resolution.

4.2.1 The Idea

To safely evaluate two expressions that update a dynamic data structure (e.g., a DAG)

in parallel, it is necessary to identify the dynamic data that is potentially reachable

by both expressions, and to correctly coordinate the accesses to this data. Initially,

evaluation of the two expressions can proceed in parallel. Upon detection of an access

to shared data, however, all further evaluation occurs sequentially; i.e., one expression

must suspend on an access to shared data and may not restart until the other com-

pletes. Suspending one expression on access to shared data is a means of preserving

the language's sequential semantics. Note that in the absence of shared data, dynamic

resolution will completely evaluate both expressions in parallel. The detection of shared

data and the coordination of the accesses to this data (i.e., deciding which expression

to suspend) occurs dynamically. A dynamic-resolution compiler automatically inserts

code into the program text that detects potential sharing at run time; the dr run-time

system decides which expressions may access shared data. Static analysis is used to

select, for parallel evaluation, expressions whose shared reachable data can always be

detected at run time. This analysis relies on the following property.

62

h h’

a

b

Figure 4.3: The nonexistence of simple paths from nodes h to h0 and from h0 to h imply that the

shared structure reachable from h and h0 (boxed region) is always guarded by a join node (node a).

Dynamic resolution detects potentially sharing at run time by detecting join nodes.

4.2.2 Dynamic Resolution Property

This section states the property that forms the basis of dynamic resolution. The prop-

erty concerns paths and nodes, and enables the static selection of program expressions

for which all shared data can be detected dynamically.

Property 1 Let h; h0 be nodes in the heap H. If h 6�! h0 and h0 6�! h, then for all

nodes h00 2 H such that h =) h00 and h0 =) h00, the following relations hold: h 6�! h00

and h0 6�! h00.

That is, if all paths from h to h0 and from h0 to h contain a join node, then all paths

from h or h0 to any shared node h00 (accessible from both h and h0) must contain a join

node.

Figure 4.3 illustrates the above property. If it is known that node h cannot simply

reach h0 (and vice versa), then all shared structure reachable from h and h0 is always

delimited by a join node (node a in the diagram). Note that simple nodes (e.g, node b)

as well as join nodes may be shared; however, evaluation of an expression will always

traverse a join node before encountering a shared simple node, thereby providing a

means for detecting sharing dynamically.

63

Statically, dynamic resolution locates program identi�ers that always bind nodes

h; h0 2 H such that the above property (h 6�! h0 ^ h0 6�! h) holds. Suppose that the

only dynamic values accessible to expression e are those reachable from h. Similarly,

suppose that the only dynamic values accessible to expression e0 are those reachable

from h0. Furthermore, assume e and e0 are candidates for parallel evaluation, but po-

tentially con
ict (read/write or write/write con
icts). If the sequential semantics requires

evaluation of e before e0, then e and e0 may be safely evaluated in parallel with the fol-

lowing restriction: e0 may not access any join node until e completes (e, however, may

access all|join or simple|nodes that it can reach). When e and e0 do not share struc-

ture (e.g., 6 9h00 2 H such that h =) h00 ^ h0 =) h00) then it is possible for e and e0 to be

evaluated in parallel with dynamic resolution. Otherwise, evaluation of e0 must suspend

upon access to a join node|a node potentially shared with e|until e's evaluation com-

pletes. Note that in the presence of sharing, only some of the evaluation of e0 may be

concurrent with that of e.

Dynamic resolution's static component identi�es program identi�ers that satisfy

the conditions of the above property, and uses this information to select expressions

for parallel evaluation. The dynamic component detects join nodes and dynamically

schedules (suspends and restarts) expressions as necessary.

4.3 Static Component

Informally, the goal of dynamic resolution's static component is to �nd two expressions

e and e0 whose safe parallel evaluation is impeded by set operations to dynamic data

potentially shared by both expressions. The static component ensures that all shared

nodes reachable by e and e0 can be detected dynamically. That is, it infers when the

nodes bound to the free dynamic variables of e cannot simply reach the nodes bound

to the free dynamic variables of e0. The dr property (x4.2.2) now holds. For such

expressions, access to shared data can be detected and correctly coordinated at run

64

time.

Static dr parallelization occurs at the function level. For a function f , the static

component �rst identi�es the data constructors in f 's patterns3 that always (dynami-

cally) bind acyclic nodes (x4.1). Static classi�cation of a datatype constructor as acyclic

(i.e., it only matches acyclic nodes) enables|in turn|static inference of the reach-

ing relations among a pattern's variables. In particular, static classi�cation of a data

constructor as acyclic allows the static inference (x4.3.2) of strong (i.e., 6�!) reaching

relations among the constructor's variables. Such reaching relations permit dr paral-

lelization because shared structure accessible from these variables can be dynamically

detected by dr's dynamic component (x4.4). Given such reaching relations, expressions

are statically selected and restructured (x4.3.3) for concurrent dr evaluation. Finally,

the static component places checks into the program that examine a node's status (join

or simple) in expressions that can access its contents (x4.3.4).4

I �rst describe how to statically determine whether a data constructor in a pattern

matches only acyclic nodes, and then how to use this information to infer the reaching

relations among a function's variables. Lastly, I describe how to select candidate dr

expressions and where, in the program text, to place the checks that sharing.

4.3.1 Data-Constructor Classi�cation

A dr compiler must statically classify data constructors in patterns as cyclic or acyclic

depending on whether the nodes that the constructor dynamically matches can lie on

cyclic structures in the heap. Acyclic constructors admit dr parallelization; cyclic con-

structors inhibit dr parallelization because the shared structure reachable from a cyclic

constructor's variables can not always be dynamically detected. For simplicity, I as-

sume all patterns in the program contain at most one data constructor|this restriction

3Patterns (x2.2.3) match dynamic values against datatype constructors, constants, and variables. A
pattern gives information about the reaching relations among its variables; it is a positional notation that
notates the position of a pattern's variable with respect to the pattern's other variables and constructors.

4The contents of a node can be accessed only by matching (deconstructing) it in a pattern.

65

is relaxed below (x4.3.2). The form of such a pattern is

p � C(x1; : : : ; xn)

where C is a data constructor and the xi, 0 < i � n, are variables5 that are bound

when p is matched. For example, the pattern Node(left,right) of the tree datatype

(Figure 4.1) contains the data constructor Node and variables left and right.

For a pattern p of the form above, dr's static component classi�es p's constructor

C as cyclic or acyclic. I describe two possible methods of attaining this classi�cation:

from static type information and with programmer-supplied assertions.

From Static Type Information

Identi�cation of a datatype constructor in pattern p as acyclic is often possible from

p's type. In a call-by-value language, cyclic data structures arise only from the re-

assignment of a reference value that resides in a dynamic data structure. Furthermore, to

introduce a cycle, the contents of this reference value must be a dynamic value; i.e., the

reference value must have a dynamic-value type. A pattern's type, therefore, indicates

whether the data it can match contains reference values. Hence, type information can

identify a pattern's constructors that always match acyclic nodes.

For example, the pattern p � (Node(left,right)) in the incnode function (Fig-

ure 4.1) has type int ref tree. Pattern p's variables (left and right) also have type

int ref tree. This type information insures that p always dynamically matches an

acyclic node in the heap (i.e., p is acyclic) since the reference values in a structure of

p's type can only contain integers.

5Since the language's constants (e.g., integer and Boolean constants) are not dynamic values, they
cannot reach shared data and hence require no special treatment. Therefore, they need not be explicitly
discussed here.

66

Cons(,Nil)

T()

Figure 4.4: A cyclic list constructed with the conventional Cons constructor.

From Programmer-supplied Assertions

In a language with polymorphic datatypes (as here), static determination of whether a

constructor only builds acyclic nodes is not always possible. Constructors in patterns

that cannot be classi�ed as acyclic inhibit parallelization with dynamic resolution be-

cause the compiler will not be able to infer strong (i.e., 6�!) reaching relations for the

variables of cyclic constructors (x4.3.2 below). For example, the Cons constructor of the

conventional list datatype declaration

datatype � list = Nil | Cons of (� � �list)

can create cyclic nodes. The program

datatype t = T of t list ref | S

let val x = T (ref [S])

val (T y) = x

in

set y [x];

get y

end

returns a list l whose single element (of type t) contains a reference value with contents

l (e.g., the list in Figure 4.4). A compiler cannot generally infer that the list Cons

constructor matches acyclic nodes. For example, l is a valid argument to the map

function (Figure 3.1)|accordingly, map's pattern does not contain acyclic constructors,

and dynamic resolution cannot parallelize the map function.

67

Cons(,) Cons(,) Cons(,Nil)

Figure 4.5: An acyclic list. An element of an acyclic list may reach tail elements; list elements may

themselves be cyclic structures; and multiple list elements may reach shared structure.

A programmer-supplied assertion can be used to identify acyclic constructors in

the presence of polymorphism. Programmers are typically aware of cyclic data since

precautions must be taken when traversing it|lists, tuples, trees, and DAGs can often

be identi�ed as acyclic by the programmer. I introduce the acyclic datatype quali�er

for programmer assertion that a datatype's constructors are used only to create acyclic

nodes.

Declaration of the acyclic list datatype

acyclic datatype � list' = Nil' | Cons' of (� � � list')

states that the list nodes constructed with the (acyclic) Cons' constructor will not lie

on a cycle in the heap. This restricts the spine of a list thus constructed from containing

cycle nodes. Elements of an acyclic list, however, may be cyclic structures; elements

may also share structure (Figure 4.5). The list of Figure 4.4, however, is not a valid

acyclic list since it violates the declaration of acyclic. Note that the compiler does

not (statically or dynamically) detect such violations; incorrect usage of an acyclic

datatype can cause indeterminate program behavior.

The function map' of Figure 4.6 is an acyclic version of map that may only be

applied to lists of � list' type. The dynamic-resolution technique applies here because

Cons' may only bind acyclic nodes. Hence, the compiler can infer strong reaching

68

acyclic datatype � list' = Nil' | Cons' of (� � � list')

fun map' f Nil' = Nil'

| map' f (Cons'(x,xs)) = Cons'(f x,map' f xs)

Figure 4.6: The map' function for acyclic lists.

relations for its variables (x 6�! xs and x 6�! xs). Even if the higher-order parameter

f performs imperative get and set operations (cf. x4.6), this can sometimes permit

multiple expressions to execute in parallel.

4.3.2 Reaching-Relation Inference

Static classi�cation of the data constructors in patterns as acyclic allows the automatic

inference of reaching relations among a pattern's variables. When data constructor C

in pattern p is acyclic, the nodes dynamically bound to C's variables xi, 0 < i � n,

cannot reach one another via simple paths. That is, when C is acyclic, the compiler can

safely infer that xj 6�! xk for all pairs of C's variables xj and xk, where 0 < j; k � n

and j 6= k. Proof of this follows. Let h; h0 2 H denote the nodes bound to two of C's

variables xj and xk (where 0 < j; k � n and j 6= k) when p matches dynamically. When

h and h0 are the same node (h = h0) then h (and h0) are join nodes due to the two

links from C's node. Alternately, when h 6= h0 a simple path cannot exist from h to h0

(h 6�! h0). Suppose a simple path from h to h0 exists. Node h0 then has at least two

links: one from C's node and one from the node preceding h0 on the path from h to

h0 (this path cannot pass through C's node since C's node is acyclic; hence this path

cannot use links from C's node). Since h0 has at least two incident links, it must be a

join node. This, however, contradicts the supposition. Therefore, a simple path cannot

exist from h to h0. Similarly, a simple path cannot exist from h0 to h (h0 6�! h).

Figure 4.7 depicts the relationship between an acyclic node a (corresponding to an

acyclic constructor) and the nodes xi and xj directly accessible from a. If xi can reach

xj via any path, then that path must contain a join node (xj). Since the constructor

69

(acyclic constructor)

x xji

a

Figure 4.7: Node a is an acyclic data-constructor node. Nodes xi and xj are directly reachable|via

a single link|from a. Any path from xi to xj is not simple because it always contains a join node (xj).

Such a path cannot use the link from a to xj since a is acyclic. Black nodes are join nodes; gray nodes

represent any (simple or join) node.

node a is acyclic, the path from xi to xj cannot pass through a and hence cannot include

the link from a to xj .

Reaching relations that assert the nonexistence of simple paths between pattern vari-

ables enable dynamic resolution|sharing in the structure bound to these variables can

be detected at run time because a join node is always encountered before an expression

reaches any shared structure.

In Section 4.3.1 the program's patterns were restricted to contain at most one data

constructor. Relaxing this restriction is straightforward, and doing so admits nested

data constructors in patterns. Without loss of generality, if the constructors C and C0

in the pattern

p � C(x1; : : : ; xn as C0(y1; : : : ; ym))

are acyclic, the reaching relations

xj 6�! xk 0 < j; k � n ^ j 6= k

xj 6�! yk 0 < j < n ^ 0 < k � m

xn =) yk 0 < k � m

can be inferred. Any path from a variable xj to a variable yk cannot be simple because

C is acyclic; however, a simple path can exist from variable xn to a variable yk because

the nodes (dynamically) corresponding to the constructors C, C0, and to variables yk

may all be simple. This occurs, for example, when p matches an unshared tree.

70

4.3.3 Expression Selection

Static analysis propagates the reaching relations induced by a pattern into the pattern's

scope. Static selection of expressions for parallelization with dynamic resolution then

commences.

Two expressions, e and e0, whose safe parallel evaluation is constrained only by

read/write or write/write con
icts (x2.3), are candidates for parallel evaluation using

dynamic resolution if they meet three criteria:

1. 8x 2 FDV(e); 8x0 2 FDV(e0) the relations x 6�! x0 and x0 6�! x hold.

2. 8f 2 FFV(e), f is a true function; and 8f 0 2 FFV(e0), f 0 is a true function.

3. 8x 2 FDV(e), x does not contain untrue functions; and 8x0 2 FDV(e0), x0 does
not contain untrue functions.

The �rst criterion requires that all dynamic values bound to the free variables in e cannot

reach, via a simple path, dynamic values bound to the free variables in e0. It thereby

ensures that all shared data accessible to both e and e0 can be detected dynamically

(x4.2.2 and x4.4). The second criterion restricts the functions in e and e0 to not have

access, through their free variables, to dynamic values other than those available in e

and e0 (due to the �rst criterion). The last criterion requires e and e0 to not apply untrue

functions contained in their accessible dynamic data; it prohibits access to (arbitrary)

dynamic values through the free variables of higher-order (untrue) functions stored in

dynamic data. A free dynamic variable's type indicates whether structure bound to it

can contain functions.

The incnode function contains two expressions that can safely evaluate concurrently

using dynamic resolution: e � incnode left and e0 � incnode right. The pattern

p � (Node(left,right)) in incnode induces the set fleft 6�! right; right 6�! leftg

of reaching relations for p's corresponding function body. Thus, since FDV(e) = fleftg

and FDV(e0) = frightg, expressions e and e0 meet the �rst criterion. Furthermore, since

e and e0 do not apply untrue functions (incnode is a true function) and do not have

71

fun incnodeDynamic (Leaf x) = (set x (1 + (get x)))

| incnodeDynamic (Node(left,right)) = (incnodeDynamic left ;jjdr
incnodeDynamic right)

Figure 4.8: The incnode function after expression selection. The separator ;jjdr indicates that

(incnodeDynamic left) may evaluate concurrently with (incnodeDynamic right) provided that ac-

cesses to shared data are dynamically detected and coordinated.

access to data containing untrue functions (left and right cannot contain functions),

expressions e and e0 also meet the second and third criteria. The incnodeDynamic

function of Figure 4.8 re
ects the selection of (incnode left) and (incnode right)

for parallel evaluation provided that all shared data is dynamically detected and accesses

to this data dynamically coordinated. This detection and coordination is performed by

dynamic resolution's dynamic component (x4.4). The sequence separator ;jjdr speci�es

concurrent evaluation, requiring sharing detection, of the expressions it separates.

4.3.4 Check Placement

The last responsibility of dynamic resolution's static component is the identi�cation, in

the program text, of all accesses to nodes so that sharing can be dynamically detected.

In particular, a check to determine if a node is a join node (and hence potentially

accessible to other concurrent expressions) is placed immediately before a datum is

deconstructed when it matches a datatype constructor (both cyclic and acyclic) in a

pattern. Recall that only patterns can deconstruct (access) a dynamic value's contents.

Placing a check on every dynamic-value access ensures that sharing (i.e., join nodes) can

be dynamically detected along any path in the dynamic data that the program follows.

These checks examine the status (join or simple) of the node matching the constructor.

Figure 4.9 contains the dynamically-parallel version of incnode with these constructors

identi�ed. The (de)constructor Leaf checks the status of the nodes it matches before it

accesses x. The result (join or simple) of this check governs the program's subsequent

behavior; the full dynamic operation of these checks is discussed below (4.4.3).

72

fun incnodeDynamic (Leaf x) = (set x (1 + (get x)))

| incnodeDynamic (Node(left,right)) = (incnodeDynamic left ;jjdr
incnodeDynamic right)

Figure 4.9: The �nal incnodeDynamic function after identi�cation of the data accesses in patterns

that require sharing checks. An overlined constructor denotes that such a check occurs before accesses

to the constructor's components may commence.

4.4 Dynamic Component

Dynamic resolution's dynamic component detects join nodes in the heap at run time. It

also maintains a total order of all concurrently-evaluating expressions that re
ects the

evaluation order required by the language's sequential semantics. An expression is dy-

namically scheduled for concurrent evaluation as a thread. Before access to potentially-

shared data, an expression examines its position in the total order of threads to deter-

mine whether it may access the data or must wait for the evaluation of other expressions

(threads earlier in the order) to complete.

4.4.1 Join-Node Detection

Reference counts are used to dynamically distinguish join nodes from simple nodes. The

reference count of a node h counts the number of links incident on h|thereby, reference

counts reveal information about the heap's structure. A pointer to a node h (e.g., a

variable bound to h) is not included in h's reference count because it does not reveal

information about the connectivity of the data structure in which h resides.6 A node

with a reference count of zero7 or one is simple; a node with reference count > 1 is a join

node. A join node is an indicator of potential sharing because concurrent threads may

potentially access the same nodes from a join node. Therefore, coordination of accesses

6The reference-counting scheme required by dynamic resolution is similar to that used for Deutsch-
Bobrow deferred reference counting [28].

7A program can have access to a node with a reference count of zero through pointers (e.g., from
local variables) to that node since they are not included in the node's reference count.

73

to join nodes is necessary to preserve the program's desired semantics.

If a thread has access to a simple node, no other thread has concurrent access to

this node. Expression selection (x4.3.3), in cooperation with dr's dynamic component,

establishes this invariant. Recall that the static component selects expressions e and e0

for parallel evaluation using dynamic resolution only when the evaluation of e and that

of e0 will always encounter a join node before reaching shared data accessible to either

expression.

Building new data (e.g., consing an element onto a list) increments reference counts.

An assignment to a reference value increments the count of the (dynamic) value being

assigned. Assignment decrements the count of the (dynamic) value being overwritten

with the following proviso: reference counts are sticky|a reference count of two never

changes. That is, a join node never becomes simple. Sticky reference counts circumvent

the following problem: Suppose an expression e makes a local binding to the contents

v of a dynamic reference value r and then reassigns r's value. This would violate the

invariant that a simple node is accessible to at most one concurrent thread. This is

because the thread evaluating e has access to v (through the local binding) and|if

reference counts are not sticky|another thread may now also have (uncoordinated)

access to v since the assignment to r removes a link to v and can therefore make v

simple. For example, if reference counts do not stick, then in the expression

let val (ref y) = x

in

set x z;

y

end

the reference count on the node bound to y may drop to one (making it simple and ac-

cessible) since the link to y from the reference value bound to x is removed (set x z);

yet the thread evaluating the let expression still has access to y. A concurrent thread,

however, may encounter and access y's simple node|this, in turn, may produce inde-

terminate behavior. Not decrementing reference counts that are > 1 prevents a thread

74

from inadvertently granting a concurrent thread access to its simple nodes.

Atomicity during reference-count increment and decrement operations is not neces-

sary. This is because of the invariant that simple nodes are not concurrently accessible.

Therefore, incrementing or decrementing the reference count of a simple node needs

no synchronization. Since the reference counts of join nodes are never decremented8

(i.e., join nodes never become simple), changing the reference count on a join node also

requires no synchronization.

Section 4.5.3 describes a method for reconstituting a node's reference count that has

become imprecise (stuck at two).

4.4.2 Parallel-Thread Linearization

Dynamic resolution's run-time system imposes a total order on the program's concur-

rently evaluating expressions (threads). A doubly-linked list of thread descriptors forms

a linearization that implements this order on threads. This linearization dictates which

thread may access join nodes and which threads must suspend on access to join nodes.

The �rst thread in the linearization (the head thread) may access all nodes whereas

threads later in the linearization must suspend on access to join nodes. In this manner,

the parallel evaluation of expressions that perform imperative operations adheres to the

language's sequential semantics.

The run time associates a thread descriptor with every dr thread. Figure 4.10

contains the record �elds of such a descriptor. The (single) head thread is identi�ed

by a true head �eld. For a given thread t in the order, threads later than t in the

linearization are accessible through t's next �eld; prior threads are accessible via t's

prev �eld. Threads are inserted into the linearization as follows. A thread t evaluating

the expression e � (e1 jjdr e2) creates a new thread t2 to evaluate e2; thread t continues

8Note that a reference count that is greater than the actual number of links incident on a node is
conservative|such a count may indicate sharing where none exists, but it cannot admit uncoordinated
access to a join node.

75

thread descriptor � f
inuse : lock

head : bool

done : bool

suspended : bool

suspension : continuation

next : thread descriptor pointer

prev : thread descriptor pointer

g

Figure 4.10: A thread descriptor. Descriptors form a doubly-linked list that is used to dynamically

order shared-data accesses.

and evaluates e1. Thread t2's descriptor is inserted directly behind thread t's descriptor

in the linearization. Upon creation, a thread descriptor's done and suspended �elds are

initialized to false.

The linearization is a concurrent structure|insertions and deletions of (non-adjacent)

thread descriptors occur in parallel. As such, the linearization does not sequentialize

the program. A descriptor t's inuse �eld is a spin lock that must be held by a thread

wishing to inspect or change t's next and prev �elds (e.g., for inserting a child thread

into the linearization). The head, done, suspended, and suspension �elds are used for

dynamically scheduling a thread.

4.4.3 Expression Scheduling

The head thread in the linearization may freely access any node (join or simple) that

it can reach. Non-head threads later in the linearization, however, must suspend on

access to a join node since it|and all nodes accessible from it|are potentially shared

with other concurrent threads. A thread t may not access a join node until t is the

head thread; i.e., until all prior threads have completed. To suspend itself, a thread

stores the continuation (cf. [117]) of its computation in the descriptor's suspension

76

�eld and sets the suspended �eld to true.9 A non-head thread that completes without

accessing a join node (i.e., without suspending) sets its descriptor's done �eld to true.

When the head thread completes, the next uncompleted (done = false) thread in the

linearization becomes the head thread. If this thread is suspended, it is restarted and

may now access any join node it can reach|if it is computing, it continues to do so.

Since the head thread always makes progress, deadlock cannot occur.

This scheduling scheme preserves the language's sequential semantics because, in an

expression e � (e1 jjdr e2), it allows e1 (and threads created by e1) to access all data

potentially shared with e2 (and threads created by e2) before it allows e2 access to

this data. In the absence of sharing, e1 and e2 completely evaluate concurrently under

dynamic resolution.

Figure 4.11 depicts dynamic resolution of an application of the incnode function

(Figure 4.9) applied to a DAG. Straight uni-directional arrows (), join nodes (�),

and simple nodes (�) constitute incnode's DAG argument. The boxes are thread

descriptors in the linearization. Labels in thread descriptors indicate the head thread

and suspended threads. In the linearization, bi-directional arrows () represent

the next-prev link between adjacent descriptors. Curved solid arrows ()

emanating from descriptors point to the node which the thread's expression is accessing.

Curved dashed arrows () emanating from descriptors designate the node

at which the descriptor's thread was created.

In Figure 4.11, the thread currently at the head of the linearization is the thread

that initially applied incnode. Therefore, no arrow to its point of creation is shown.

Note that the head thread created threads at all nodes on the path from the DAG's root

to its current evaluation point; e.g., the computing thread immediately to the right of

the head thread was created (and its descriptor inserted into the linearization) when the

head thread encountered the DAG's left-most simple node. Two threads are suspended:

9The processor that suspends a thread proceeds to evaluate the expressions of other (non-suspended)
threads.

77

SuspendedHead Suspended

Figure 4.11: Operation of the thread linearization during resolution of incnode applied to a DAG.

the thread accessing the DAG's (only) join node from the left and the thread accessing

this join node from the right. They will be restarted when all the threads before them

in the linearization complete. Finally, note that the last thread t in the linearization

will imminently create a new thread for the evaluation of incnode applied to the right

child of t's current node|the thread descriptor for this new thread will be inserted at

the tail of the linearization.

4.5 Extensions

Several extensions to dynamic resolution can potentially improve its performance and

precision (i.e., the amount of parallelism it �nds).

78

4.5.1 Specialized Function Versions

With dynamic resolution, deconstructing a pattern p upon its successful match to a

dynamic value (node) incurs the additional cost of examining the matched node to

determine whether it is a join or a simple node. As described, dynamic resolution

always incurs this cost even when no dr parallelism exists. To curtail this expense,

generate two versions10 of a program function f : fseq and fdr. Version fseq is the

conventional sequential version of f . Version fdr is dynamically parallel and contains

checks to nodes as required by dynamic resolution. Functions applied by the fdr version

of f must themselves be dynamically parallel. Only when parallel dr threads are present

need the dynamic versions of functions be used.

4.5.2 Head-Thread Optimization

Given sequential and dynamically-parallel function versions, an additional optimization

is possible. Since the head thread in the linearization may unconditionally access any

node, it never needs to check whether a node is a join node or a simple node. Therefore,

the head thread may safely use the sequential code that does not examine node reference

counts|it is important that the head thread evaluate quickly since suspended threads

in the linearization are awaiting its completion. Non-head threads, however, must still

check reference counts and suspend their evaluation on access to join nodes.

4.5.3 Reconstitution of Reference Counts

Reference counts on nodes become inaccurate for two reasons: (1) when a node becomes

a join node it remains a join node (reference counts stick at two), although the actual

count of the node's incident links may be less than two; and (2) much of the program's

dynamic data is temporary and quickly becomes inaccessible to the program, but links

from this inaccessible data are still re
ected in the reference counts of accessible data.

10The PARCEL system also creates multiple, specialized function versions [45].

79

Imprecise reference counts restrict parallelization with dynamic resolution because they

can (falsely) indicate sharing where none exists.

It is possible to periodically reconstitute a node's reference count to its actual value

(cf. [120]). A language implementation's garbage collector ([34, 60]) reclaims and recycles

the program's discarded data; it is a natural place in an implementation for performing

reference-count reconstitution. Here, I assume a copying collector (e.g., [14, 33, 9] and

Chapter 6) that, when the program exhausts its heap storage, makes a copy of all the

live data accessible to the program. When complete, this copy replaces the program's

heap. Storage occupied by the original data|both accessible and inaccessible|is now

reclaimed for reuse.

Reference count reconstitution works as follows. A pointer (e.g., a node bound to a

program variable as opposed to a link in the heap) held by the program to an uncopied

node causes the node to be copied. This copy is given a reference count of zero. A link

to an uncopied node also causes the node to be copied; however, the initial reference

count of a copy initiated by a link is one. The reference count in this copy is one due to

the single link that initially caused it to be copied (other links to the node have not yet

been encountered; if a link had previously been encountered, a copy of the node would

already exist). When a link to a previously-copied node is encountered, the reference

count in the node's copy is incremented. Since the reference counts required by dynamic

resolution are sticky, reconstitution need not increment reference counts past two.

Note that this method of reference-count reconstitution is valid only during a se-

quential phase in the program; i.e., when no parallel dr threads exist. This restriction

is necessary because of the problem described in Section 4.4.1: a thread may not make

a node h simple if it has a binding (pointer) to h since bindings to h are not re
ected in

h's reference count|reconstitution during parallel dr evaluation can (incorrectly) make

a node, with active pointers to it, simple.

80

4.6 Example

Figure 4.12 provides a further example of dr's operation. The mqs function sorts a

list of elements using the quicksort algorithm. Unlike a functional quicksort (e.g., Fig-

ure 3.12), it performs the sort in place; that is, the links of the argument list's run-time

representation are modi�ed during the sort. The programmer has declared two acyclic

datatypes: � pair and � mlist. The acyclic � pair datatype constructs binary tuples of

identically-typed values. The � mlist datatype constructs mutable lists with elements

of type �|the lists are mutable because their link �elds (to the next list element)

are reference values. With the acyclic declaration the programmer indicates that the

mCons constructor is used only to create acyclic lists. The mqs function has type:

mqs : (�! �! bool)! � mlist! � mlist

The function's �rst parameter is a boolean predicate that compares elements of mqs's

second parameter, the mutable list to be sorted.

Dynamic resolution's static component identi�es all constructors in the program's

patterns (overlined in Figure 4.12). When dynamically matched, these constructors

require a run-time check to the underlying node representing the datum before any

access to the datum's components. This check determines whether the node is a join

or simple node. Note that functions applied by mqs (e.g., the mAppend function that

destructively appends two mutable lists) also perform these checks.

In mqs, dynamic resolution �nds parallelism in the concurrent evaluation of the

recursive applications of mqs that sort the sublists produced by the auxiliary split

function:

val Pair(l',g') = Pair(mqs p l,mqs p g)jjdr

The jj
dr

annotation indicates that the tuple's expressions, (mqs p l) and (mqs p g),

may evaluate in parallel with dynamic resolution. By the criteria of Section 4.3.3, these

expressions are candidates for dr evaluation: mqs is a true function, l can only reach

g via paths that always contain a join node, and g can only reach l via paths that

81

acyclic datatype � pair = Pair of (� * �)

acyclic datatype � mlist = mNil | mCons of (� * �mlist ref)

fun mAppend mNil y = y

| mAppend x mNil = x

| mAppend x y =

let fun aux (mCons(_,r as ref mNil)) = r := y

| aux (mCons(_,ref s)) = aux s

in

aux x;

x

end

fun mqs p mNil = mNil

| mqs p (mCons(x,xs as ref xs')) =

let fun split pivot l =

let fun split' mNil less greater = Pair(less,greater)

| split' (l as mCons(y,ys as ref ys')) less greater =

if p pivot y then

(ys := less;

split' ys' l greater)

else

(ys := greater;

split' ys' less l)

in

split' l mNil mNil

end

val _ = xs := mNil

val Pair(l,g) = split x xs'

val Pair(l',g') = Pair(mqs p l,mqs p g)jjdr
in

mAppend l' (mCons(x,ref g'))

end

Figure 4.12: Imperative quicksort (mqs) restructured for dynamic resolution.

82

always contain a join node. Note that the predicate p must also be a true function.

If it is statically unknown whether p is true, this can be determined dynamically; e.g.,

a �-tag (Chapter 3) can be used to carry a function's status (either true or untrue).

In Figure 4.12, it is assumed that p is (statically or dynamically) known to be a true

function.

Since mqs is polymorphic, it can sort (mutable) lists of many types, including lists

whose elements are, perhaps cyclic, dynamic structures. Any sharing between ele-

ments is detected during application of the predicate p, which|as all functions in the

program|detects access to shared data. If mqs's list argument does not contain shar-

ing, the recursive applications of mqs evaluate concurrently without suspending threads.

To accomplish this, however, a further optimization is required. In mqs, the Pair con-

structor is used only to build temporary data|data that is inaccessible outside of mqs.

This construction of temporary pairs, therefore, generates reference counts that (falsely)

indicate sharing. Since mqs does not place Pairs in data structures, and Pairs are not

accessible outside of mqs, it is safe to decrement11 the reference counts on a pair's com-

ponents upon its deconstruction. For example, in the expression

val Pair(l,g) = split x xs'

the reference counts on the nodes bound to l and g can be safely decremented after Pair

matches. This optimization prevents temporary dynamic structures from obscuring safe

parallelism.

4.7 Implementation

Dynamic resolution's static component (x4.3) and extensions (x4.5) have not been im-

plemented. Although amenable to compiler automation, their tasks|identi�cation of

pattern constructors, inference of reaching relations, expression selection, and check

11As before, reference counts stick at two.

83

placement|were performed manually for the programs tested. Dynamic resolution's dy-

namic component has been implemented in the SML/NJ optimizingML compiler [11, 9].

An implementation of dynamic resolution requires reference counting of links to

nodes (x4.4.1), a linearization of active parallel threads (x4.4.2), and a compiler primitive

to inspect a node's reference count and, thereupon, to suspend evaluation if necessary

(x4.4.3). Heap nodes in SML/NJ are created by the compiler's intermediate record form

(cf. [9]). Heap nodes correspond directly to records. The compiler was modi�ed to

allocate reference-count �elds on all dynamic-data nodes. The compiler's sml2c [110]

back end was modi�ed to increment a node h's reference count when a link to h is stored

into a node and to decrement node h's reference count upon re-assignment of a link to it.

The linearization of threads required to establish the sequential semantics was written in

ML and implemented in SML/NJ's parallel run-time system (MP [82, 24]) as a doubly-

linked list of thread descriptors. A primitive (written in C) was added to the SML/NJ

compiler that creates a new thread descriptor at a given location in the linearization.

This operation is time critical since it occurs every time a thread is created. In-line

ML functions are used to inspect reference counts. Upon detection of access to a join

node, a non-head thread t suspends by capturing its continuation (available through

SML/NJ's non-standard callcc). This continuation is stored in t's thread descriptor

and is invoked (thrown to) when t moves to the head of the linearization.

4.8 Results

The incnode function of Figure 4.1 contains abundant parallelism. However, dynamic

resolution of incnode|as well as an explicitly parallel version of incnode|fail to reduce

the function's execution time to less than that of its sequential execution time. Paral-

lelism in incnode is of too �ne a grain to e�ectively exploit on the Sequent Symmetry.12

12Chapter 5 develops a technique that dynamically selects an expression for parallel evaluation only
when its granularity concurs with that of the machine.

84

Therefore, I tested dynamic resolution on programs with coarser parallelism: imperative

quicksort (mqs, Figure 4.12) and a topological sort applied to a list of trees (topo).

The mqs function was manually restructured to concurrently apply mqs recursively

and to check reference counts on access to dynamic values (see x4.6). Figure 4.13 gives

timings for sorting a list of 10000 random integers. The sequential version did not

manipulate (allocate, increment, or decrement) reference counts. Dynamic resolution

overhead stems from reference counting, linearizing threads, and checking for join nodes.

The overhead for dynamic resolution in this program does not exceed 19% of the ex-

plicitly parallel time, an dynamic resolution already improves on sequential evaluation

with only two processors.

Timings of the topo program sorting a forest of trees are in Figure 4.14. Program-

mer or compiler parallelization of this program is di�cult because it is not possible to

statically pinpoint where (and when) the trees share structure. The timing graph for

this program therefore lacks a curve of explicit-parallel times. The program sorted 25

balanced trees of depth 13. The trees did not share structure. This program intensively

accesses heap nodes, and dynamic resolution incurs signi�cant overhead. Even so, dy-

namic resolution betters topo's sequential execution time when more than 4 processors

are available. This program was also restructured manually.

To measure the e�ect of sharing, the topological sort was applied to a forest of trees

with the trees sharing a common leaf (at level 13). Dynamic resolution required 37.2

seconds to perform the sort with 8 processors. This is still an improvement over the

sequential sort (40.5 seconds). With a shared node at the trees's sixth levels, however,

the time required for the parallel sort increased to 65.0 seconds since much of the

computation was sequential (due to sharing) and examined reference counts. These

experiments indicate that dynamic resolution, in the presence of sharing, is viable only

if its run-time overheads can be further reduced. Foremost, examination of reference

counts must be moved to the back end of the compiler instead of being performed by

an, (albeit in line) ML function. Optimizations, such as those described in Section 4.5,

85

Processors

1 2 3 4 5 6 7 8

Sequential 51.6 { { { { { { {

Explicit Parallel 59.5 37.2 30.3 24.9 21.8 20.9 19.2 18.6

Dynamic Resolution 68.6 43.1 33.1 26.5 24.2 22.3 21.8 20.4

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

S
e
c
o
n
d
s

Processors

Dynamic Resolution
Explicit Parallel

Sequential

Figure 4.13: Timing results for dynamic resolution of destructive quicksort (mqs).

86

Processors

1 2 4 6 8 12 16

Sequential 40.5 { { { { { {

Dynamic Resolution 124.6 68.3 40.3 31.2 26.8 20.3 15.8

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16

S
e
c
o
n
d
s

Processors

Dynamic Resolution
Sequential

Figure 4.14: Timing results for dynamic resolution of topological sort (topo).

87

also stand to further improve dynamic resolution's performance.

It is interesting to note that dynamic-resolution overhead (from counting references,

linearizing threads, and checking for shared data) is itself \parallel"; that is, its detri-

mental impact distributes over the available processors.

4.9 Notes

An early description of dynamic resolution appears in [53].

Lu [72], and Lu and Chen [73], describe run-time methods for parallelizing loops with

indirect array accesses (in Fortran and C) and (restricted) pointer accesses (in C). Their

methods pre-execute a loop nest at run time to �nd data dependences between program

statements in the loop. The compiler, using static analysis, generates a scheduler for the

loop's iterations. At run time, this scheduler dynamically records references to dynamic

data and, using the reference patterns thus collected, allocates loop iterations to indi-

vidual processors for parallel evaluation. Lu and Chen's method e�ectively parallelizes

some simple loops. However, their method does not allow procedure calls in the loop's

body. Furthermore, the loop may not modify data structure links and loop statements

may not allocate new data; i.e., the structure of all dynamic data must remain �xed for

the duration of the loop. Dynamic resolution, on the other hand, parallelizes expressions

that may apply functions and that can modify (and allocate) dynamic data. Lu and

Chen's methods depend on extensive static pointer analysis (e.g., [67]) that is expensive

in practice [67] because it performs a data-
ow analysis or an abstract interpretation

on the entire program text. In contrast, the only interprocedural information the static

analysis for dynamic resolution requires is whether a function is true (x4.1).13

Harrison's PARCEL system [45, 44] parallelizes sequential Scheme programs using

13Interprocedural analysis for dynamic resolution can be avoided entirely by using a �-tag (Chapter 3)
to physically carry, with a function, an indication of whether it is true. Dynamic checks to �-tags carrying
this type of information can then select dynamic resolution when safe.

88

a static analysis. His analysis is an abstract interpretation [25] that identi�es inter-

procedural side e�ects that potentially interfere (con
ict). In particular, this analysis

statically approximates the possible (dynamic) con�gurations of the program's run-time

stack. In this manner, PARCEL determines a dynamically-allocated object's lifetime

(cf. [100, 99]). Lifetime analysis can establish that two program expressions cannot

interfere and may safely evaluate in parallel. However, when mutable structures are

long-lived, PARCEL cannot deduce when concurrent modi�cation of them is safe. Fur-

thermore, unlike dynamic techniques, PARCEL's analysis cannot exploit parallelism

that is not always safe (e.g., accesses to data that might be shared) since it is entirely

static.

Larus's Curare uses abstract interpretation [25] to statically capture the structure

of dynamic data in Scheme [95] programs. Approximation information thus obtained

allows Curare to parallelize imperative expressions that cannot con
ict due to shared-

structure modi�cations. Speci�cally, Curare builds alias graphs that describe the po-

tential aliases in a set of dynamic data structures. Summary nodes, nodes that con-

servatively approximate alias-graph nodes, are necessary to bound an alias graph's

size. For large, irregular data, such bounded approximation leads to overly conservative

parallelization|if sharing can occur dynamically, Curare assumes that this sharing al-

ways occurs. In the presence of sharing, therefore, some of the parallelism that dynamic

resolution �nds must elude Curare's analysis.

Hendren [47, 46] addresses the problem of parallelizing programs with recursive data

structures with an algorithm for estimating the relationships between accessible nodes

in a dynamic data structure. Relationships thus attained are then used to (statically)

detect interference between program statements. Her analysis is de�ned for a �rst-

order language with recursive procedures, and �nds parallelism when it can statically

determine that trees, rather than DAGs, always reach a given program point. That is,

the analysis �nds safe parallelism only in expressions statically known to manipulate

trees. As such, this analysis cannot discover the type of parallelism that dynamic

89

techniques can �nd (e.g., parallelism in DAGs). Hendren's analysis can further detect

when a set of handles (pointers) into a dynamic data structure cannot reach common

structure. Relationships between handles are similar to the reaching relations that

dynamic resolution obtains from pattern matching (x4.3.2)|Hendren's analysis can

potentially perform the task of dynamic resolution's static component in languages that

do not support patterns.

Many approaches to the general problem of static pointer analysis have been designed

(e.g., [58, 20, 51, 69, 119]). These approaches use a variety of bounded approximations

(usually limited by some constant k) that attempt to statically describe the shape and

connectivity of dynamic heap structures. Bounded approximation of these structures,

however, limits the amount of the program's actual (dynamic) parallelism that these

techniques can detect. These analyses also require expensive interprocedural analyses

(e.g., data
ow or abstract interpretation) that discourage their practical use (cf. [67,

90]). Dynamic resolution's analysis is local to function de�nitions since interprocedural

information (i.e., sharing information) dynamically propagates into functions at run

time.

Chapter 5

Dynamic Granularity Estimation

Functional languages, due to referential transparency, do not overly constrain a pro-

gram's evaluation order with data dependences. This simpli�es automatic paralleliza-

tion: multiple arguments in a strict function application can evaluate in parallel, for

example. For imperative dynamic languages, static and dynamic parallelization tech-

niques can expose large amounts of parallelism (cf. [68, 44]; Chapters 3 and 4). Abun-

dant parallelism, however, does not directly lead to e�ective parallel implementations.

E�cient implementation of a dynamic language on a parallel architecture remains dif-

�cult in part because the creation of a parallel thread incurs considerable overhead

costs [43, 81, 89, 80]. If an expression contains less computation than the cost of creat-

ing a thread for the expression, parallel evaluation slows program execution (Figure 5.1).

This chapter describes a new technique, dynamic granularity estimation (dge), that

is based on the observation that a function's time complexity often depends on the size

of the dynamic data with which it computes. For a program function f applied to a

list parameter l, this technique conservatively determines the lengths of l for which the

cost of computing the application e � (f l) always exceeds the overhead of creating a

thread for e's concurrent evaluation.

As a dynamic technique, dge is a hybrid; it is composed of dynamic and static

90

91

e1

e2

�
�

@
@

e1 e2

@
@

�
�

�
Ofork

�
Ojoin

t0

?

Time

e01

e02

�
�

@
@

e01

e02

@
@

�
�
�
�
��

�
Ofork

�
Ojoin

Figure 5.1: The impact of overhead. Time starts at t0. The concurrent evaluation of e1 and e2, with

overhead (O = Ofork + Ojoin) taken into account, completes before their sequential evaluation and is,

therefore, bene�cial. Concurrent evaluation of e01 and e02, however, slows the program's evaluation since

e02 does not contain enough computation to o�set scheduling overheads.

components. Static analysis identi�es functions whose time complexity is dependent

on the list data structures passed as parameters. The dynamic component approximates

list lengths at run time. The compiler statically identi�es program points at which the

length of a list always in
uences the cost of an application expression. When evaluation

reaches such a point, compiler-inserted code consults an approximation to the list's

length (maintained dynamically) to determine whether it is bene�cial to evaluate an

application as a separate parallel thread.

The quicksort function (qs) of Figure 5.2 provides an example. In qs, the arguments

to append can evaluate in parallel. Parallel evaluation of these expressions is advan-

tageous if the costs of the recursive applications of qs exceed the cost of creating and

scheduling these expressions as parallel threads. However, when the length of a sublist

(l or g) is small (e.g., zero), creating a parallel thread to sort the sublist is counterpro-

ductive. In this case, the arguments to append should evaluate sequentially. A static

analysis based on abstract interpretation [25, 1] identi�es list lengths for which the cost

of applying qs to a list of that length is always greater than the overhead incurred in

92

fun qs p [] = []

| qs p (x::xs) =

let fun split l =

let fun split' [] less greater = (less,greater)

| split' (y::ys) less greater =

if (p y x) then

split' ys (y::less) greater

else

split' ys less (y::greater)

in

split' l [] []

end

val (l,g) = split xs

in

if (l > cutoff) andalso (g > cutoff) then

appendjj (qs p l) (x::(qs p g))

else

append (qs p l) (x::(qs p g))

end

Figure 5.2: Functional quicksort automatically restructured by dynamic granularity estimation.

Static analysis determines that the amounts of computation in the arguments to append depend on the

lengths (denoted l and g) of the sublists produced by split. The compiler inserts a run-time check

(the conditional in qs's body) to examine the lengths of l and r (stored with the list representation).

Based on these dynamic lengths, the check decides whether to create parallel threads. The compiler

also deduces the cutoff value.

creating a new thread for the application's concurrent evaluation. At run time, the

(approximate) lengths of the lists bound to the identi�ers l and g in the qs function

are available for making the �nal parallelization decision.

Dynamic techniques, like dge, that examine the size of dynamic data structures to

conditionally select an expression's parallel evaluation are necessary (x1.1.2). This is

evident from the qs example. When a statically-unknown list reaches qs, the sublist

partition that qs's auxiliary split function creates is also unknown. Therefore, the

costs of the recursive applications of qs that sort the sublists cannot be known at

compile time. In the absence of precise static information about qs's list parameter, it

93

is not possible to decide statically when it is advantageous to concurrently evaluate qs's

recursive applications.

In languages with explicit constructs for thread creation and synchronization, pro-

grammers typically use cuto� values to curb parallelism and to ensure that the program

only creates large threads [81]. In the qs example, the programmer might explicitly

check if the sublist being sorted contains > k elements for some small k before cre-

ating parallel threads for append's arguments. Dynamic granularity estimation de-

duces such cuto�s automatically. Code remains portable with dge since the language's

implementation|not the programmer|is responsible for matching a cuto� to the un-

derlying architecture. The granularity of parallel threads is less of a programming issue

when thread sizes are determined automatically.

In the next section, I describe the language under consideration for dynamic gran-

ularity estimation and introduce terminology. I then describe dge's static (x5.2) and

dynamic (x5.3) components, present possible extensions to general data structures and

mutable data (x5.4), illustrate dge's operation with examples (x5.5), and discuss imple-

mentation results (x5.6 and x5.7).

5.1 Preliminaries

The language under consideration for dynamic granularity estimation is functional,1 call-

by-value, higher-order, and untyped|it is the �v-calculus; i.e., it is the �v-S calculus

(x2.2) without imperative operations and reference values. For simplicity, I focus on

the list as the dynamic structure for dynamic granularity estimation|a list's size is its

length. Section 5.4 describes possible extension to general recursive datatypes that give

1Restriction to a functional language allows e�cient implementation of dge's dynamic component
that approximates the sizes of dynamic data at run time. In a functional language, a datum d's size
can only monotonically increase whereas, in a language with assignment to reference values, d's size
can decrease and the e�cient propagation of d's new (reduced) size estimate to other data that share
d is di�cult. Section 5.4 describes possible methods for estimating data sizes in imperative dynamic
languages.

94

rise to trees, for example.

Denote the time required to evaluate an expression e as jej, the cost of e. The cost

of a parallel thread is the cost of the expression that the thread evaluates in addition

to the overhead, O, required to create and schedule a parallel thread.2 Let T � O be a

machine-dependent cost threshold so that if jej > T then expression e is a candidate for

parallel evaluation (cf. Figures 5.1 and 5.2). Sizes are measured in integer evaluation

units (e-units). An e-unit corresponds to|again for simplicity|the operational notion

of function application [30]. For a given implementation, normalization of e-units is

necessary since all function applications do not have identical costs (e.g., in SML/NJ

some functions are compiled in line whereas others require the construction of a closure

[9]).

For �v, I assume that the evaluation of variables, constants and �-abstractions incurs

no cost (zero e-units) and that the evaluation of the other language terms costs one

e-unit. Under these simplifying assumptions, for example, the application (f (g l)),

where f and g are functions and l is a list, incurs a cost of at least two e-units (the

applications of f and g each cost one), but complete evaluation of (f (g l)) may

require many more e-units and may depend on the size (length) of l.

The length of list l is written as l. When i is a natural number, i represents a list

of length i.

5.2 Static Component

The idea is to evaluate an application e � (f l) statically while counting the number of

e-units required. This static e-unit is conservative; that is, static estimation of e-units

does not overestimate the number of e-units evaluation of an expression requires. For

example, if static analysis of e indicates that jej = i, then actual evaluation of e must

2It is assumed that the cost of creating and scheduling a thread is bounded and can be (empirically)
determined for a given language implementation and machine architecture.

95

i 2 Int = f: : : ;�1; 0; 1; : : :g

b 2 Bool = ftrue; falseg

f 2 Fns = fhd; tl; isnullg

hv; li 2 Cons = DVal� List

l 2 List = fnil g+Cons

[x; e; E] 2 Clos = Var� Exp�Env

v 2 DVal = Int+Bool + Fns+ List+ Clos

E 2 Env = Var
fin
�! DVal

Figure 5.3: Dynamic objects of the standard semantics S.

require � i e-units. Since the aim is to identify functions whose list parameters control

their complexity, an abstract semantics that interprets a list l as its length, l, is used.

E-units are (conservatively) counted under this abstract semantics. I �rst give the

standard semantics for the language and then the abstract semantics. To make the

abstract semantics computable, it is also necessary to bound the number of abstract

evaluation steps (x5.2.3). This bound corresponds to the threshold T (x5.1) at which

parallel evaluation of a thread becomes bene�cial (i.e., exceeds scheduling overheads).

5.2.1 Standard Semantics S

The dynamic objects of the standard semantics S are in Figure 5.3. Since the list is the

dynamic structure of interest for granularity estimation, it is directly represented with

dynamic objects|the constant nil and cons pairs hv; li, where v is a list element and l

is the list's tail|rather than indirectly encoded in �v. Basic list-manipulation functions

(hd, tl, and isnull) are also dynamic objects.

Figure 5.4 gives a standard semantics for the language. The rules for list functions

and objects are in Figure 5.5. The operational style of the semantics is derived from

Tofte's semantics [112]. The semantics given here, however, additionally contains integer

96

x 7! v 2 E
E ` x �!0 v

(var)

E ` (�x:e) �!0 [x; e; E]
(abs)

E ` e1 �!a [x; e; E
0]

E ` e2 �!b v
E0 � fx 7! vg ` e �!c v

0

E ` (e1 e2) �!1+a+b+c v
0 (app)

E ` e1 �!a true E ` e2 �!b v

E ` (if e1 then e2 else e3) �!1+a+b v
(if-true)

E ` e1 �!a false E ` e3 �!b v

E ` (if e1 then e2 else e3) �!1+a+b v
(if-false)

Figure 5.4: Standard semantics S with time annotations.

time annotations that indicate the number of e-units that an expression's evaluation

requires. The evaluation relation

E ` e �!i v

(where E 2 Env, e 2 Exp, v 2 DVal, and i 2 Z) indicates that the evaluation of

expression e to value v with respect to environment E requires i e-units. For example,

the app rule states that if the evaluation of e1 to v1 requires a e-units, the evaluation

of e2 to v2 requires b e-units, and the application of v1 to v2 requires c e-units, then the

evaluation of the application (e1 e2) requires 1 + a+ b+ c evaluation units. Similarly,

conditional evaluation (if rule) counts e-units only in the evaluation of the branch ex-

pression selected by the conditional's predicate. Note that the evaluation of �v's value

terms (e.g., variables and �-abstractions) requires zero e-units under this relation; a

speci�c implementation would, however, use an e-unit measure and evaluation rules

that re
ect their concrete costs.

97

` nil �!0 nil
(nil)

` hd �!0 hd
(hd)

` tl �!0 tl
(tl)

` isnull �!0 isnull
(isnull)

E ` e1 �!a v E ` e2 �!b l

E ` (cons e1 e2) �!1+a+b hv; li
(cons)

E ` e1 �!a hd E ` e2 �!b hv; li

E ` (e1 e2) �!1+a+b v
(app-hd)

E ` e1 �!a tl E ` e2 �!b hv; li

E ` (e1 e2) �!1+a+b l
(app-tl)

E ` e1 �!a isnull E ` e2 �!b hv; li

E ` (e1 e2) �!1+a+b false
(app-isnull-false)

E ` e1 �!a isnull E ` e2 �!b nil

E ` (e1 e2) �!1+a+b true
(app-isnull-true)

Figure 5.5: Standard semantics S (for list objects) with time annotations.

98

i 2 Int
A = f: : : ;�1; 0; 1; : : :g

b 2 Bool
A = ftrue; falseg

f 2 Fns
A = fhd; tl; isnullg

Lk 2 List
A = fL0; L1; : : :g where Lk denotes all lists of length � k�

x; e; EA
�
2 Clos

A = Var� Exp�Env
A

v 2 DVal
A = Int

A +Bool
A + Fns

A + List
A + Clos

A

EA 2 Env
A = Var

fin
�! (Fin(DValA) +>A)

Figure 5.6: Dynamic objects of the abstract semantics A.

5.2.2 Abstract Semantics A

A non-standard (abstract) semantics A that abstracts lists as their lengths is used for

counting e-units for dynamic granularity estimation. This analysis determines whether

an application (f l) always requires at least i (where i � 0) e-units of evaluation for

a given length of l. The dynamic objects of the abstract semantics are in Figure 5.6.

A list of length k in the abstract semantics is represented by Lk; that is, by the set of

all lists with at least k elements.3 An environment (EnvA) maps a program variable to

either a concrete �nite subset of values or to any such subset (denoted >A).

The abstract evaluation relation

EA ` e
A
�!i V

(where EA 2 Env
A, e 2 Exp, V � DVal

A, and i 2 Z) evaluates the expression

e with respect to (abstract) environment EA to a set of values V . This relation is

de�ned such that when e
A
�!i V and e �!j v then v 2 V and i � j. That is, the

set of values computed by the abstract relation always contains e's actual value (as

produced by S). Furthermore, the e-unit count produced by the abstract semantics is

conservative; standard evaluation of e under S always requires at least i e-units when

abstract evaluation of e under A requires i e-units.

3Note that L0 describes all lists and that Li � Li+1; i � 0.

99

EA ` e
A
�!0 >A

(anyA)

x 7! V 2 EA

EA ` x
A
�!0 V

(varA)

EA ` (�x:e)
A
�!0 f[x; e; E

A]g
(absA)

EA ` e
A
�!a f[x1; e1; E

A
1] ; : : : ; [xn; en; E

A
n]g

EA ` e0
A
�!b V

EA
i � fxi 7! V g ` ei

A
�!ci Vi; 1 � i � n

EA ` (e e0)
A
�!(1+a+b+min(c1;:::;cn))

n[
i=1

Vi

(appA)

EA ` e1
A
�!a ftrueg EA ` e2

A
�!b V

EA ` (if e1 then e2 else e3)
A
�!1+a+b V

(if-trueA)

EA ` e1
A
�!a ffalseg EA ` e3

A
�!b V

EA ` (if e1 then e2 else e3)
A
�!1+a+b V

(if-falseA)

EA ` e1
A
�!a V1 EA ` e2

A
�!b V2 EA ` e3

A
�!c V3

EA ` (if e1 then e2 else e3)
A
�!1+a+min (b;c) V2 [V3

(ifA)

Figure 5.7: Abstract semantics A with time annotations.

100

` nil
A
�!0 fL0g

(nilA)

` hd
A
�!0 fhd g

(hdA)

` tl
A
�!0 ftl g

(tlA)

` isnull
A
�!0 fisnull g

(isnullA)

EA ` e1
A
�!a V EA ` e2

A
�!b fLig

EA ` (cons e1 e2)
A
�!1+a+b fLi+1g

(consA)

EA ` e1
A
�!a fhd g EA ` e2

A
�!b fLig

EA ` (e1 e2)
A
�!1+a+b >

A
(app-hdA)

EA ` e1
A
�!a ftl g EA ` e2

A
�!b fLig

EA ` (e1 e2)
A
�!1+a+b fLi�1g

(app-tlA)

EA ` e1
A
�!a fisnullg EA ` e2

A
�!b fLig i > 0

EA ` (e1 e2)
A
�!1+a+b ffalseg

(app-isnull-falseA)

EA ` e1
A
�!a fisnullg EA ` e2

A
�!b fLig i � 0

EA ` (e1 e2)
A
�!1+a+b ftrue; falseg

(app-isnullA)

Figure 5.8: Abstract semantics A (for list objects) with time annotations.

101

Figures 5.7 and 5.8 give the operational rules for the abstract semantics using the

A
�!i evaluation relation. Foremost, note that the anyA rule can always be applied. It

simply evaluates an expression e to any value and incurs no e-unit cost. Therefore, it is

a conservative estimate of values and e-units. The varA rule retrieves the mapping of

a variable from an environment at zero cost. The absA rule evaluates a �-abstraction

term to a singleton set containing its closure at zero cost.

Abstract evaluation of an application (e e0) with the appA rule �rst abstractly

evaluates e and e0. When e produces a set F of closures, each f 2 F is applied to

the value set V that e0 produces. The e-unit cost of an application is one e-unit (for

the application proper), the e-units required for (abstractly) evaluating e and e0, and

the minimum of the e-unit costs incurred in applying each f 2 F to V . This gives a

conservative e-unit count because the cost of the least expensive function reaching the

application is used. The set of values produced by appA is the union of the value sets

produced by the applications of the closures F .

The conditional rules (if-trueA, if-trueA, ifA) conservatively approximate a con-

ditional's behavior. If the predicate abstractly evaluates to a singleton set containing

either true or false, the respective conditional branch is abstractly evaluated. However,

when the predicate's abstract value set is not precisely known (e.g., when it contains

both true and false), both conditional branches are abstractly evaluated4 and the mini-

mum e-unit cost of these evaluations is incorporated into the conditional's cost|the set

of values produced by the conditional is the union of the value sets produced by both

conditional branches.

The abstract evaluation rules of Figure 5.8 handle list functions and objects. The

nilA rule evaluates the syntactic constant nil to the set of all lists (L0). The list

functions hd, tl, and isnull evaluate to the singleton sets of their respective dynamic

4In this case, abstract evaluation may not terminate since computation in a conditional branch|
protected by the predicate in the standard semantics|may diverge. Section 5.2.3 describes how this
termination problem is avoided.

102

function objects. The abstract evaluation of these list constants incurs no e-unit cost.

A list's size (length) increases when an element is consed onto it. List creation with

the special cons form (consA rule)|when the tail of the new list is in the set Li; i.e., it

is a list of length i)|produces the set of lists of length i+ 1, Li+1. The abstract e-unit

cost for this operation is one plus the cost of evaluating the arguments to cons.

Selecting the head (app-hdA rule) of any list returns any value (>A) since a list's

contents (its elements) are not maintained in the abstract semantics. Selecting the tail

(app-tlA rule) of a list of length i returns Li�1, the set of lists of length i� 1, since the

list returned by the tail selector is always one less than the length of its argument list.

Testing for the empty list with the isnull predicate produces the set ffalseg when

isnull's argument is a list of length � 1 (app-isnull-falseA rule). Otherwise, this test

conservatively returns ftrue; falseg under abstract evaluation (app-isnullA rule).

5.2.3 Termination

Counting e-units in the abstract semantics A proceeds conservatively along both arms

of a conditional whose abstract predicate value is imprecise (i.e., neither ftrueg nor

ffalseg). This ensures that the cost of an expression is conservatively approximated as

the cost of its least-costly execution path. Doing so, however, introduces the possibility

of non-termination under abstract evaluation since abstract evaluation can now attempt

to evaluate a term (conditional branch) that diverges under the standard semantics.

The termination problem is solved by bounding the number of abstract evaluation

steps. Evaluation of an execution path under A terminates (along that path) when

the accumulated e-units exceed the overhead threshold T (x5.1). In other words, when

viewed as a deductive proof, the proof tree of an expression's abstract evaluation never

exceeds a depth of T unit-cost deductions; i.e., the anyA rule is applied upon reaching

this bound. Halting abstract evaluation in this manner avoids the non-termination issue

since we only evaluate for a bounded T e-units along any execution path and return the

cost of the least-cost path.

103

5.2.4 Program Restructuring

A compiler can use dynamic granularity estimation to restructure the program as fol-

lows. The compiler wraps a conditional around an application expression, (f l), that

applies function f to a list l. The conditional's branches respectively contain code for

the sequential and parallel evaluation of the application expression (see, for example,

Figure 5.2). The predicate of the compiler-supplied conditional examines the length of

l (available at run time) and compares it to a compiler-deduced cuto� value. When l's

length is at least equal to this cuto�, the conditional selects parallel evaluation for (f l).

The compiler deduces the cuto� value using abstract evaluation in the following man-

ner. Suppose that dge's dynamic component (described below) precisely maintains the

lengths of all lists of length < n, and that all lists with lengths � n are approximated as

such. The compiler abstractly evaluates (f Li) for 0 � i < n. When (f Li)
A
�!x V ,

it notes the least i such that the cost x of this application is always greater than the

overhead threshold T . This least i, if it exists, represents a length cuto� for l at which

the creation of a parallel thread for (f l) is always bene�cial. The value of this least i

is the cuto� value in the conditional guarding the application.

In general, the compiler can use the abstract-evaluation semantics to determine a

cost threshold for any expression e, not just for the application of functions to lists.

To do so, it must �rst identify all lists in e; it then abstractly evaluates e for all list-

length combinations and records the lengths at which parallel evaluation of e is viable.

This list-length information is then used to construct a predicate to select e's parallel

evaluation only when bene�cial.

Section 5.5 provides a concrete example of the abstract evaluation a compiler must

perform to use dynamic granularity estimation.

104

5.3 Dynamic Component

At run-time, dge's dynamic component maintains an approximation to the length of

a list l along with l's physical representation. An implementation that represents lists

with cons cells in a heap is assumed. A �xed �eld of b bits encodes length information.

This allows lists of length < 2b � 1 to be exactly represented. Approximate lists have

length 1; that is, an approximate list is of length � 2b � 1. When a new list is formed

with the list constructor, as in l � (cons x l0), the length �eld on l is set to l0 + 1 if l0

is not 1. Otherwise, it is set to 1.

An implementation of the dynamic component can store the b bits of length infor-

mation either:

1. in a cons cell, or

2. in the pointers to a cons cell

Storing the approximation within the cell requires an additional memory access when

forming a new cell since the length �eld pointed to by the new cell's tail pointer must be

fetched. If the cons-cell representation does not contain b unused bits, additional storage

must also be allocated in the cell under the �rst scheme. The second approach requires

the pointer representation to contain b unused bits, but avoids an additional memory

fetch since construction of a new cons cell always requires the pointer to the list that

becomes the new cell's tail �eld. The �rst approach is signi�cantly simpler to implement

because it only requires modi�cation to the portion of the compiler that generates the

code for cons-cell creation (x5.7). The second approach requires modi�cations to the

implementation's run-time system (e.g., the garbage collector), the generation of special

pointer dereferencing code, and (potentially) a revision of the memory layout.

The �nal concern in the design of the dynamic component is, how many bits, b, to

allocate for the length �eld. A value for b is best selected by consulting the empirical

results of applying dge's static analysis (x5.2) to actual programs because, for a typical

105

application (f l), where j(f l)j depends on the length of l, it is likely that a threshold

value for l exists at which parallel evaluation of (f l) is fruitful. The number of bits b

should be large enough to delineate this threshold for most cases.

5.4 Extensions

In this section, I describe possible extensions to dynamic granularity estimation that

admit general dynamic data structures and mutable data.

5.4.1 Other Data Structures

In addition to lists, general recursive structures (e.g., trees) can be handled by de�ning

the size of such a structure to be the sum of the sizes of its substructures. Physical

representation of a structure's node then contains the sum of the sizes of the structures

pointed to by the node. A node for a binary tree, for example, would carry the sum of

the sizes of its left and right subtrees. A static analysis, similar to this chapter's analysis

for lists, can determine the data sizes for which an expression e's concurrent evaluation

is bene�cial. However, upon deconstruction of a dynamic node of size n, the analysis

must now consider all possible combinations for the substructure's sizes. For example,

deconstructing a binary tree of size n with subtrees left and right requires abstract

evaluation with all (n) size assignments such that jleft j+ jright j = n� 1. Enumerating

and abstractly evaluating these combinations increases the static analysis' complexity.

It is, however, plausible that static examination of all small structures is practical and

su�ces to delineate a viable size threshold for making thread-creation decisions.

Run-time examination of the size of an array can be used to dynamically determine

the granularities of expressions in array-based languages (e.g., Fortran and C). An array

descriptor (e.g., [35]) can be used to dynamically convey an array's size and bounds.

Static analysis can then determine, for a program expression e manipulating array a,

the sizes of a for which concurrent evaluation of e is bene�cial.

106

5.4.2 Mutable Dynamic Data

In languages with imperative assignment to mutable dynamic data (e.g., ML), it is

di�cult to dynamically maintain conservative size approximations for such data. This

is because a mutable datum's size may decrease. Furthermore, as with immutable

data, mutable data are often shared. To maintain conservative approximations, it may

be necessary to propagate|upon assignment into a dynamic structure|a new size

to many structures. Identi�cation of structures that share a datum d is, however,

di�cult because d has no information about the pointers to it. A possible approach to

extending dge to mutable data is to not propagate reductions in a mutable datum's

size. Instead, its size estimate can be reconstituted periodically. Such size reconstitution

can occur in the language implementation's garbage collector (see x4.5.3). Since this

approach permits approximations that may overestimate a datum's size, it may|in

some cases|select expressions for concurrent evaluation that do not contain enough

computation to compensate for scheduling overheads. However, if a large percentage

of the dynamic scheduling decisions are correct, dynamic granularity estimation in the

presence of modi�cations to dynamic structures may be viable.

5.5 Examples

Here, I illustrate the operation of dynamic granularity resolution's static component

(abstract evaluation) and show how the compiler can use the information thus obtained,

along with run-time list lengths, to dynamically schedule concurrent expressions only

when bene�cial.

Figure 5.9 depicts the deductions that dge performs statically for the expression:

e � if (isnull l) then nil else (cons x (tl l))

The compiler, upon encountering e in a program, can use dge to determine e's cost

given the length of the list bound to identi�er l. The �gure abstractly evaluates e in an

environment where l is bound to the set of lists of length � 1 (i.e., in the environment

107

E ` isnull
A
�!0 fisnull g

C

E ` l
A
�!0 L1

D

E ` (isnull l)
A
�!1 ffalseg

B
E ` x

A
�!0 >

A
F

E ` tl
A
�!0 ftlg

H

E ` l
A
�!0 L1

I

E ` (tl l)
A
�!1 L0

G

E ` (cons x (tl l))
A
�!2 L1

E

E ` (if (isnull l) then nil else (cons x (tl l)))
A
�!4 L1

A

Figure 5.9: Example operation of dge's static component. Environment E maps identi�er l to all

lists of length � 1; i.e., E � fl 7! L1g. Deduction A is the ifA rule, B is the app-isnull-falseA rule,

C is the isnullA rule, E is the consA rule, F is the anyA rule, G is the app-tlA rule, and H is the tlA

rule. Deductions D and I are the varA rule.

fl 7! L1g). Abstract evaluation of e in this environment indicates that e's evaluation

will produce a list in L1 and will require at least four e-units(i.e., fl 7! L1g ` e
A
�!4 L1).

Note that abstract evaluation of e in the environment fl 7! L0g produces a list in L0

and requires two e-units (using the ifA, app-isnullA, and nilA rules).

As an example of how a compiler combines information from dge's static and dy-

namic components, consider the function f:

fun f x = if (isnull x) then nil

else f (tl x)

Abstract evaluation at compile time determines that (f L0) requires three e-units,

(f L1) requires seven e-units, and (f L2) requires eleven e-units. In general, abstract

(and standard) evaluation of (f Ln) requires 3+ 4n e-units. However, a compiler need

only abstractly evaluate (f Li) for 0 � i < 2b � 1, where b is the number of bits

of list-length information maintained by dge's dynamic component (x5.3), since this

encompasses the size information available at run time. The compiler then selects the

least i such that |(f Li)| > T where T is the implementation-speci�c e-unit threshold

(x5.1). Assuming the concrete values b = 2 and T = 10 for this example, using dge,

the compiler can statically deduce that a concurrent thread for (f l) is bene�cial when

l's length equals or exceeds two.

As a �nal example, dynamic granularity resolution statically determines that the

time complexity of qs (Figure 5.2) depends on its list parameter. In particular, it

108

detects that split always traverses the entire tail of this parameter. Therefore, the qs

function's recursive applications|as well as external applications of qs in other parts

of the program|warrant concurrent threads when qs's list parameter is su�ciently5

large.

5.6 Implementation

The dynamic component of dynamic granularity estimation has been implemented in the

Standard ML of New Jersey 0.73 optimizing compiler [11]. The compiler and run-time

system were modi�ed to incorporate one machine word (32 bits) of length information

into the standard representation (three words) of every cons cell (cf. x5.3). The com-

piler's front end was modi�ed to distinguish cons cells from all other types of dynamic

objects. This modi�cation identi�es cons cells as such for the compiler's back end. The

code generator was modi�ed to produce code that computes list lengths upon cons-cell

formation. Since a list's length is represented by a full machine word, code for approx-

imating list lengths is unnecessary and is not generated. High-level primitives provide

access to a list's length information. This integer length can be manipulated as an ML

value and compared against threshold values determined empirically (x5.1). Low-level

primitives, i.e. abstract machine instructions, would provide even better performance.

The static component for dge has not been implemented|abstract evaluation was

performed manually.

5.7 Results

Figure 5.10 gives the results of dynamic granularity estimation applied to a quicksort

(qs, Figure 5.2) sorting a list of 10000 random integers. The recursive applications of

5The length of qs's parameter, at which parallel evaluation of an application of qs is bene�cial,
depends on the machine-dependent threshold T .

109

3

4

5

6

7

8

9

10

11

12

13

14

0 2 4 6 8 10

T
i
m
e

(
s
)

List-Length Cutoff

std(exec)
std(gc)

std(total)
dge(exec)
dge(gc)

dge(total)

Figure 5.10: E�ect of varying the list-length cuto� threshold in qs (Figure 5.2).

qs for sorting sublists were performed in parallel on 8 processors.6 The graph plots list-

length cuto�s versus execution time.7 Execution, garbage collection, and total times

are given for qs with and without dge. The graph's top two curves are the total time

required with dynamic granularity estimation (dge) and with standard parallel evalua-

tion (std) respectively. The x-axis is the cuto� values at which threads are retained for

sequential evaluation. For the dge times, a length cuto� i indicates that the arguments

to append in qs evaluate in parallel only when the lengths of the sublists bound to

l and g both equal or exceed i. The graph's lower curves break the total time into

execution (exec) and garbage collection (gc) times. Time spent in the operating system

are included in the total times.

6Figure 3.15 gives times for qs as the number of processors varies.
7Here, I examine the e�ect of varying qs's list-length cuto� value on the program's execution time.

Parameters of a speci�c language implementation and machine architecture would enable dge's static
component to automatically select a concrete cuto�.

110

Dynamic granularity estimation improves qs's performance at all cuto� values i,

0 � i � 10. If thread creation is throttled when sublists are of length < 3, dge reduces

the total time to execute the program by � 23%. Figure 5.10 also reveals that garbage

collection times slightly decrease as the cuto� length increases|fewer threads require

fewer memory resources.

Two peculiarities in the timings of Figure 5.10 require further explanation. First,

the non-monotonicity of the execution times arises because of a secondary e�ect: As the

machine �lls with threads, it becomes advantageous not to create new threads|even if

these threads contain large amounts of computation relative to scheduling costs|since

the machine is fully utilized. The input data to qs and the length cuto� (indirectly)

in
uence the machine's load and cause this behavior. The second peculiarity is that the

performance of dge at a cuto� of zero is better than that of the standard implemen-

tation. This is so even though both versions create the same threads and the run-time

system for dge incurs overhead; it allocates more data and performs more computa-

tion in maintaining list lengths than standard parallel evaluation. This occurs because

the larger cons cells (four machine words versus three) of the dge run time improve

processor data-cache performance.8

5.8 Notes

I do not know of previous approaches that estimate the amount of computation in an

expression by examining dynamic information. Aside from simple heuristics [40], work

related to (static) granularity estimation falls into one of two categories: load-balancing

strategies that continually monitor the number of active threads in the machine to

determine when it saturates, and systems that statically derive an algorithm's time

complexity, if possible.

8This was veri�ed by experiment. Setting cons-cell sizes to four machine words, improves the perfor-
mance of some programs. Note that this phenomenon is, however, highly machine and implementation
dependent.

111

In Halstead's Multilisp [42, 43], the program ceases to create new parallel threads

when the machine saturates with threads. When this occurs, processors evaluate the

available threads to completion. Idle processors steal threads from busy processors

in this load-based inlining scheme. Load-based inlining, in the presence of futures

(x1.4), poses deadlock problems, but these can be avoided by Mohr et al.'s lazy task

creation technique [81, 80]. Lazy task creation e�ciently extracts computation from

inlined threads when no runnable threads exist. Although lazy task creation increases

the granularity of programs by coalescing threads, unlike dge, it does not prevent the

production of �ne-grain threads that are detrimental to the program's quick evaluation.

WorkCrews [114] is a thread management package that performs lazy task creation, but

requires programmer knowledge of the mechanism. Qlisp [36] provides primitives for

performing load-based thread creation as well as automatic load-based inlining [89].

Dynamic granularity estimation is a load-insensitive technique that only creates par-

allel threads that are guaranteed to meet or exceed some granularity criterion. There-

fore, dge is orthogonal|and complements|existing load-based inlining and task cre-

ation methods.

Harrison's parallel Lisp system, PARCEL [45], employs a non-standard list repre-

sentation that dynamically maintains information about a list's length. PARCEL uses

length information to implement lists contiguously in memory, but not for making par-

allelization or load-balancing decisions.

Static time-complexity analysis has been studied extensively; static algorithm and

program analyzers have been built. Since the general problem of deducing a program's

complexity is undecidable, these systems cannot always deduce a program's complexity.

In many cases, however, the analyzers do correctly deduce the complexity of a program.

METRIC [118] transforms Lisp programs into a set of mutually recursive equations and

then seeks their solution to yield the program's complexity. Le M�etayer's ACE complex-

ity evaluator [70] matches list-based functional programs against a prede�ned library of

function de�nitions to map programs to their time complexities. Sands extended this

112

approach to higher-order lazy languages [103]. Dornic et al. [30] describe a practical

time system that statically infers a function's complexity from its local de�nition; i.e.,

their analysis does not require interprocedural information. Their time system, however,

is conservative since it approximates recursive functions as always being expensive to

evaluate. In contrast to dynamic granularity estimation, static time-complexity anal-

yses cannot accurately predict an expression's cost when dynamic data sizes are not

known at compile time.

Dynamic granularity estimation's static analysis is a form of abstract interpretation

[25, 1, 56]. It di�ers from conventional abstract interpretation in two respects: it assumes

the availability of dynamic information, and it does not abstract to �nite domains|

instead, the threshold that governs thread creation is used to terminate dge's analysis

which makes the domain �nite in height. Wadler gives an abstract interpretation for

a non-
at domain (lists) [115] and addresses the di�culties of static time analysis in

(lazy) functional languages [116].

Chapter 6

Concurrent Garbage Collection

Programs written in dynamic languages implicitly allocate vast amounts of data|both

in the construction of the program's dynamic data structures and in building auxiliary

structures required by the language's implementation. Since allocation is implicit, the

language implementation is responsible for the reclamation of discarded data. Therefore,

a language parallelization system must|in addition to �nding useful parallelism in the

program|address the issue of parallel storage reclamation lest it become a performance

bottleneck. This chapter describes the design and implementation of an algorithm that

dedicates a processor, running concurrently with the program proper, to the task of

reclaiming an ML [78, 79] program's1 discarded storage for subsequent reuse.

Automatic recycling of storage is known as garbage collection. A garbage collector

retains a program's data that are in-use (live) and reclaims data that are unreachable

(garbage) by the program. Garbage collection is necessary since even large (virtual)

memories are �nite. In addition to reclaiming storage, a garbage collector can also re-

store locality to fragmented data by dynamically compacting the live data, thereby im-

proving the performance of memory systems and reducing storage requirements [21, 33].

1Whereas the techniques of the previous chapters addressed subsets of ML, the concurrent algorithm
of this chapter reclaims storage for a complete Standard ML implementation (SML/NJ [11, 9]).

113

114

Automatic storage reclamation, however, introduces disruptive pauses into interactive

programming environments and slows program execution.

The concurrent garbage collector described here is a step toward distributing the

storage-reclamation task among parallel processors. The design uses a single proces-

sor, the collector, to reclaim storage for a single program, the mutator. Unlike other

concurrent-collector designs [10, 106, 41], it requires neither special hardware nor non-

standard operating-system support. This concurrent approach potentially reduces the

collection overhead for sequential programs since the collector continually recycles the

storage that a program, running on another processor, discards. Hence, existing sequen-

tial programs bene�t directly from this approach. To collect the garbage in parallel sys-

tems, I describe an extension to this design that supports multiple concurrent mutators.

With this design, program execution|sequential or parallel|will not be disrupted by

garbage collection if the concurrent collector reclaims garbage at least as quickly as the

program creates it. This is an attractive proposition for interactive environments.

Since a concurrent compacting collector relocates the mutator's dynamic data and

allows concurrent mutator access to these data, the cost of mutator data access and allo-

cation operations must be close to their cost with e�cient sequential collection. To this

end, the collector design presented here exploits the compile-time distinction between

mutable and immutable data that some languages, such as ML, make. Pure functional

languages (Pure Lisp [76], Haskell [52], etc.) can also be concurrently collected by this

approach since they only manipulate immutable data.

After stating the assumptions that underlie the design of the concurrent collector, I

brie
y describe the sequential algorithm upon which the concurrent algorithm is based

(x6.2). I then give the concurrent-collection algorithm (x6.3), its implementation in

SML/NJ (x6.4), and performance measurements (x6.5). Extension to multiple muta-

tors and further e�ciency improvements are in Section 6.6. Previous work related to

concurrent garbage collection is in Section 6.7.

115

6.1 Assumptions

The concurrent collector design assumes that the mutator and collector share a common

address space and that this common memory is processor consistent [37].2 This allows

ordered memory operations to implicitly perform �ne-grain synchronization without

explicit synchronization primitives (cf. lock-free synchronization [48]).

The language or compiler must also statically distinguish the program's mutable-

data accesses from its immutable-data accesses. This assumption enables the compiler

to generate code for mutable accesses that implicitly synchronizes with the concurrent

collector. Run-time separation of mutable and immutable data is not necessary.

The collector design assumes that mutator allocation is entirely heap based [5]; i.e.,

the implementation of the language does not use a run-time stack. This simpli�es the

exposition of the collection algorithm since it elides the details of stack management

during collection.

Critical to the success of this design is the assumption that most mutator data

accesses are to immutable data. This is often valid for programs written in dynamic

languages (e.g., ML) and certainly valid for purely-functional programs.

6.2 Sequential Copying Collection

This section describes the algorithm for sequential copying collection that forms the

basis for the concurrent collector. Further description of copying collection can be

found in many places (e.g., [60, 34, 9]).

A basic sequential copying collector [21, 33] requires two memory spaces of equal

size. Denote these spaces as From-Space and To-Space. Figures 6.1 and 6.2 illustrate

2Processor consistency guarantees that writes from a processor p appear to all other processors as
occurring in the sequence in which p executes them. For example, if processor p0 executes the sequence
(x 0; x 1; x 2) and p1 reads the value 1 for x then p1 cannot subsequently read the value
0 for x. Processor consistency is weaker than the sequential consistency that many shared-memory
machines provide.

116

From−Space

New Threshold

Bottom

Previously Moved Data

Top

Figure 6.1: Sequential From-Space.

To−Space

UnscannedScanned

Bottom Top

Figure 6.2: Sequential To-Space

these spaces and the pointers that manage them.

Mutator allocation of heap objects (dynamic values) always occurs in From-Space

at the next unused location (New). If allocation crosses a predetermined Threshold ,

From-Space is deemed full and garbage collection occurs. The From-Space (Figure 6.1)

is full and requires collection.

At the beginning of a collection, Scanned and Unscanned point to the bottom of

(empty) To-Space. Scanned/Unscanned form a queue for a breadth-�rst traversal of

the live data in From-Space. Scanned points to the head of the queue and Unscanned

to the tail. This queue is initialized with the objects pointed to by the root set of the

mutator. Any pointer into the active heap (From-Space) that the mutator has access to

(e.g., registers) is a root and all such pointers constitute the mutator's root set. All live

data available to the program are reachable via pointers from this root set. After an

117

Bottom

Previously Moved Data

Top

Previously Allocated Data

From−Space

Figure 6.3: Concurrent From-Space.

object's relocation in To-Space, the collector overwrites (forwards) the original object

in From-Space with the object's new location in To-Space (its forwarding pointer).

Objects in the initialized Scanned/Unscanned queue are scanned (from Scanned to

Unscanned) for pointers into From-Space. An uncopied From-Space object is inserted

into the queue and forwarded. A pointer to a previously copied object is translated

to point to the copy using the forwarding pointer. All live data reside in To-Space

when the queue of unscanned objects empties; that is, when Scanned = Unscanned . A

ip operation then reverses the roles of the two spaces: To-Space becomes From-Space

and From-Space becomes To-Space. The collection is now complete and the collector

supplies an updated root set to the mutator. Mutator allocation proceeds anew from

the top of the (empty) From-Space.

6.3 Concurrent Copying Collection

The concurrent collector design of this chapter is based on the sequential copying algo-

rithm. It also copies live data between regions, but does not suspend mutator computa-

tion during the copying phase. Two modi�cations to the underlying data structures are

required: the layout of the memory spaces di�ers, and all dynamically-allocated objects

contain an additional �eld for a forwarding pointer. The �rst modi�cation is to the

heap's To-Space. Figures 6.3 and 6.4 illustrate the layouts of the concurrent From-Space

118

ThresholdUnscannedScanned

Top

New

Bottom
To−Space

Figure 6.4: Concurrent To-Space. This To-Space is similar to the sequential To-Space (Figure 6.2),

but allows the mutator to allocate new data at New while the collector concurrently scans and inserts

objects into the Scanned/Unscanned queue. The collector is also responsible for translating From-Space

pointers in freshly-allocated data (from New to Top) to their To-Space equivalents.

Fresh ! BeingTranslated ! Translated) BeingCopied ! (forwarding address)

Figure 6.5: Possible transitions an object can undergo. The) indicates that a
ip occurs during

this transition. A Boxed state is one in which an object is inaccessible to the mutator.

and To-Space, respectively.3 Note that mutator allocation now occurs in To-Space and

not in From-Space as in the sequential algorithm. This is necessary to properly identify

and collect all live data while permitting concurrent mutator allocation.4

The second modi�cation required by the concurrent collector is that every object

r created by either the mutator or collector must contain an additional �eld f for a

forwarding pointer. The �eld f is distinct from r's data �elds. This is in contrast to

implementations of the sequential algorithm that are free to overwrite r's data �elds

with forwarding information. A separate �eld for f is required since the contents of

r and the contents of its copy are simultaneously accessible to the mutator. Let A

denote all address values for f . Distinguish four values in A: Fresh, BeingTranslated,

3In all further exposition, \From-Space" and \To-Space" refer to the concurrent spaces.
4If the mutator were to allocate in From-Space, it would be di�cult to determine when all live data

have been copied out of From-Space since the mutator's root set continually changes.

119

Translated, BeingCopied. PartitionA into mutator inaccessible and accessible state sets:

inaccessible = fBeingTranslated; BeingCopiedg

accessible = Aninaccessible

An object r is always created with its forwarding pointer set to Fresh. Figure 6.5 shows

the possible transitions for r's forwarding pointer. The mutator may access a mutable

object only when it is in an accessible state. If the state of the object changes during

the access, the mutator must redo the access. A change in state is easily detectable

since the transitions can be implemented using a monotonic representation (i.e., with

reserved address values for the states). An access is performed in the forwarded copy

when the state of the object is a true forwarding address. This synchronization is fast|

only two fetches from an immutable object are required in the expected case of no

mutator-collector con
ict. Figure 6.7 contains pseudo-code for mutator read and write

operations to mutable data that synchronize in this manner.

Figure 6.6 contains the concurrent collection algorithm. It runs on a dedicated

processor. The predicate Forwarded? (p) is true if the object at p has been forwarded.

Forward(p,q) forwards the object at p to location q; that is, it installs q as p's forwarding

pointer. SetState(p,s) sets the state of the object at p to s. GetState(p) returns the

state of the object at p. Translate(p) returns the forwarding address of the object at

p if one exists, p otherwise. SizeOf (p) returns the number of �elds in the object at p.

TranslateAllocArena is described below.

As the repeat loop in Collect indicates, the collector runs continually. The algo-

rithm divides naturally into three parts:
ipping (a{e), copying live data (f{m), and

translating old pointers into From-Space to their To-Space equivalents (n{p). I describe

these parts in turn.

Lines a{c prepare the collector for interchanging From-Space and To-Space. Only

120

Collect()
volatile Roots: set of pointers
repeat

begin

(a) suspend mutator
(b) Roots mutator's root set
(c) Roots TranslateAllocArena(Roots)
(d) Flip(From-Space,To-Space)
(e) release mutator
(f) Scanned To-Space.Bottom

(g) Unscanned Scanned

(h) for all r 2 Roots do

(i) r Copy&Forward(r)
(j) while Scanned 6= Unscanned do

let object = object at Scanned
ptrs = set of pointers in object

in

(k) SetState(object ,BeingTranslated)
for all p 2 ptrs do

p Copy&Forward(p)
Scanned Scanned + SizeOf (object)

(l) SetState(object ,Translated)
(m) end

(n) while mutator still allocating do
(o) Roots mutator's root set
(p) TranslateAllocArena(Roots)

end

Copy&Forward(p : object pointer) : object pointer

(q) if not Forwarded? (p) then
begin

(r) SetState(p,BeingCopied)
(s) copy object at p to Unscanned

(t) SetState(Unscanned ,Fresh)
(u) Forward(p,Unscanned)
(v) Unscanned Unscanned + SizeOf (Unscanned)
(w) return Unscanned � SizeOf (Unscanned)

end

(x)else return Translate(p)

Figure 6.6: Concurrent collection algorithm.

121

Read(r : object pointer,i : integer) : value
if Inaccessible(r) _ Forwarded? (r) then

Read(Translate(r),i)
else

let s = GetState(r)
v = �eld i of r

in

if s 6= GetState(r) then
Read(r ,i)

else v

end

Write(r : object pointer,i : integer,v : value)
if Inaccessible(r) _ Forwarded? (r) then

Write(Translate(r),i ,v)
else

let s = GetState(r)
in

set �eld i of r to v

if s 6= GetState(r) then
Write(r ,i ,v)

end

Figure 6.7: Mutator mutable-data access operations to Read (or Write) �eld i of an object r. If

the concurrent collector has forwarded r, the read (or write) is performed in the copy. If the collector

copies or updates r while the mutable access is underway, the access is redone in the copy.

during this part of the algorithm is the mutator inactive. Therefore, this section must

execute quickly. At line a, copies of all live data reside in To-Space (newly-allocated

data are placed in To-Space at New). Pointers to From-Space may, however, still exist

in the new allocation arena (from New to To-Space.Top). Since all live data have been

copied out of From-Space, it is only necessary to translate these From-Space pointers in

the allocation arena to their To-Space equivalents. This is accomplished at line c. Since

the new-data allocation arena may be large, it may not be possible to translate it in its

entirety without pausing the mutator for an exorbitant amount of time|overhead we

are attempting to avoid in the �rst place. For this reason, most of the allocation arena

is translated concurrently (lines n{p) with mutator allocation; I discuss this portion of

the algorithm below. TranslateAllocArena at line c only translates a small piece of this

arena, namely the data not translated after the last iteration of the loop at line n. Line

d performs the
ip and repositions the pointers that govern the semi-spaces.

Lines f{m perform the actual copying and forwarding of live data from From-Space

to To-Space. The Copy&Forward routine provides implicit synchronization informa-

tion to the mutator (cf. Figure 6.7) by setting the object's state to BeingCopied before

122

the actual copy operation ensues (r) and makes it accessible after the copy is com-

plete (line u). Similar synchronization is also performed during the scan of an object

(lines k and l).

All live data resides in To-Space when control reaches line n; that is, all live data from

From-Space have been copied and forwarded into To-Space, and all data concurrently

allocated by the mutator since the last
ip are located in To-Space. However, pointers

into From-Space may still exist in the fresh allocation arena (New to To-Space.Top)

and possibly in the copied data (To-Space.Bottom to To-Space.Unscanned). This latter

case occurs when the mutator updates a mutable location in this region after it was

scanned and translated by the collector. Such From-Space pointers in the copied area

are identi�ed by requiring the mutator to maintain a list of mutable locations into which

it stores pointers.5

TranslateAllocArena is an incremental depth-�rst marking algorithm.6 TranslateAl-

locArena is given a set of pointers to translate. It recursively translates all From-Space

pointers reachable from its parameter into their To-Space equivalent and returns a

translated version of its parameter. TranslateAllocArena uses the BeingTranslated and

Translated states for synchronization in a manner similar to their use in the scanning

and copying portions of the collector. The algorithm is incremental in the sense that

successive invocations of TranslateAllocArena do not reexamine previously-translated

objects. This insures only short pauses when translating (mutator) reachable, yet un-

translated, objects immediately before a
ip (line d).

5Store lists are commonly used in generational collectors to detect pointers from older generations
to younger ones [113, 7].

6The stack required for depth-�rst marking can be allocated explicitly or threaded through garbage
objects in From-Space.

123

Knuth-Bendix (16MB)

Stop-&-Copy Generational Concurrent

Exec 200.7s 200.4s 270.9s

GC 117.1 5.2 0.04

Sys 3.6 2.7 7.0

Elapsed 320.9 208.2 277.9

Max Pause 7380ms 420ms 10ms

Avg Pause 2251 199 1

Quicksort (1MB)

Stop-&-Copy Generational Concurrent

Exec 32.3s 32.4s 40.0s

GC 16.9 4.1 1.4

Sys 0.5 0.3 0.4

Elapsed 49.7 36.8 41.8

Max Pause 220ms 180ms 20ms

Avg Pause 98 31 13

Table 6.1: Performance comparison of the concurrent collector to sequential collectors.

124

6.4 Implementation

Implementation of the concurrent collector is in the SML/NJ optimizing ML com-

piler [11]. The SML/NJ implementation is normally collected by an e�cient, sequential

generational stop-and-copy collector [7]. The sml2c [110] back end to SML/NJ gener-

ates portable C code that can be compiled on many platforms using native C compilers.

The concurrent implementation of this chapter runs on a Sequent Symmetry shared-

memory computer. Only two of the Sequent's 20 processors were used|one to execute

the program (the mutator) and one to collect the program's garbage (the collector).

The compiler was modi�ed to allocate an extra word as the forwarding pointer with

all objects. Upon object allocation, this pointer is initialized to Fresh. The compiler's

code generator was modi�ed to include synchronization instructions on access to mutable

data and to indirect through forwarding pointers when two object pointers are tested

for equality. Since the compiler's sml2c code generator emits C code, these additions

were implemented as C functions.

The concurrent collector is written in C. The SML/NJ run-time system, the con-

current collector, and the compiled ML program (produced by sml2c) are linked into

an executable image. Upon initiation, this image creates two parallel processes that

concurrently execute the collector and mutator threads. Communication among the

mutator and the collector occurs through shared memory. The collector acquires the

mutator's roots by setting a single location. The mutator periodically (i.e., during its

checks for su�cient heap space) polls this location. Upon receiving such a request for its

roots, the mutator copies its roots into a shared vector and communicates to the collec-

tor that the roots are in place. The same vector is used by the collector to communicate

updated root sets to the mutator.

125

6.5 Results

This section presents performance measurements of the concurrent collector for two

benchmark programs.7 I compare the absolute performance of the concurrent collector

to that of two sequential collectors: a simple stop-and-copy collector and a fast copy-

ing collector [7]. The simple stop-and-copy collector allows informative comparison; it

performs the same amount of work as the concurrent collector. The fast sequential

collector, on the other hand, performs further optimization by partitioning data into

two generations (see x6.6.2 below). Comparison of the concurrent collector to the gen-

erational collector serves only to establish the performance that concurrent collection

must attain to surpass contemporary garbage-collection capabilities.

For both benchmarks, the heap size was �xed for the entire execution of the program

and was set to the smallest size in which the concurrent collector always completed its

copying phase (lines f{m) before the mutator exhausted its allocation arena. This

permitted normal execution of the concurrent collector while also introducing frequent

ips of the memory spaces. Since
ips introduce pauses, this setting for heap sizes

reveals, in an empirical sense, the worst-case pause times.

The �rst benchmark implements the Knuth-Bendix completion algorithm processing

some axioms of geometry (cf. [9]). It performs side e�ects in the form of IO. IO bu�ers

are dynamically allocated heap objects in SML/NJ and subject to collection; hence, they

require mutator synchronization when read or written. Table 6.1 gives measurements

for garbage collection with the concurrent and sequential collectors. Foremost, note that

the concurrent collector only creates low latency disruptions|average pause times are

almost two orders of magnitude smaller than the pauses exhibited by the Appel-Ellis-Li

collector [10]. It also reduces the time the mutator spends in the garbage collector (less

than 1% of the stop-and-copy or generational times).

7When compiling the concurrent collector, the compiler was instructed to treat all variables as volatile
since the Sequent's processor-consistent memory is used to synchronize mutator-collector interaction.
Volatile variables restrict many compiler optimizations.

126

A comparison of the total elapsed times shows that the concurrent design (Con-

current) improves on the simple collector (Stop-&-Copy) by 13%. Furthermore, with

concurrent collection, the program spends very little time in the garbage collector proper

(0.04 seconds versus 117.1 seconds for Stop-&-Copy). Note that the sequential gener-

ational scheme (Generational) is almost 34% faster than the concurrent scheme even

though it uses only one processor. This is because all generational collectors focus their

collection e�orts on the data that contain the most garbage (i.e., on recently allocated

data). The di�erence in total elapsed times stems entirely from the di�erence in ex-

ecution times. The Appel-Ellis-Li collector [10], using non-standard operating system

support, attained an 18% improvement over a simple stop-and-copy collector on a single

benchmark, but was not compared to a generational collector.

The second programmeasured is a quicksort applied to a list of 1000 random integers

(Table 6.1). Here concurrent collection again improves on its sequential counterpart

(Stop-&-Copy). Relative to the sequential generational collector, it is 12% slower. This

again emphasizes the need for concurrent generational collection (x6.6.2). As with

Knuth-Bendix, concurrent collection of quicksort exhibits low pause latencies: worst-

case pause latency is 9 times lower than that of the generational collector and average

pause latency is less than half as long. Compared to both sequential collectors, the time

the mutator spends in the collector is again small for the concurrent collector.

6.6 Extensions

This section describes possible improvements to increase the concurrent collector's e�-

ciency, and extends the design to data generations and to multiple parallel mutators.

6.6.1 E�ciency Improvements

Ine�ciencies in the concurrent collector are because of two factors: overhead incurred by

the mutator in correctly cooperating with the collector, and decreased locality inherent

127

in distributing work among parallel processors. An ine�ciency in the concurrent algo-

rithm is mutator overhead due to forwarding pointer creation and manipulation. The

additional forwarding pointer on every heap object increases the amount of mutator

computation on data allocation; it also decreases the amount of heap space available for

program data.8 Depending on the language's implementation, the forwarding pointer

can be integrated with the object's usual �elds. For example, in SML/NJ all objects

carry a word of tag information. It is possible to merge the forwarding pointer with this

tag (e.g., [86]); this can reduce allocation costs and improve memory utilization.

Performance degradation due to disrupted locality is a more subtle point. For ex-

ample, the concurrent collector disturbs mutator locality when it installs a forwarding

pointer in an object that resides in the mutator's data cache. Furthermore, all data

constantly circulate between the mutator's and collector's data caches. I suspect that

this e�ect accounts for a large portion of the concurrent collector's ine�ciencies.

6.6.2 Generations

Incorporating generational techniques (e.g., [71, 113]) into this concurrent collector de-

sign is paramount to improving its e�ciency (cf. [10, 29]). This is because the collector

continually examines and moves all data. As the experiments show, sequential genera-

tional collectors still provide better performance than the concurrent collector. These

sequential collectors frequently reclaim the garbage in recently allocated data (young

generations), and only infrequently reclaim the garbage from long-lived data (older gen-

erations). This proves to be e�ective in practice; old data has been empirically shown

to outlive young data. Generations must be incorporated into the concurrent collector

so that it, too, can focus its e�orts on the data in which most space can be reclaimed

for reuse. I do not present an explicit design for generational concurrent collection here.

8Objects in SML/NJ occupy approximately 2.9 words in the heap on average [6]. Adding an addi-
tional �eld to each object therefore reduces heap space by approximately one quarter.

128

6.6.3 Parallel Mutators

The concurrent collector can be extended to reclaim the discarded storage of p parallel

mutators as follows. On a
ip, the collector partitions the new allocation arena (Fig-

ure 6.4) intom blocks of size k such thatm� p. Each mutator is given a block in which

to allocate. When a mutator exhausts the storage in its current block, it requests an

additional block from the collector. In addition to dispensing heap blocks, the collector

concurrently copies and translates live data.9 The collector successively transmits re-

quests for root sets to the p mutators. After dispensing m blocks, the collector halts the

mutators and completes the translation of a pi's untranslated reachable data. Note that

a processor must always complete an access to a heap object that is in progress before

it may suspend (or be suspended)|this is necessary to prevent a
ip from occurring

while an object in From-Space is still being accessed. Finally, the From-Space storage

is reclaimed, the
ip occurs, and the mutators are released.

For a large number of parallel mutators, the collector should also be distributed

among multiple processors, but it is premature to propose such a design here.

6.7 Notes

The concurrent garbage collector of this chapter has been previously published [54].

Various designs for concurrent garbage collectors have been proposed. Most require

special hardware or operating system support; few have been implemented on parallel

machines.

Sequential copying collectors [21, 33] are an attractive base for concurrent-collector

design since they operate in time proportional to the amount of data in use by the

system. They also remove fragmentation and restore locality by compacting data as they

9In the same manner as for the case p = 1 described in x6.3.

129

are copied. Copying collectors are more e�cient than reference-counting and mark-and-

sweep collectors in theory and practice [14, 5]. Zorn provides analyses and simulations

of mark-and-sweep and stop-and-copy collectors [124].

Sequential implementations of dynamic languages provide fast object allocation and

access [8, 9, 5]. To retain e�ciency, concurrent collectors must not substantially increase

the costs of object allocation and access. Central to this goal is Brooks's idea that all

dynamic heap objects contain an extra �eld for a forwarding pointer [19]. His approach

sets the forwarding pointer of an object a to point to itself (i.e., to a) if the object has

not been copied. When the collector copies the object to a new object a0, a's forwarding

pointer is set to point to a0. Accesses to a simply indirect through a's forwarding pointer.

The collector of this chapter implements Brooks's forwarding pointer, but indirects

through it only on access to mutable data. This is possible due to the assumption that

the language (or compiler) separates mutable data from immutable data at compile-time.

For programswith infrequent access to mutable data, indirection is rarely necessary. The

Pegasus system's garbage collector [88] also employs Brooks's technique, but does not

provide a parallel implementation and the outlined parallel design relies on the explicit

locking of objects.

Real-time response is highly desirable in garbage-collected systems. Baker's algo-

rithm [14] addresses this issue by interleaving allocation with collection, but his al-

gorithm requires special hardware to run e�ciently. Halstead [41] extended Baker's

algorithm to shared-memory multiprocessors by using �ne-grain synchronization on in-

dividual objects. E�cient implementation of Halstead's algorithm relies heavily on

hardware support. A concurrent lock-free version of Halstead's algorithm is given by

Herlihy and Moss [49]. Their algorithm never performs global synchronization. This,

however, is achieved only at the cost of expensive object access and allocation. Again

no implementation is provided.

Appel, Ellis, and Li implemented the �rst concurrent copying collector on a stock

130

shared-memory multiprocessor [10]. It directly addresses the e�ciency and response-

time issues. The Appel-Ellis-Li collector uses operating-system memory-protection de-

vices to detect mutator references to heap objects that have not been collected. Their

collector is independent of the language and compiler, but requires modi�cation of the

operating system. Response latency of the Appel-Ellis-Li collector is on the order of

hundreds of milliseconds|but, as noted by the authors, this is still too slow for some in-

teractive applications. E�ciency of their concurrent collector is measured only in terms

of a simple sequential stop-and-copy collector, not relative to common generational

collectors [71, 113] that provide e�cient sequential collection.

Doligez and Leroy [29] implemented a hybrid concurrent collector for ML. A copy-

ing collector reclaims storage in a processor's local memory, and a mark-and-sweep

algorithm collects shared global memory. Since mark-and-sweep collection fragments

storage, the shared-memory objects in this design must eventually be relocated|the

authors do not provide a concurrent relocation algorithm. Worst-case pause latencies of

their collector, not including shared-data relocation costs, are on the order of hundreds

of milliseconds. This thesis's concurrent collector eliminates such perceptible pauses.

Nettles and O'Toole designed and implemented a replication-based sequential col-

lector that incrementally reclaims discarded storage [86]. Of relevance here, is their

use of store lists to log updates to mutable data since a similar approach was taken in

design presented in this chapter. Nettles and O'Toole also outline the design, but do

not provide an implementation, of a concurrent version of their sequential collector.

Chapter 7

Conclusions and Future Work

Dynamic language parallelization is feasible. Programs written in sequential languages

with higher-order functions, imperative operators, and implicit storage reclamation can

exploit the performance advantages of parallel machines. Although dynamic paralleliza-

tion incurs run-time costs in maintaining and examining dynamic information about the

program's actual data and computation structures, its potentially precise information

uncovers parallelism that o�sets these overheads and speeds program execution.

The bene�ts of dynamic language parallelization, as described in this thesis, are

threefold. As compared to completely static techniques, dynamic techniques can:

1. better detect, and hence, utilize more of a program's parallelism,

2. better select, for parallel evaluation, program expressions whose computation gran-
ularity corresponds to the granularity of the underlying parallel machine,

3. substantially reduce the cost and complexity of the compile-time analyses.

Better parallelism detection and selection improves program performance. A reduction

in the cost of static analyses enables separate compilation of program modules and

interactive programming environments. In light of these points, I summarize the contri-

butions of this thesis (x7.1). I close with possible directions for future work in dynamic

language parallelization (x7.2).

131

132

7.1 Contributions

The general contribution of this thesis is the idea of using dynamic information to auto-

matically parallelize imperative programming languages with expressive features (e.g.,

higher-order functions and dynamic data structures). Foremost, the contents of tags

that dynamically propagate with a function at run time is not limited to side-e�ect

information|they can generally carry other function properties (e.g., strictness and

load-balancing information). Such tags are an e�cient means of obtaining informa-

tion about a higher-order function. This thesis also posits that shared structure can

be e�ectively detected at run time by maintaining information with the physical nodes

that represent this structure. Size information can also be automatically and incremen-

tally constructed for dynamic data structures|this enables dynamic optimization of

functions that traverse these structures. Augmenting conventional static analyses (e.g,

data-
ow formulations and abstract interpretations) with dynamic information leads to

new analysis methods; e.g., for some analysis problems (such as load balancing), it is

possible to perform an abstract interpretation over in�nite, rather than over conven-

tional, �nite domains.

The speci�c contributions of this thesis are the design and implementation of several

parallelization techniques. These techniques provide a \proof of concept" for dynamic

language parallelization. The speci�c designs are for higher-order imperative languages

with implicit storage management. The speci�c prototype implementations are for the

SML/NJ optimizing ML compiler on a shared-memory Sequent Symmetry computer.

�-Tagging demonstrates that the dynamic detection of functional parallelism in pro-

grams with imperative higher-order functions is feasible and e�ective. �-tagging's

costs are small; its static analysis is tractable in practice. Measurements of the

implementation indicate that �-tagging's run-time overheads are readily o�set by

the additional parallelism �-tagging �nds.

133

Dynamic Resolution demonstrates that sharing in dynamic data structures can be

dynamically detected, and that accesses to shared data can be correctly coor-

dinated at run time. Dynamic resolution's static analysis requires only basic

interprocedural information (i.e., symbol-table entries) and is therefore inexpen-

sive. Measurements of the implementation indicate that dynamic resolution incurs

substantial run-time costs. Nevertheless, dynamic resolution is able to pro�tably

parallelize some non-trivial functions that elude static parallelization.

Dynamic Granularity Estimation demonstrates the viability of dynamically ap-

proximating the sizes of data structures for the purpose of dynamically select-

ing expressions for parallel evaluation based on the amount of computation they

require. The static analysis for dynamic granularity estimation in a list-based

functional language is inexpensive. Although interprocedural, its cost depends

on the constant (implementation and machine dependent) overhead that demar-

cates when an expression's parallelization becomes pro�table. Implementation

measurements suggest that two prerequisites for e�ective dynamic granularity es-

timation hold: the dynamic cost of maintaining list-length estimates is negligible

and the run-time use of this information can substantially improve a program's

performance.

Concurrent Garbage Collection is addressed with the design and implementation

of a new concurrent collector. The collector uses static type information to reduce

the frequency of (expensive) program-collector synchronization. It is the �rst

concurrent copying collector that does not require special hardware or operating

systems support. The implementation uses a dedicated processor to collect a

sequential program's spent storage. For the programs tested to date, it successfully

removes all perceptible garbage-collection pauses.

134

7.2 Directions for Future Work

I sketch several directions for future research in dynamic language parallelization:

New Dynamic Techniques and Architectures This thesis reports the performance

of several dynamic parallelization techniques. These results are for a speci�c lan-

guage (ML), compiler (SML/NJ), and computer (Sequent Symmetry). As the

architectures of parallel machines evolve, their resources (e.g., computation and

communication) change. Architectural advances will alter the e�ectiveness of dy-

namic parallelization techniques. Architectural evolution will guide the design of

dynamic parallelization techniques. The need to parallelize programs with other

expressive language features|e.g., arrays, general (cyclic) data structures, and

exible control
ow such as continuations|will prompt the further design of new

dynamic parallelization techniques.

New Languages for Dynamic Parallelization Languages, or language extensions,

designed with regard to dynamic parallelization promise to extend the class of

programs that can be automatically parallelized. For example, it is possible to en-

vision a language whose static type system completely (and safely) infers whether

a dynamic data structure is acyclic (i.e., suitable for dynamic resolution). Fur-

thermore, a language's syntax (and, perhaps its semantics) can be designed to

encourage programming styles amenable to dynamic parallelization.

Theoretical Aspects Of theoretical interest is the amount of information a dynamic

parallelization technique gathers at run time in proportion to the amount of infor-

mation it requires at compile time. A technique that, in some sense, requires little

information at run time will incur less dynamic overhead and can be expected

to outperform techniques that require much dynamic information. Furthermore,

I speculate that techniques requiring little static information require extensive

135

dynamic support, and vice versa. For example, dynamic resolution requires rel-

atively little static analysis and a lot of dynamic information, whereas �-tagging

and dynamic granularity estimation require (relatively) more static analyses and

only little dynamic information. It would be interesting to characterize|in some

manner|the class of language parallelization (and optimization) problems that

have e�ective dynamic solutions; problems that have ine�ective compile-time so-

lutions seem to be a good starting point.

Dynamic language parallelization is a fruitful area for further research. It holds the

promise of solving problems facing the automatic parallelization of programs|problems

for which adequate static solutions are elusive, di�cult, or unattainable.

Bibliography

[1] S. Abramsky and C. L. Hankin, editors. Abstract Interpretation of Declarative
Languages. Ellis Horwood Ltd., Chichester, West Sussex, England, 1987.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and
Tools. Addison-Wesley, 1986.

[3] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the
PTRAN analysis system for multiprocessing. Journal of Parallel and Distributed
Computing, 5(5):617{640, 1988.

[4] J. R. Allen and K. Kennedy. Automatic translation of FORTRAN programs
to vector form. ACM Transactions on Programming Languages and Systems,
9(4):491{542, October 1987.

[5] A. W. Appel. Garbage collection can be faster than stack allocation. Information
Processing Letters, 25:275{279, 1987.

[6] A. W. Appel. Runtime tags aren't necessary. Lisp and Symbolic Computation,
2:153{162, 1989.

[7] A. W. Appel. Simple generational garbage collection and fast allocation. Software
Practice & Experience, 19(2):171{183, February 1989.

[8] A. W. Appel. A runtime system. Lisp and Symbolic Computation, 3:343{380,
1990.

[9] A. W. Appel. Compiling with Continuations. University of Cambridge Press,
1992.

[10] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on stock
multiprocessors. In Conference on Programming Language Design and Implemen-
tation, pages 11{20. Association for Computing Machinery, June 1988.

[11] A. W. Appel and D. B. MacQueen. A Standard ML compiler. Functional Pro-
gramming Languages and Computer Architecture, 274:301{324, 1987.

136

137

[12] Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token
data
ow architecture. IEEE Transactions on Computers, 39(3):300{318, March
1990.

[13] J. Backus. Can programming be liberated from the von Neumann style? Com-
munications of the ACM, 21(8):613{641, August 1978.

[14] H. G. Baker. List processing in real time on a serial computer. Communications
of the ACM, 21(4):280{294, April 1978.

[15] P. S. Barth, R. S. Nikhil, and Arvind. M-structures: Extending a parallel, non-
strict, functional language with state. In Functional Programming Languages and
Computer Architecture, pages 538{568. Association for Computing Machinery,
August 1991.

[16] D. Berry, R. Milner, and D. Turner. A semantics for ML concurrency primitives. In
Symposium on Principles of Programming Languages, pages 119{129. Association
for Computing Machinery, January 1992.

[17] G. M. Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA BEGIN.
Auerbach Publishers Inc., Piladelphia, Pa., 1973.

[18] J. M. Boyle, K. W. Dritz, M. N. Muralidharan, and R. J. Taylor. Deriving sequen-
tial and parallel programs from pure LISP speci�cations by program transforma-
tion. In Working Conference on Programme Speci�cation and Transformation.
IFIP, North-Holland Publishing Company, 1986.

[19] R. A. Brooks. Trading data space for reduced time and code space in real time
garbage collection on stock hardware. In Lisp and Functional Programming, pages
256{262. Association for Computing Machinery, August 1984.

[20] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures.
In Conference on Programming Language Design and Implementation, pages 296{
310. Association for Computing Machinery, June 1990.

[21] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM, 13(11):677{678, November 1970.

[22] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, New
York, 1981.

[23] E. C. Cooper and R. P. Draves. C threads. Technical Report CMU-CS-88-54,
Carnegie Mellon University, February 1988.

138

[24] E. C. Cooper and J. G. Morrisett. Adding threads to Standard ML. Technical
Report CMU-CS-90-186, School of Computer Science, Carnegie Mellon University,
December 1990.

[25] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. In
Symposium on Principles of Programming Languages, pages 238{252. Association
for Computing Machinery, 1977.

[26] L. Damas and R. Milner. Principle types for functional programs. In Sympo-
sium on Principles of Programming Languages, pages 207{212. Association for
Computing Machinery, January 1982.

[27] J. B. Dennis. Data
ow supercomputers. IEEE Computer, 13(11):48{56, Novem-
ber 1980.

[28] L. P. Deutsch and D. G. Bobrow. An e�cient, incremental, automatic garbage
collector. Communications of the ACM, 19(7):522{526, July 1976.

[29] D. Doligez and X. Leroy. A concurrent, generational garbage collector for a mul-
tithreaded implementation of ML. In Symposium on Principles of Programming
Languages, pages 113{123. Association for Computing Machinery, 1993.

[30] V. Dornic, P. Jouvelot, and D. K. Gi�ord. Polymorphic time systems for estimat-
ing program complexity. ACM Letters on Programming Languages and Systems,
1(1):33{45, March 1992.

[31] M. Felleisen. The Calculi of Lambda-v-CS Conversion in Imperative Higher-order
Programming Languages. PhD thesis, Indiana University, Computer Science De-
partment, 1987.

[32] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine, and the
�-calculus. In M. Wirsing, editor, Formal Description of Programming Concepts
{ III, pages 193{219. North-Holland, New York, N. Y., 1986.

[33] R. R. Fenichel and J. C. Yochelson. A Lisp garbage-collector for virtual memory
computer systems. Communications of the ACM, 12(11):611{612, November 1969.

[34] A. J. Field and P. G. Harrison. Functional Programming. Addison-Wesley, 1988.

[35] C. N. Fischer. Crafting a Compiler. Benjamin-Cummings, 1988.

[36] R. P. Gabriel and J. McCarthy. Queue-based multi-processing Lisp. In Lisp
and Functional Programming, pages 25{44. Association for Computing Machinery,
August 1984.

139

[37] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory consistency and event ordering in scalable shared-memory multi-
processors. In International Symposium on Computer Architecture, pages 15{26.
Association for Computing Machinery, May 1990.

[38] D. K. Gi�ord, P. Jouvelot, J. M. Lucassen, and M. A. Sheldon. FX-87 reference
manual. Technical Report MIT/LCS/TR-407, MIT Laboratory for Computer
Science, September 1987.

[39] R. Goldman and R. P. Gabriel. Preliminary results with the initial implementation
of Qlisp. In Lisp and Functional Programming, pages 143{152. Association for
Computing Machinery, July 1988.

[40] S. L. Gray. Using futures to exploit parallelism in Lisp. Master's thesis, MIT,
February 1986.

[41] R. H. Halstead, Jr. Implementation of Multilisp: Lisp on a multiprocessor. In Lisp
and Functional Programming, pages 9{17. Association for Computing Machinery,
August 1984.

[42] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501{538, 1985.

[43] R. H. Halstead, Jr. An assessment of Multilisp: Lessons from experience. Inter-
national Journal of Parallel Programming, 15(6):459{501, 1986.

[44] W. L. Harrison. The interprocedural analysis and automatic parallelization of
Scheme programs. Lisp and Symbolic Computation, 2(3/4):179{396, October 1989.

[45] W. L. Harrison and D. A. Padua. PARCEL: Project for the automatic restruc-
turing and concurrent evaluation of lisp. In International Conference on Super-
computing, pages 527{538, July 1988.

[46] L. J. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,
Cornell University, August 1990.

[47] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data struc-
tures. IEEE Transactions on Parallel and Distributed Systems, 1(1):35{47, Jan-
uary 1990.

[48] M. P. Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13:124{149, January 1991.

[49] M. P. Herlihy and J. E. B. Moss. Lock-free garbage collection for multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 3(3):304{311, May 1992.

140

[50] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666{677, August 1978.

[51] S. Horwitz, P. Pfei�er, and T. Reps. Dependence analysis for pointer variables. In
Conference on Programming Language Design and Implementation. Association
for Computing Machinery, June 1989.

[52] P. Hudak, S. P. Jones, P. Wadler, et al. Report on the programming language
Haskell. SIGPLAN Notices, 27(5), May 1992.

[53] L. Huelsbergen and J. R. Larus. Dynamic program parallelization. In Lisp and
Functional Programming, pages 311{323. Association for Computing Machinery,
June 1992.

[54] L. Huelsbergen and J. R. Larus. A concurrent copying garbage collector for lan-
guages that distinguish (im)mutable data. In Principles and Practice of Parallel
Programming, pages 73{82. Association for Computing Machinery, May 1993.

[55] J. Hummel, L. J. Hendren, and A. Nicolau. Abstract description of pointer data
structures: An approach for improving the analysis and optimization of imperative
programs. ACM Letters on Programming Languages and Systems, 1(3):243{260,
September 1992.

[56] L. S. Hunt. Abstract Interpretation of Functional Languages: From Theory to
Practice. PhD thesis, Department of Computing, Imperial College of Science,
Technology and Medicine, University of London, 1991.

[57] S. Jagannathan and J. Philbin. A customizable substrate for concurrent languages.
In Conference on Programming Language Design and Implementation, pages 55{
67. Association for Computing Machinery, July 1992.

[58] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like
structures. In Symposium on Principles of Programming Languages, pages 244{
256. Association for Computing Machinery, January 1979.

[59] S. L. P. Jones and P. Wadler. Imperative functional programming. In Symposium
on Principles of Programming Languages, pages 71{83. Association for Computing
Machinery, January 1993.

[60] S. P. Jones. The Implementation of Functional Programming Languages. Prentice-
Hall, 1987.

[61] P. Jouvelot and D. K. Gi�ord. Algebraic reconstruction of types and e�ects. In
Symposium on Principles of Programming Languages, pages 303{310. Association
for Computing Machinery, January 1991.

141

[62] M. Katz. ParaTran: A transparent, transaction based runtime mechanism for
parallel execution of Scheme. Technical Report LCS/TR-454, MIT, July 1989.

[63] D. Keppel, S. J. Eggers, and R. R. Henry. A case for runtime code generation.
Technical Report UWCSE 91{11{04, University of Washington, Department of
Computer Science and Engineering, November 1991.

[64] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. ORBIT: An
optimizing compiler for Scheme. SIGPLAN Notices, 21(7):219{233, July 1986.
Proceedings of the 1986 Symposium on Compiler Construction.

[65] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T, a high-performance parallel
Lisp. In Conference on Programming Language Design and Implementation, pages
81{90. Association for Computing Machinery, June 1989.

[66] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence
graphs and compiler optimizations. In Symposium on Principles of Programming
Languages, pages 207{218. Association for Computing Machinery, January 1981.

[67] J. R. Larus. Restructuring Symbolic Programs for Concurrent Execution on Mul-
tiprocessors. PhD thesis, University of California, Berkeley, Computer Science
Division, May 1989.

[68] J. R. Larus. Compiling Lisp programs for parallel execution. Lisp and Symbolic
Computation, 4:29{99, 1991.

[69] J. R. Larus and P. N. Hil�nger. Detecting con
icts between structure accesses. In
Conference on Programming Language Design and Implementation, pages 21{34.
Association for Computing Machinery, June 1988.

[70] D. Le M�etayer. ACE: An automatic complexity evaluator. ACM Transactions on
Programming Languages and Systems, 10(2):248{266, April 1988.

[71] H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes
of objects. Communications of the ACM, 26(6):419{429, June 1983.

[72] L. Lu. Loop Transformations for Massive Parallelism. PhD thesis, Yale University,
November 1992.

[73] L. Lu and M. C. Chen. Parallelizing loops with indirect array references or point-
ers. In Preliminary Proceedings of the 4th Workshop on Languages and Compilers
for Parallel Computing, August 1991.

[74] J. M. Lucassen. Towards the Integration of Functional and Imperative Program-
ming. PhD thesis, MIT Laboratory for Computer Science, August 1987.

142

[75] J. M. Lucassen and D. K. Gi�ord. Polymorphic e�ect systems. In Symposium on
Principles of Programming Languages, pages 47{57. Association for Computing
Machinery, January 1988.

[76] J. McCarthy. Recursive functions of symbolic expressions and their computation
by machine. Communications of the ACM, pages 184{195, April 1960.

[77] J. Miller.MultiScheme: A Parallel Processing System based on MIT Scheme. PhD
thesis, MIT, EECS Dept., September 1987.

[78] R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348{375, 1978.

[79] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,
1990.

[80] E. Mohr. Dynamic Partitioning of Parallel Lisp Programs. PhD thesis, Yale
University, August 1991.

[81] E. Mohr, D. Kranz, and R. H. Halstead, Jr. Lazy task creation: A technique for
increasing the granularity of parallel programs. In Lisp and Functional Program-
ming, pages 185{197. Association for Computing Machinery, June 1990.

[82] J. G. Morrisett and A. Tolmach. Procs and locks: A portable multiprocessing
platform for Standard ML of New Jersey. In Principles and Practice of Parallel
Programming, pages 198{207. Association for Computing Machinery, May 1993.

[83] Z. G. Mou and P. Hudak. An algebraic model for divide-and-conquer and its
parallelism. Journal of Supercomputing, 2:257{278, 1988.

[84] P. Naur. Revised report on the algorithmic language Algol 60. Communications
of the ACM, 6(1):1{17, 1963.

[85] A. Neirynck. Static Analysis and Side E�ects in Higher-Order Languages. PhD
thesis, Cornell University, February 1988.

[86] S. Nettles and J. O'Toole. Replication-based real-time garbage collection. In
Conference on Programming Language Design and Implementation. Association
for Computing Machinery, June 1993.

[87] R. S. Nikhil. Id (version 90.0) reference manual. CSG Memo 284{1, MIT Labo-
ratory for Computer Science, July 1990.

[88] S. C. North and J. H. Reppy. Concurrent garbage collection on stock hardware.
In Gilles Kahn, editor, Functional Programming Languages and Computer Archi-
tecture, pages 113{133. Springer-Verlag, 1987.

143

[89] J. D. Pehoushek and J. S. Weening. Low-cost process creation and dynamic
partioning in Qlisp. In US/Japan Workshop on Parallel Lisp, pages 183{199.
Lecture Notes in Computer Science, June 1989.

[90] P. E. Pfei�er. Dependence-Based Representations for Programs with Reference
Variables. PhD thesis, University of Wisconsin-Madison, 1991.

[91] G. D. Plotkin. Call-by-name, call-by-value, and the �-calculus. Theoretical Com-
puter Science, 1:125{159, 1975.

[92] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE Transactions on Computers,
36(12):1425{1439, December 1987.

[93] C. Ponder, P. McGeer, and A. Ng. Are applicative languages ine�cient? SIG-
PLAN Notices, 23(6):135{139, June 1988.

[94] N. Ramsey. Concurrent programming in ML. Technical Report CS-TR-262-90,
Princeton University, Department of Computer Science, April 1990.

[95] J. Rees and W. Clinger (eds.). Revised3 report on the algorithmic language
Scheme. SIGPLAN Notices, 21(12):37{79, December 1986.

[96] J. H. Reppy. CML: A higher-order concurrent language. In Conference on Pro-
gramming Language Design and Implementation, pages 293{305. Association for
Computing Machinery, June 1991.

[97] J. H. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University, June
1992.

[98] J. C. Reynolds. GEDANKEN|a simple typeless language based on the prin-
ciple of completeness and the reference concept. Communications of the ACM,
13(5):308{319, 1970.

[99] C. Ruggieri. Dynamic Memory Allocation Techniques Based on the Lifetime of
Objects. PhD thesis, Purdue University, August 1987.

[100] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated ob-
jects. In Symposium on Principles of Programming Languages, pages 285{293.
Association for Computing Machinery, January 1988.

[101] J. H. Saltz, H. Berryman, and J. Wu. Runtime compilation for multiprocessors.
Concurrency: Practice and Experience, 3(6):573{592, 1991.

[102] J. H. Saltz and R. Mirchandaney. Run-time parallelization and scheduling of
loops. IEEE Transactions on Computers, 40(5):603{612, May 1991.

144

[103] D. Sands. Complexity analysis for a lazy higher-order language. In ESOP, pages
361{376. Lecture Notes in Computer Science, May 1990.

[104] O. Shivers. Control
ow analysis in Scheme. In Conference on Programming
Language Design and Implementation, pages 164{174. Association for Computing
Machinery, June 1988.

[105] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU,
May 1991.

[106] Guy L. Steele Jr. Multiprocessing compactifying garbage collection. Communi-
cations of the ACM, 18(9):495{508, September 1975.

[107] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474,
MIT, Cambridge, MA, 1978.

[108] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and e�ect inference. Jour-
nal of Functional Programming, 2(4), 1992.

[109] J.-P. Talpin and P. Jouvelot. The type and e�ect discipline. In Symposium on
Logic in Computer Science, pages 162{173. IEEE, 1992.

[110] D. Tarditi, A. Acharya, and P. Lee. No assembly required: Compiling Stan-
dard ML to C. Technical Report CMU-CS-90-187, School of Computer Science,
Carnegie Mellon University, November 1990.

[111] P. Tinker and M. Katz. Parallel execution of sequential Scheme with ParaTran.
In Lisp and Functional Programming, pages 28{39, July 1988.

[112] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,
University of Edinburgh, Department of Computer Science, May 1988.

[113] D. Ungar. The Design and Evaluation of a High Performance Smalltalk System.
MIT Press, 1987.

[114] M. T. Vandevoorde and E. S. Roberts. WorkCrews: An abstraction for controlling
parallelism. International Journal of Parallel Programming, 17(4):347{366, 1988.

[115] P. L. Wadler. Strictness analysis on non-
at domains (by abstract interpretation
over �nite domains). In S. Abramsky and C.L. Hankin, editors, Abstract Interpre-
tation of Declarative Languages, chapter 12, pages 266{275. Ellis Horwood Ltd.,
Chichester, West Sussex, England, 1987.

[116] P. L. Wadler. Strictness analysis aids time analysis. In Symposium on Principles of
Programming Languages, pages 119{132. Association for Computing Machinery,
January 1988.

145

[117] M. Wand. Continuation-based multiprocessing. In Proceedings of the 1980 LISP
Conference, pages 19{28, August 1980.

[118] B. Wegbreit. Mechanical program analysis. Communications of the ACM,
18(9):528{539, September 1975.

[119] W. E. Weihl. Interprocedural data
ow analysis in the presence of pointers, proce-
dure variables, and label variables. In Symposium on Principles of Programming
Languages, pages 83{94. Association for Computing Machinery, January 1980.

[120] D. S. Wise. Stop-and-copy and one-bit reference counting. Technical Report 360,
Indiana University, 1992.

[121] M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.

[122] A. Wright and M. Felleisen. A syntactic approach to type soundness. Technical
Report TR91-160, Rice University, Department of Computer Science, April 1991.

[123] C. A. Zhu and P.C. Yew. A scheme to enforce data dependence on large multi-
processor systems. IEEE Transactions on Computers, 6(36):726{739, June 1987.

[124] B. Zorn. Comparing mark-and-sweep and stop-and-copy garbage collection. In
Lisp and Functional Programming, pages 87{98, June 1990.

