
Using the Run-Time Sizes of Data Structures

to Guide Parallel-Thread Creation

Lorenz Huelsbergen

AT&T Bell Laboratories

lorenz@research.att.com

James R. Larus

University of Wisconsin{Madison

larus@cs.wisc.edu

Alexander Aiken

University of California{Berkeley

aiken@cs.berkeley.edu

Abstract

Dynamic granularity estimation is a new technique for
automatically identifying expressions in functional lan-
guages for parallel evaluation. Expressions with lit-
tle computation relative to thread-creation costs should
evaluate sequentially for maximum performance. Static
identi�cation of such threads is however di�cult. There-
fore, dynamic granularity estimation has compile-time
and run-time components: Abstract interpretation stat-
ically identi�es functions whose complexity depends on
data structure sizes; the run-time system maintains ap-
proximations to these sizes. Compiler-inserted checks
consult this size information to make thread creation
decisions dynamically.

We describe dynamic granularity estimation for a
list-based functional language. Extension to general
recursive data structures and imperative operations is
possible. Performance measurements of dynamic gran-
ularity estimation in a parallel ML implementation on
a shared-memory machine demonstrate the possibility
of large reductions (> 20%) in execution time.

1 Introduction

Functional languages do not overly constrain a pro-
gram's evaluation order with data dependences. This
simpli�es automatic parallelization: multiple arguments
in a strict function application can evaluate in parallel,
for example. Abundant parallelism, however, does not
directly lead to e�ective parallel implementations. E�-
cient implementation of a functional language on a par-
allel architecture remains di�cult in part because the
creation of a parallel thread incurs considerable over-
head costs [14, 21, 23, 20].

For an implementation to be e�cient, it must decide
which parallelism in a program is bene�cial; that is,
whether parallel evaluation of a given expression will
speed program execution. If an expression contains less
computation than the cost of creating a thread for the
expression, parallel evaluation of the thread will slow
program execution (cf. [6]). Figure 1 shows the e�ect

Appears in Proceedings of 1994 ACM Conference on
Lisp and Functional Programming.

that scheduling overheads can have on overall execution
times.

In this paper, we present a new technique, dynamic
granularity estimation (dge), that uses the run-time
sizes of data structures to create parallel threads only
when they are known to be bene�cial. This technique
is based on the observation that a function's time com-
plexity often depends on the size of the dynamic data
with which it computes. For simplicity, we describe dge
for lists|the general scheme can, however, be applied
to programs that manipulate other data structures (e.g.,
trees, DAGs, and arrays).

In a list-based language, dge conservatively deter-
mines, for a program function f applied to a list param-
eter l, the lengths of l for which the cost of computing
the application e � (f l) always exceeds the overhead
of creating a thread for e's concurrent evaluation. Ini-
tial empirical evidence, gathered in an implementation
of dge in Standard ML of New Jersey (SML/NJ) [2] on
a parallel shared-memory machine, suggests that the
run-time costs of dge are small and that dge can sub-
stantially reduce a program's parallel execution time.

Dynamic granularity estimation is a hybrid; it is
composed of dynamic and static components [17, 16].
Hybrid techniques are necessary for language paralleliza-
tion since purely-static analyses are fundamentally lim-
ited. Static analysis for dge is in the form of an abstract
interpretation [5, 1] that identi�es functions whose time
complexity is dependent on the sizes of the list data
structures passed to them as parameters. The com-
piler statically identi�es program points at which the
length of a list always inuences the cost of an ap-
plication expression. When evaluation reaches such a
point, compiler-inserted code consults an approximation
to the list's length (maintained dynamically) to deter-
mine whether it is bene�cial to evaluate an application
as a separate parallel thread. The dynamic component
of dge approximates list lengths at run time.

The quicksort function (qs) of Figure 2 provides an
example. In qs, the arguments to append can evaluate
in parallel. Parallel evaluation of these arguments is
advantageous if the costs of the recursive applications
of qs exceed the cost of creating and scheduling them as
parallel threads. However, when the length of a sublist
(l or g) is small (e.g., zero), creating a parallel thread to
sort the sublist is counterproductive. In this case, the
arguments to append should evaluate sequentially. The
static analysis of dge identi�es list lengths for which

e1

e2

�
�

@
@

e1 e2

@
@

�
�

�
Ofork

�
Ojoin

t0

?

Time

e01

e02

�
�

@
@

e01

e02

@
@

�
�
�
�
��

�
Ofork

�
Ojoin

Figure 1: The impact of overhead. Time starts at t0. The concurrent evaluation of e1 and e2, with overhead (O = Ofork + Ojoin)

taken into account, completes before their sequential evaluation and is therefore bene�cial. Concurrent evaluation of e01 and e
0
2, however,

slows the program's evaluation since e02 does not contain enough computation to o�set scheduling overheads.

fun qs p [] = []
| qs p (x::xs) =

let fun split l =
let fun split' [] less greater = (less,greater)

| split' (y::ys) less greater =
if (p y x) then

split' ys (y::less) greater
else

split' ys less (y::greater)
in

split' l [] []
end

val (l,g) = split xs
in

if (l > cutoff) andalso (g > cutoff) then
appendjj (qs p l) (x::(qs p g))

else
append (qs p l) (x::(qs p g))

end

Figure 2: Functional quicksort automatically restructured by dynamic granularity estimation. Static analysis determines that the

amounts of computation in the arguments to append depend on the lengths (denoted l and g) of the sublists produced by split. The

compiler inserts a run-time check (the conditional in qs's body) to examine the lengths of l and r (stored with the list representation).

Based on these dynamic lengths, the check decides whether to create parallel threads (appendjj evaluates its arguments in parallel).

The compiler also deduces the cuto� value.

the cost of applying qs to a list of that length is always
greater than the overhead incurred in creating a new
thread for the application's concurrent evaluation. At
run time, dge approximates the lengths of all lists; the
length information of the lists bound to the identi�ers
l and g in the qs function is available for making the
�nal parallelization decision.

Dynamic techniques, like dge, that examine the sizes
of data structures to conditionally select parallel evalua-
tion are necessary since compile-time expression schedul-
ing is fundamentally limited. This is evident from the
qs example. When a statically-unknown list reaches qs,
the sublist partition that qs's auxiliary split function
creates is also unknown. Therefore, the costs of the re-
cursive applications of qs that sort the sublists cannot
be known at compile time. In the absence of precise
static information about qs's list parameter, it is not
possible to statically decide when concurrent evaluation
of qs's recursive applications is advantageous.

In languages with explicit constructs for thread cre-
ation and synchronization, programmers typically use
cuto� values to curb parallelism and to ensure that the
program only creates large threads [11]. In the qs exam-
ple, the programmer might explicitly check if the sublist
being sorted contains > k elements for some small k be-
fore creating parallel threads for append's arguments.
Code remains portable with dge since the language's
implementation|not the programmer|matches a cut-
o� to the underlying parallel architecture. The granu-
larity of parallel threads is less of a programming issue
when thread sizes are determined automatically.

In the next section, we describe the language under
consideration for dynamic granularity estimation and
introduce terminology. We then describe dge's static
(x3.1) and dynamic (x3.2) components, illustrate dge's
operation with examples (x4), present possible exten-
sions to general data structures and mutable data (x5),
and describe an initial implementation of this new tech-
nique (x6) and discuss results (x7).

2 Preliminaries

The language under consideration for dynamic granu-
larity estimation is the �v-calculus, a functional1 , call-
by-value, higher-order language [24, 26]. The ground
terms of �v are variables and constants:

x 2 Var

b 2 Const = fnil;true; falseg

The terms of �v are expressions (e 2 Exp) and values
(v 2 Val � Exp):

1Restriction to a functional language allows e�cient imple-
mentation of dge's dynamic component that must approximate
the sizes of dynamic data at run time. In a functional language,
a datum d's size can only monotonically increase whereas, in a
language with assignment to reference values, d's size can de-
crease and the e�cient propagation of d's new (reduced) size
estimate to other data that share d is di�cult. Section 5 de-
scribes possible methods for estimating data sizes in imperative
dynamic languages.

e ::= v
j e e

j if e then e else e
j cons e e
j hd e
j tl e
j isnull e

v ::= b
j x

j �x:e

We assume that �v terms are well-typed.
For simplicity, we focus on the list as the dynamic

structure for dynamic granularity estimation. This is
because a list's size is simply its length. The syntax of
�v therefore contains cons, hd, tl, and isnull directly.
Section 5 describes possible extension of dge to general
recursive datatypes that give rise to trees, for example.

Denote the time required to evaluate an expression
e as jej, the cost of e. The cost of a parallel thread
to evaluate e is jej plus the overhead, O, required to
create and schedule a parallel thread.2 Let T � O be
a machine-dependent cost threshold so that if jej > T

then expression e is a candidate for parallel evaluation
(cf. Figures 1 and 2). Costs are measured in integer
evaluation units (e-units). An e-unit corresponds to|
again for simplicity|the operational notion of function
application [7]. For a given implementation, normaliza-
tion of e-units is necessary since all function applica-
tions do not have identical costs (e.g., functions may be
compiled in line).

For �v, we assume that the evaluation of variables,
constants and �-abstractions incurs no cost (zero e-units)
and that the evaluation of the other language terms
costs one e-unit. Under these simplifying assumptions,
for example, the application (f (g l)), where f and g
are functions and l is a list, incurs a cost of at least
two e-units (the applications of f and g each cost one),
but complete evaluation of (f (g l))may require many
more e-units and may depend on the size (length) of l.

The length of list l is written as l. When i is a
natural number, i represents any list of length i.

We further use the following notation. If A and B
are sets, then A[B is their union, A\B is their inter-
section, and AnB is their di�erence. The empty set is
denoted by ;, and Fin(A) denotes the set of �nite sub-
sets of A. If f is a map, then the domain and range of f
are Dom(f) and Rng(f). A �nite map from A to B is a
partial map with �nite domain. Denote the set of �nite

maps from A to B as A
fin
! B where any f 2 A

fin
! B

can be written as fa1 7! b1; : : : ; an 7! bng. The empty
map is written fg. If f and g are maps, then f � g
is the map with f modi�ed by g and has the domain
Dom(f) [Dom(g) and the values:

(f � g)(a) =

(
g(a) if a 2 Dom(g)

f(a) otherwise
A sequent of the form A ` phrase! B holds, with re-
spect to A, if phrase ! B where ! is some ternary
relation between A, phrase, and B. An inference rule
has the form

P1 � � �Pn

C

2It is assumed that the cost of creating and scheduling a
thread is bounded and can be (empirically) determined for a
given language implementation and machine architecture.

where n > 0. Successful inference of the premises, Pi,
infers the conclusion C. The premises are either se-
quents or mathematical side conditions.

3 The New Technique

Dynamic granularity estimation deduces at compile
time for a program function f whether f's complex-
ity depends on the sizes of f's list parameters. This
information is then used by the compiler to restruc-
ture an application e � (f l). The compiler inserts
a check of l's length that selects parallel evaluation of
e only when e contains enough computation to warrant
its parallel evaluation. The deduction of a function's
evaluation cost relative to its list parameters and sub-
sequent program restructuring (check insertion) consti-
tute dge's static component. The dynamic component
of dge maintains lengths with lists at run time. This
section �rst describes dge's static component and then
its dynamic component.

3.1 Static Component

The idea is to abstractly evaluate, at compile time,
an application e � (f l) while counting the number of
e-units required. The static e-unit count thus obtained
is conservative; that is, static estimation of e-units does
not overestimate the number of e-units that evaluation
of an expression requires. For example, if static analysis
of e indicates that jej = i, then actual evaluation of e
must require � i e-units. Since the aim is to identify
functions whose list parameters control their complex-
ity, an abstract semantics that interprets a list l as its
length, l, is used. E-units are (conservatively) counted
under this abstract semantics. We �rst give the stan-
dard semantics for the language and then the abstract
semantics. To guarantee the termination of abstract
evaluation, it is also necessary to bound the number of
abstract evaluation steps (x3.1.3). This bound is natu-
rally the threshold T (x2) at which parallel evaluation of
a thread becomes bene�cial (i.e., overcomes scheduling
overheads).

3.1.1 Standard Semantics S

The dynamic objects of the standard semantics S are in
Figure 3. Since the list is the dynamic structure of inter-
est for granularity estimation, it is directly represented
with dynamic objects rather than indirectly encoded in
�v: The constant nil is the empty list and a cons pair
hv; li contains an element v and the list's tail l.

Figure 4 gives a standard semantics for the language.
The operational style of the semantics is derived from
Tofte's semantics [29]. The semantics given here, how-
ever, also contains integer time annotations that indi-
cate the number of e-units that an expression's eval-
uation requires. The evaluation relation E ` e �!i v
(where E 2 Env, e 2 Exp, v 2 DVal, and i 2 Z) in-
dicates that the evaluation of expression e to value v
with respect to environment E requires i e-units. For
example, the app rule states that if the evaluation of
e1 to v1 requires a e-units, the evaluation of e2 to v2
requires b e-units, and the application of v1 to v2 re-
quires c e-units, then the evaluation of the application

(e1 e2) requires 1 + a + b + c evaluation units. Simi-
larly, conditional evaluation (if rule) counts e-units only
in the evaluation of the branch expression selected by
the conditional's predicate. Note that the evaluation of
�v's value terms (e.g., variables and �-abstractions) re-
quires zero e-units under this relation; a speci�c imple-
mentation would, however, use an e-unit measure and
evaluation rules that reect their concrete costs.

3.1.2 Abstract Semantics A

A non-standard (abstract) semantics A that abstracts
lists as their lengths is used for counting e-units for dy-
namic granularity estimation. This analysis determines
whether an application (f l) will always require at least
i (where i � 0) e-units of evaluation for a given length
of l. The dynamic objects of the abstract semantics are
in Figure 5. Every abstract object V denotes a set of
values of the standard semantics �(V):

�(fv1; : : : ; vng) =

n[
i=1

�(fvig)

�(ftrueg) = ftrueg

�(ffalseg) = ffalseg

�(Lk) = fl j l is a list of length � kg

�(
�
EA
	
) =

�
f j 8x 2 Dom(EA); f(x) 2 EA(x)

	
�(
��

x; e; EA
�	

) =
�
[x; e; E] j E 2 �(EA)

	
�(>A) = fv j v 2 DValg

A list of length k in the abstract semantics is repre-
sented by Lk, the set of all lists with at least k elements.

3

An environment (EnvA) maps a program variable either
to a concrete �nite subset of values or to any such subset
(denoted >A).

The upper bound operation t on dynamic objects
X and Y is de�ned:

X t Y =

8<
:

>A if X = >A or Y = >A

Li if X = Li and Y = Lj and i � j

X [Y otherwise

The operator t is set union, except that >A absorbs all
other values and that list abstractions combine conser-
vatively.

The relation for abstract evaluation, EA ` e
A
�!i V

(where EA 2 Env
A, e 2 Exp, V 2 DValSet

A, and
i 2 Z), evaluates expression e with respect to (abstract)
environment EA to a set of values V . This relation is

de�ned such that when e
A
�!i V and e �!j v then

v 2 �(V) and i � j. That is, the set of values computed
by the abstract relation always contains e's actual value
(as produced by S). Furthermore, the e-unit count pro-
duced by the abstract semantics is conservative; stan-
dard evaluation of e under S always requires at least i
e-units when abstract evaluation of e under A requires
i e-units.

Figure 6 gives the operational rules for the abstract

semantics using the
A
�!i evaluation relation. Begin-

ning with an unevaluated term, the abstract rules are
run backwards in a goal-directed fashion towards the

3Note that L0 describes all lists and Li � Li+1; i � 0.

b 2 Bool = ftrue; falseg

hv; li 2 Cons = DVal� List

l 2 List = fnil g+ Cons

[x; e;E] 2 Clos = Var� Exp�Env

v 2 DVal = Bool+ List+Clos

E 2 Env = Var
fin
�! DVal

Figure 3: Dynamic objects of the standard semantics S.

x 7! v 2 E

E ` x �!0 v
(var)

E ` (�x:e) �!0 [x; e;E]
(abs)

E ` e1 �!a [x; e;E0]
E ` e2 �!b v

E0 � fx 7! vg ` e �!c v
0

E ` (e1 e2) �!1+a+b+c v
0

(app)

E ` e1 �!a true E ` e2 �!b v

E ` (if e1 then e2 else e3) �!1+a+b v
(if-true)

E ` e1 �!a false E ` e3 �!b v

E ` (if e1 then e2 else e3) �!1+a+b v
(if-false)

E ` nil �!0 nil
(nil)

E ` e1 �!a v E ` e2 �!b l

E ` (cons e1 e2) �!1+a+b hv; li
(cons)

E ` e �!a hv; li

E ` (hd e) �!1+a v
(hd)

E ` e �!a hv; li

E ` (tl e) �!1+a l
(tl)

E ` e �!a nil

E ` (isnull e) �!1+a true
(isnull-true)

E ` e �!a hv; li

E ` (isnull e) �!1+a false
(isnull-false)

Figure 4: Standard semantics S with time annotations.

b 2 Bool
A = ftrue; falseg

Lk 2 List
A = fL0; L1; : : :g where Lk denotes all lists of length � k�

x; e;E
A
�

2 Clos
A = Var�Exp� Env

A

v 2 DVal
A = Bool

A + List
A +Clos

A

V 2 DValSet
A = Fin(DValA) +>A

E
A 2 Env

A = Var
fin
�! DValSet

A

Figure 5: Dynamic objects of the abstract semantics A.

axioms. When more than one rule may apply (e.g.,
isnullA versus isnull-falseA), the more speci�c rule is
chosen.

Foremost, note that the anyA rule can always be ap-
plied. Rule anyA evaluates an expression e to any value
and incurs no e-unit cost. Therefore, it is a conserva-
tive estimate of values and e-units. Note that abstract
evaluation can invoke the anyA when the premises of
no other rule hold. The rule anyA is also applied if
the depth of the proof exceeds the parallelization cuto�
value T (x2). This is further explained in x3.1.3 below.

The varA rule retrieves the mapping of a variable
from an environment at zero cost. The absA rule eval-
uates a �-abstraction term to a singleton set containing
its closure at zero cost. Again, in practice, costs must be
calibrated to a particular machine and implementation.

Abstract evaluation of an application (e e0) with
the appA rule �rst abstractly evaluates e and e0. When
e produces a set F of closures, each f 2 F is applied
to the value set V that e0 produces. The e-unit cost of
an application is one e-unit (for the application proper),
the e-units required for (abstractly) evaluating e and e0,
and the minimum of the e-unit costs incurred in apply-
ing each f 2 F to V . This gives a conservative e-unit
count because the cost of the least expensive function
reaching the application is used. The set of values pro-
duced by appA is the union of the value sets produced
by the applications of the closures F . The app->A rule
handles the case where F is not known.

The conditional rules (if-trueA, if-falseA, ifA) con-
servatively approximate a conditional's behavior. If the
predicate abstractly evaluates to a singleton set contain-
ing either true or false, the respective conditional branch
is abstractly evaluated. However, when the predicate's
abstract value set is not precisely known (e.g., when it
contains both true and false), both conditional branches
are abstractly evaluated and the minimum e-unit cost of
these evaluations is incorporated into the conditional's
cost|the set of values produced by the conditional is
the union of the value sets produced by both conditional
branches.

The rules for list objects and the primitive list func-
tions operate as follows. The nilA rule evaluates the
syntactic constant nil to the identi�er L0 denoting the
set of all lists. Abstract evaluation of the constant nil
incurs no e-unit cost under this cost model.

A list's size (length) increases when an element is
consed onto it. List creation with the special cons form
(consA rule)|when the tail of the new list is in the set
Li; i.e., it is a list of at least length i)|produces the set

of lists of at least length i+1, Li+1. The abstract e-unit
cost for this operation is one plus the cost of evaluating
the arguments to cons. The cons->A rule handles the
case where all information about the list being consed
onto has been lost.

Selecting the head (hdA rule) of any object returns
any value (>A) since a list's contents (its elements) are
not maintained in the abstract semantics. Selecting the
tail (tlA rule) of a list of at least length i returns Li�1,
the set of lists of at least length i � 1, since the list
returned by the tail selector is always one less than the
length of its argument list. The tl->A rule handles
application of tl to an unknown list.

Testing for the empty list with isnull produces the
set ffalseg when isnull's argument is a list of at least
length � 1 (isnull-falseA rule). Otherwise, this test
conservatively returns ftrue; falseg under abstract eval-
uation (isnullA rule).

3.1.3 Termination

Abstract evaluation as described may not terminate.
Conditional terms, for example, abstractly evaluate both
arms. This termination problem is solved by bounding
the number of abstract evaluation steps. Evaluation
of an execution path under A terminates (along that
path) when the accumulated e-units exceed the over-
head threshold T (x2). In other words, when viewed as
a deductive proof, the proof tree of an expression's ab-
stract evaluation never exceeds a depth of T unit-cost
deductions; i.e., the anyA rule is applied upon reaching
this bound. Halting abstract evaluation in this manner
avoids the non-termination issue since we only evaluate
for a bounded T e-units along any execution path and
return the cost of the least-cost path.

3.1.4 Program Restructuring

A compiler can use dynamic granularity estimation to
restructure the program as follows. The compiler wraps
a conditional around every application expression, (f l),
that applies function f to a list l. The conditional's
branches respectively contain code for the sequential
and parallel evaluation of the application expression (see,
for example, Figure 2). The predicate of the compiler-
supplied conditional examines the length of l (available
at run time) and compares it to a compiler-deduced cut-
o� value (described below). When l's length is at least
equal to this cuto�, the conditional selects parallel eval-
uation for (f l).

EA ` e
A
�!0 >

A
(anyA)

x 7! V 2 EA

EA ` x
A
�!0 V

(varA)

EA ` (�x:e)
A
�!0

��
x; e;EA

�	 (absA)

EA ` e
A
�!a

��
x1; e1; E

A
1

�
; : : : ;

�
xn; en;E

A
n

�	
EA ` e0

A
�!b V

EA
i � fxi 7! V g ` ei

A
�!ci

Vi; 1 � i � n

EA ` (e e0)
A
�!(1+a+b+min(c1;:::;cn))

nG
i=1

Vi

(appA)

EA ` e
A
�!a >

A EA ` e0
A
�!b V

EA ` (e e0)
A
�!1+a+b >

A
(app->A)

EA ` e1
A
�!a ftrueg EA ` e2

A
�!b V

EA ` (if e1 then e2 else e3)
A
�!1+a+b V

(if-trueA)

EA ` e1
A
�!a ffalseg EA ` e3

A
�!b V

EA ` (if e1 then e2 else e3)
A
�!1+a+b V

(if-falseA)

EA ` e1
A
�!a V1 EA ` e2

A
�!b V2 EA ` e3

A
�!c V3

EA ` (if e1 then e2 else e3)
A
�!1+a+min (b;c) V2 t V3

(ifA)

EA ` nil
A
�!0 L0

(nilA)

EA ` e1
A
�!a V EA ` e2

A
�!b Li

EA ` (cons e1 e2)
A
�!1+a+b Li+1

(consA)

EA ` e1
A
�!a V EA ` e2

A
�!b >

A

EA ` (cons e1 e2)
A
�!1+a+b L1

(cons->A)

EA ` e
A
�!a V

EA ` (hd e)
A
�!1+a >

A
(hdA)

EA ` e
A
�!a Li

EA ` (tl e)
A
�!1+a Lmax(0;i�1)

(tlA)

EA ` e
A
�!a >

A

EA ` (tl e)
A
�!1+a L0

(tl->A)

EA ` e
A
�!a L0

EA ` (isnull e)
A
�!1+a ftrue; falseg

(isnullA)

EA ` e
A
�!a Li i > 0

EA ` (isnull e)
A
�!1+a ffalseg

(isnull-falseA)

Figure 6: Abstract semantics A with time annotations.

E ` l
A
�!0 L1

varA

E ` (isnull l)
A
�!1 ffalseg

isnull-falseA
E ` x

A
�!0 >

A
anyA

E ` l
A
�!0 L1

varA

E ` (tl l)
A
�!1 L0

tlA

E ` (cons x (tl l))
A
�!2 L1

consA

E ` (if (isnull l) then nil else (cons x (tl l)))
A
�!4 L1

ifA

Figure 7: Example operation of dge's static component. E maps identi�er l to all lists of length � 1; i.e., E � fl 7! L1g.

The compiler deduces the cuto� value using abstract
evaluation in the following manner. Suppose that dge's
dynamic component (x3.2) precisely keeps the lengths
of all lists of length < n, and that all lists with lengths
� n are approximated as such. The compiler abstractly

evaluates (f Li) for 0 � i < n. When (f Li)
A
�!x V ,

it notes the least i such that the cost x of this appli-
cation is always greater than the overhead threshold T .
This least i, if it exists, represents a length cuto� for l
at which the creation of a parallel thread for (f l) is
always bene�cial. The value of this least i is the cuto�
value in the conditional guarding the application.

In general, the compiler can use the abstract eval-
uation semantics to determine a cost threshold for any
expression e, not just for the application of functions
to lists. To do so, it must �rst identify all lists in e; it
then abstractly evaluates e for all list-length combina-
tions and notes the lengths at which parallel evaluation
of e is viable. This list-length information is then used
to construct a predicate to select sequential or parallel
evaluation for e.

Section 4 provides a concrete example of the ab-
stract evaluation a compiler must perform to use dy-
namic granularity estimation.

3.2 Dynamic Component

At run-time, dge's dynamic component maintains an
approximation to the length of a list l along with l's
physical representation. We assume an implementation
that represents lists with cons cells in a heap. A �xed
�eld of b bits encodes length information. This gives
lists of length < 2b � 1 an exact length (in the length
�eld) at run time. Longer lists of length � 2b � 1 have
approximate lengths denoted by 1. When a new list is
formed with the list constructor, as in l � (cons x l0),
the length �eld on l is set to l0 + 1 if l0 is not 1. Oth-
erwise, it is set to 1.

An implementation of dge's dynamic component can
store the b bits of length information either:

1. in a cons cell, or

2. in the pointers to a cons cell

Storing the approximation within the cell requires an
additional memory access when forming a new cell since
the length �eld pointed to by the new cell's tail pointer
must be fetched. If the cons-cell representation does
not contain b unused bits, additional storage must also
be allocated in the cell under the �rst scheme. The
second approach requires the pointer representation to
contain b unused bits, but avoids an additional mem-
ory fetch since construction of a new cons cell always

requires the pointer to the list that becomes the new
cell's tail �eld. The �rst approach is signi�cantly sim-
pler to implement because it only requires modi�cation
to the portion of the compiler that generates the code for
cons-cell creation (x7). The second approach requires
modi�cations to the implementation's run-time system
(e.g., the garbage collector), the generation of special
pointer dereferencing code, and (potentially) a revision
of the memory layout.

The �nal concern in the design of the dynamic com-
ponent is, how many bits, b, to allocate for the length
�eld. A value for b is best selected by consulting the
empirical results of applying dge's static analysis (x3.1)
to actual programs because, for a typical application
(f l), where j(f l)j depends on the length of l, it is

likely that a threshold value for l exists at which par-
allel evaluation of (f l) is fruitful. The number of bits
b should be large enough to delineate this threshold for
most cases.

4 Examples

Here we illustrate the operation of dynamic granularity
estimation's static component (abstract evaluation) and
show how the compiler can use the information thus ob-
tained, along with run-time list lengths, to dynamically
schedule concurrent expressions only when bene�cial.

Figure 7 depicts the static deductions that dge per-
forms for the expression:

e � if (isnull l) then nil
else (cons x (tl l))

The compiler, upon encountering e in a program, can
use dge to determine e's cost given the length of the
list bound to identi�er l. The �gure abstractly evalu-
ates e in the environment fl 7! L1g (i.e., in an environ-
ment where l is bound to the set of lists of length � 1).
Abstract evaluation of e in this environment indicates
that e's evaluation produces a list in L1 and requires

at least four e-units (i.e., fl 7! L1g ` e
A
�!4 L1). Ab-

stract evaluation of e in the environment fl 7! L0g pro-
duces a list in L0 and requires two e-units (using the
ifA, isnullA, and nilA rules).

As an example of how a compiler combines informa-
tion from dge's static and dynamic components, con-
sider the function f:

fun f l = if (isnull l) then nil
else f (tl l)

Abstract evaluation at compile time determines that
(f L0) requires three e-units, (f L1) requires seven
e-units, and (f L2) requires eleven e-units. In general,
abstract (and standard) evaluation of (f Ln) requires
3+4n e-units. However, a compiler need only abstractly

evaluate (f Li) for 0 � i < 2b�1, where b is the number
of bits of list-length information maintained by dge's
dynamic component (x3.2), since this encompasses the
size information available at run time. The compiler
then selects the least i such that |(f Li)| > T where
T is the implementation-speci�c e-unit threshold (x2).
Assuming the concrete values b = 2 and T = 10 in this
example, a compiler using dge can statically deduce
that a concurrent thread for (f l) is bene�cial when
l's length equals or exceeds two.

As a �nal example, dynamic granularity estimation
statically determines that the time complexity of qs
(Figure 2) depends on its list parameter. In particu-
lar, it detects that split always traverses the entire
tail of this parameter. Therefore, the qs function's re-
cursive applications|as well as external applications of
qs in other parts of the program|warrant concurrent
threads when qs's list parameter is su�ciently4 large.

5 Extensions

This section describes possible extensions to dynamic
granularity estimation that admit general dynamic data
structures and mutable data.

5.1 Other Data Structures

In addition to lists, dge can handle general recursive
structures (e.g., trees) by de�ning the size of such a
structure to be the sum of the sizes of its substructures.
Physical representation of a structure's node then con-
tains the sum of the sizes of the structures pointed to
by the node. A node for a binary tree, for example,
would carry the sum of the sizes of its left and right
subtrees. A static analysis, similar to the analysis pre-
sented here for lists, can determine the data sizes for
which an expression e's concurrent evaluation is bene�-
cial. However, upon deconstruction of a dynamic node
of size n, the analysis must now consider all possible
combinations for the substructure's sizes. For exam-
ple, deconstructing a binary tree of size n with subtrees
left and right requires abstract evaluation with all (n)
size assignments such that jleftj+ jrightj = n� 1. Enu-
merating and abstractly evaluating these combinations
increases the static analysis' complexity. It is, however,
plausible that static examination of all small structures
is practical and su�ces to delineate a viable size thresh-
old for making thread-creation decisions.

Run-time examination of the size of an array can
be used to dynamically determine the granularities of
expressions in array-based languages (e.g., Fortran and
C). An array descriptor (see, for example, [9]) can be
used to dynamically convey an array's size and bounds.

Static analysis can then determine, for a program
expression e manipulating array a, the sizes of a for
which concurrent evaluation of e is bene�cial.

5.2 Mutable Dynamic Data

In languages with imperative assignment to mutable dy-
namic data (e.g., ML), it is potentially expensive to dy-

4The length of qs's parameter, at which parallel evaluation
of an application of qs is bene�cial, depends on the machine-
dependent threshold T .

namically maintain conservative size approximations for
these data. This is because a mutable datum's size may
decrease and, as with immutable data, mutable data are
often shared. To maintain conservative approximations,
it may therefore be necessary to propagate|upon as-
signment into a dynamic structure|a new size to many
structures. Identi�cation of structures that share a da-
tum d is, however, di�cult because d has no information
about the pointers to it. A possible approach to extend-
ing dge to mutable data is to not propagate reductions
in a mutable datum's size. Instead, its size estimate
can be reconstituted periodically. Such size reconstitu-
tion can occur in the language implementation's garbage
collector.5 Since this approach permits approximations
that may overestimate a datum's size, it may|in some
cases|select expressions for concurrent evaluation that
do not contain enough computation to compensate for
scheduling overheads. However, if a large percentage of
the dynamic scheduling decisions are correct, dynamic
granularity estimation in the presence of modi�cations
to dynamic structures may be viable.

6 Implementation

The dynamic component of dynamic granularity estima-
tion has been implemented in the Standard ML of New
Jersey 0.73 optimizing compiler [2]. The MP queue-
based multiprocessing platform [22, 4] provides thread
creation, synchronization, and management primitives.
The sml2c code generator [28] outputs C code for exe-
cution on a 20-processor shared-memory Sequent Sym-
metry.

The compiler and run-time system were modi�ed to
incorporate one machine word (32 bits) of length infor-
mation into the standard (three-word) representation of
every cons cell (cf. x3.2). The compiler's front end was
modi�ed to distinguish cons cells from all other types of
dynamic objects. This modi�cation identi�es cons cells
as such for the compiler's back end. The code generator
was modi�ed to produce code that computes list lengths
upon cons-cell formation. Since a list's length is repre-
sented by a full machine word, code for approximating
list lengths is unnecessary and is not generated. We in-
troduced high-level functions to provide access to a list's
length information. This allows integer lengths to be
manipulated as ML values and to be compared against
the overhead-threshold values (determined empirically,
x2). Low-level primitives, i.e. abstract machine instruc-
tions, would provide even better performance.

The static component for dge has not been imple-
mented. Abstract evaluation was performed manually.

7 Results

Figure 8 gives the results of dynamic granularity estima-
tion applied to a quicksort (qs, Figure 2) sorting a list
of 10000 random integers. The recursive applications of
qs for sorting sublists were performed in parallel on 8
processors.6 The graph plots list-length cuto�s versus

5A copying garbage collector (e.g., [3, 8]) traverses a data
structure in its entirety|it is a simple matter for such a collector
to recompute structure sizes.

6The graph's standard parallel execution time is a speedup of
3:8 (on 8 processors) over standard sequential execution.

3

4

5

6

7

8

9

10

11

12

13

14

0 2 4 6 8 10

T
i
m
e

(
s
)

List-Length Cutoff

std(exec)
std(gc)

std(total)
dge(exec)
dge(gc)

dge(total)

Figure 8: E�ect of varying the list-length cuto� threshold in parallel evaluation with 8 processors of quicksort (Figure 2).

execution time. Here, we examine the e�ect of varying
qs's list-length cuto� value on the program's execution
time. Parameters of a speci�c language implementa-
tion and machine architecture would enable dge's static
component to automatically select a concrete cuto�.

Execution, garbage collection, and total times are
given for qs with and without dge. The graph's top
two curves are the total time required with dynamic
granularity estimation (dge) and with standard parallel
evaluation (std) respectively. The x-axis is the cuto�
values at which threads are retained for sequential eval-
uation. For the dge times, a length cuto� i indicates
that the arguments to append in qs evaluate in parallel
only when the lengths of the sublists bound to l and g
both equal or exceed i. The (std) times are for an ML
implementation without the modi�cations and associ-
ated overhead for maintaining list-lengths at run time.
The graph's lower curves break the total time into ex-
ecution (exec) and garbage collection (gc) times. Time
spent in the operating system are included in the total
times.

Dynamic granularity estimation improves qs's per-
formance at all cuto� values i, 0 � i � 10. If thread
creation is throttled when sublists are of length < 3,
dge reduces the total time to execute the program by
� 23%. Figure 8 also reveals that garbage collection
times slightly decrease as the cuto� length increases|
fewer threads require fewer memory resources.

Two peculiarities in the timings of Figure 8 require
further explanation. First, the non-monotonicity of the
execution times arises because of a secondary e�ect: As
the machine �lls with threads, it becomes advantageous
not to create new threads|even if these threads con-
tain large amounts of computation relative to schedul-
ing costs|since the machine is fully utilized. The in-

put data to qs and the length cuto� (indirectly) inu-
ence the machine's load and cause this behavior. The
second peculiarity is that the performance of dge at a
cuto� of zero is better than that of the standard imple-
mentation. This is so even though both versions create
the same threads and the run-time system for dge in-
curs overhead; it allocates more data and performs more
computation in maintaining list lengths than standard
parallel evaluation. This occurs because the larger cons
cells (four machine words versus three) of the dge run
time improve processor data-cache performance.7

8 Related Work

Most similar to our work is that of Debray, Lin, and
Hermenegildo [6] in the context of parallel logic lan-
guages. They solve recurrence equations at compile
time to obtain upper bounds on execution times. For
recursive functions dependent on input sizes, their tech-
nique traverses function inputs at run time to compute
sizes|parallelization dynamically hinges on these sizes.
Our dge technique uses lower-bound cost estimates; we
lose parallelism in return for parallelism guaranteed to
be bene�cial whereas the technique of Debray et al.may
sometimes create small inexpensive threads (with rela-
tively large scheduling overheads) in return for more
parallelism. A system that computes both upper and
lower bounds may provide even better information for
dynamic expression scheduling.

Other related work addresses granularity estimation
performed entirely at compile time. Aside from sim-

7This was veri�ed by experiment. Setting cons-cell sizes to
four machine words, improves the performance of some pro-
grams. Note that this phenomenon is, however, highly machine
and implementation dependent.

ple heuristics [12], work on static granularity estimation
falls into one of two categories: load-balancing strategies
that continually monitor the number of active threads
in the machine to determine when it saturates, and sys-
tems that statically derive an algorithm's time complex-
ity, if possible.

In Halstead's Multilisp [13, 14], the program ceases
to create new parallel threads when the machine satu-
rates with threads. When this occurs, processors evalu-
ate the available threads to completion. Idle processors
steal threads from busy processors in this load-based in-
lining scheme. Load-based inlining, in the presence of
Multilisp's futures, poses deadlock problems, but these
can be avoided by Mohr et al.'s lazy task creation tech-
nique [21, 20]. Lazy task creation e�ciently extracts
computation from inlined threads when no runnable
threads exist. Although lazy task creation increases the
granularity of programs by coalescing threads, unlike
dge, it does not prevent the production of �ne-grain
threads that are detrimental to the program's quick
evaluation. WorkCrews [30] is a thread management
package that performs lazy task creation, but requires
programmer knowledge of the mechanism. Qlisp [10]
provides primitives for performing load-based thread
creation as well as automatic load-based inlining [23].

Dynamic granularity estimation is a load-insensitive
technique that only creates parallel threads that are
guaranteed to meet or exceed some granularity criterion.
Therefore, dge is orthogonal to|and complements|
existing load-based inlining and task creation methods.

Harrison's parallel Lisp system, PARCEL [15], em-
ploys a non-standard list representation that dynami-
cally maintains information about a list's length. PAR-
CEL uses length information to implement lists contigu-
ously in memory, but not for making parallelization or
load-balancing decisions.

Static time-complexity analysis has been studied ex-
tensively; static algorithm and program analyzers have
been built. Since the general problem of deducing a pro-
gram's complexity is undecidable, these systems cannot
always deduce a program's complexity. In many cases,
however, the analyzers do correctly deduce the com-
plexity of a program. METRIC [32] transforms Lisp
programs into a set of mutually recursive equations and
then seeks their solution to yield the program's com-
plexity. Le M�etayer's ACE complexity evaluator [19]
matches list-based functional programs against a prede-
�ned library of function de�nitions to map programs to
their time complexities. Sands extended this approach
to higher-order lazy languages [27].

Dornic, Jouvelot, and Gi�ord [7] describe a practical
time system that statically infers a function's complex-
ity from its local de�nition; i.e., their analysis does not
require interprocedural information. Reistad and Gif-
ford [25] recently extended this system to admit static
programmer annotation of upper bounds on data struc-
ture sizes. Statically, their time system propagates such
upper bounds from a datum's point of creation to its
subsequent uses. Static time systems are, however, overly
imprecise since they determine the costs of recursive
functions using only a programmer-supplied upper bound
of data structure sizes, or they err conservatively and al-
ways assume that application of a recursive function is
expensive. In contrast to dynamic granularity estima-

tion, static time-complexity analyses cannot accurately
predict an expression's cost when dynamic data sizes
are not known at compile time.

Dynamic granularity estimation's static analysis is a
form of abstract interpretation [5, 1, 18]. It di�ers from
conventional abstract interpretation in two respects: it
assumes the availability of dynamic information, and it
does not abstract to �nite domains|instead, the thresh-
old that governs thread creation is used to terminate
dge's analysis. Wadler addresses the di�culties of
static time analysis in (lazy) functional languages [31].

We have previously used run-time information to
dynamically discover parallelism in imperative higher-
order programs that build and modify dynamic data
structures [17, 16].

9 Conclusion

Dynamic granularity estimation (dge) is a hybrid static-
dynamic technique that assists the automatic paralleliza-
tion of functional programs|it examines the run-time
sizes of data structures and only creates parallel threads
that always contain enough computation to o�set their
scheduling overheads. Hybrid (compile/run time) tech-
niques like dge are necessary for e�ective parallelization
since static analyses performed entirely at compile time
are inherently conservative. An implementation of dge
for lists suggests that run-time techniques are a power-
ful means for selecting threads suitable for parallel eval-
uation. We view the application of dge to languages
with general dynamic data structures and arrays as a
promising line for further investigation.

Acknowledgement

This work was supported in part by the National Sci-
ence Foundation under grant CCR-9101035 and by the
Wisconsin Alumni Research Foundation. L. Huelsber-
gen was supported by an ARPA fellowship in parallel
processing; thanks to John Williams and IBM Almaden
for hosting the internship associated with this fellow-
ship.

References

[1] S. Abramsky and C. L. Hankin, editors. Ab-
stract Interpretation of Declarative Languages. El-
lis Horwood Ltd., Chichester, West Sussex, Eng-
land, 1987.

[2] A. W. Appel and D. B. MacQueen. A Standard
ML compiler. Functional Programming Languages
and Computer Architecture, 274:301{324, 1987.

[3] C. J. Cheney. A nonrecursive list compacting algo-
rithm. Communications of the ACM, 13(11):677{
678, November 1970.

[4] E. C. Cooper and J. G. Morrisett. Adding threads
to Standard ML. Technical Report CMU-CS-90-
186, School of Computer Science, Carnegie Mellon
University, December 1990.

[5] P. Cousot and R. Cousot. Abstract interpreta-
tion: A uni�ed lattice model for static analysis of

programs by construction or approximation of �x-
points. In Symposium on Principles of Program-
ming Languages, pages 238{252. Association for
Computing Machinery, 1977.

[6] S. K. Debray, N.-W. Lin, and M. Hermenegildo.
Task granularity analysis in logic programs. In
Conference on Programming Language Design and
Implementation, pages 174{188, June 1990.

[7] V. Dornic, P. Jouvelot, and D. K. Gi�ord. Poly-
morphic time systems for estimating program com-
plexity. ACM Letters on Programming Languages
and Systems, 1(1):33{45, March 1992.

[8] R. R. Fenichel and J. C. Yochelson. A Lisp
garbage-collector for virtual memory computer sys-
tems. Communications of the ACM, 12(11):611{
612, November 1969.

[9] C. N. Fischer. Crafting a Compiler. Benjamin-
Cummings, 1988.

[10] R. P. Gabriel and J. McCarthy. Queue-based multi-
processing Lisp. In Lisp and Functional Program-
ming, pages 25{44. Association for Computing Ma-
chinery, August 1984.

[11] R. Goldman and R. P. Gabriel. Qlisp: Ex-
perience and new directions. In Proceedings
of ACM/SIGPLAN PPEALS 1988 (Parallel Pro-
gramming: Experience with Applications, Lan-
guages and Systems), pages 111{123, July 1988.

[12] S. L. Gray. Using futures to exploit parallelism in
Lisp. Master's thesis, MIT, February 1986.

[13] R. H. Halstead, Jr. Multilisp: A language for con-
current symbolic computation. ACM Transactions
on Programming Languages and Systems, 7(4):501{
538, 1985.

[14] R. H. Halstead, Jr. An assessment of Multilisp:
Lessons from experience. International Journal of
Parallel Programming, 15(6):459{501, 1986.

[15] W. L. Harrison and D. A. Padua. PARCEL:
Project for the automatic restructuring and concur-
rent evaluation of lisp. In International Conference
on Supercomputing, pages 527{538, July 1988.

[16] L. Huelsbergen. Dynamic Language Parallelization.
PhD thesis, University of Wisconsin{Madison, Au-
gust 1993.

[17] L. Huelsbergen and J. R. Larus. Dynamic program
parallelization. In Lisp and Functional Program-
ming, pages 311{323. Association for Computing
Machinery, June 1992.

[18] L. S. Hunt. Abstract Interpretation of Functional
Languages: From Theory to Practice. PhD thesis,
Department of Computing, Imperial College of Sci-
ence, Technology and Medicine, University of Lon-
don, 1991.

[19] D. Le M�etayer. ACE: An automatic complex-
ity evaluator. ACM Transactions on Programming
Languages and Systems, 10(2):248{266, April 1988.

[20] E. Mohr. Dynamic Partitioning of Parallel Lisp
Programs. PhD thesis, Yale University, August
1991.

[21] E. Mohr, D. Kranz, and R. H. Halstead, Jr. Lazy
task creation: A technique for increasing the gran-
ularity of parallel programs. In Lisp and Functional
Programming, pages 185{197. Association for Com-
puting Machinery, June 1990.

[22] J. G. Morrisett and A. Tolmach. Procs and locks:
A portable multiprocessing platform for Standard
ML of New Jersey. In Principles and Practice of
Parallel Programming, pages 198{207. Association
for Computing Machinery, May 1993.

[23] J. D. Pehoushek and J. S. Weening. Low-cost
process creation and dynamic partioning in Qlisp.
In US/Japan Workshop on Parallel Lisp, pages
183{199. Lecture Notes in Computer Science, June
1989.

[24] G. D. Plotkin. Call-by-name, call-by-value, and the
�-calculus. Theoretical Computer Science, 1:125{
159, 1975.

[25] B. Reistad and D. Gi�ord. Static dependent costs
for estimating execution time. In Lisp and Func-
tional Programming. Association for Computing
Machinery, June 1994.

[26] J. C. Reynolds. GEDANKEN|a simple typeless
language based on the principle of completeness
and the reference concept. Communications of the
ACM, 13(5):308{319, 1970.

[27] D. Sands. Complexity analysis for a lazy higher-
order language. In ESOP, pages 361{376. Lecture
Notes in Computer Science, May 1990.

[28] D. Tarditi, A. Acharya, and P. Lee. No assembly
required: Compiling Standard ML to C. Technical
Report CMU-CS-90-187, School of Computer Sci-
ence, Carnegie Mellon University, November 1990.

[29] M. Tofte. Operational Semantics and Polymor-
phic Type Inference. PhD thesis, University of Ed-
inburgh, Department of Computer Science, May
1988.

[30] M. T. Vandevoorde and E. S. Roberts. WorkCrews:
An abstraction for controlling parallelism. Interna-
tional Journal of Parallel Programming, 17(4):347{
366, 1988.

[31] P. L. Wadler. Strictness analysis aids time analysis.
In Symposium on Principles of Programming Lan-
guages, pages 119{132. Association for Computing
Machinery, January 1988.

[32] B. Wegbreit. Mechanical program analysis. Com-
munications of the ACM, 18(9):528{539, Septem-
ber 1975.

