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Abstract- This paper introducesabstract program evalua-
tion (APE) that, for certain kinds of evolutionary induc-
tion problems, abstractly captures the maximal set of a
problem’s fitness tests. Abstraction of test cases can sub-
stantially reduce the number of such cases—fewer test
cases lead to faster fitness computation. APE thereby can
make some heretofore untenable induction problems solv-
able. Furthermore, since the computational representa-
tion (program, circuit, etc.) beingevolved with APE is ab-
stractly tested on every possible input,evolved solutions
which pass all abstract tests are general—APE guaran-
tees correctness for every possible input. APE transforms
operators in the representation to compute with the ab-
stract values of the abstract test cases instead of with con-
crete values (i.e., integers or reals); it is a form of symbolic
evaluation of the executable representation. We discuss
induction problems to which APE is suited as well as its
limitations.

APE, in the context of a machine-language representa-
tion, has been used toevolve general solutions to two in-
duction problems: finding the maximum of four integers;
and, sorting three integers into ascending order. General
solutions to both problems are difficult for evolutionary
search because large test-case sets seem necessary. Since
APE drastically reduced test-set sizes, general solutions—
which are correct for all possible input integers—were
obtained for both problems. The sorter routines are the
largest evolved machine-language programs reported to
date and the first sorting programs evolved using only a
low-level representation (i.e., one without high-level op-
erators for ordering and exchanging elements). Random
search results confirm that evolutionary search is indeed
effective on the two problems.

1 Introduction

Induction of executable representations—programs, circuits,
or arbitrary automata—by evolutionary search requires the
frequent measurement of a candidate solution on a set of fit-
ness tests to ascertain the candidate’s fitness. For target func-
tions that map large domains to some range (e.g., integers to
integers), a set of testsT that identifies a correct and gen-
eral solution is likely to be very large, if not infinite. Fitness
attribution with respect to such a setT is therefore a compu-
tationally expensive process; a new candidate requires on the
order ofjT j evaluations to precisely ascertain its fitness.

To make evolutionary search in the spaces of computa-
tion structures tractable, systems in practice consider only a
subset,�T � T , (perhaps randomly chosen over time) against
which they evaluate new candidates to attain approximate fit-
ness measures. This strategy reduces the computational ex-
pense of fitness determination, but now admits “solutions”
that may not be correct in general. Alternately, it may not be
possible to design an approximate test set�T that provides any
useful solutions at all.

This paper proposesabstraction of test cases from large,
perhaps infinite, sets containing concrete tests to small and fi-
nite sets of abstract tests. Along with appropriate transforms
of the operators of the representation being evolved, this pro-
posal makes some heretofore untenable induction problems
tractable. The central idea is toevaluate programs symboli-
cally rather than concretely.

Abstract program evaluation (APE) is introduced here as
a mechanism for collapsing a concrete test-case set into a
smaller, but abstract, set for two purposes:

� reduction of fitness computation times

� guarantee of solution correctness

The first point is achieved because the abstract test set is
smaller than the concrete set; the second point is met since
the abstract test set contains the entire concrete set (with re-
spect to some program property). Reductions due to APE
may be quite large; for example, in the experiments of this
paper, APE reduces infinite test sets to abstract sets contain-
ing only a few (� 10) elements.1

In this paper we describe APE in the context of generic
machine-language induction (MLI;e.g., [4, 5, 2, 16, 11])—
software program induction over integer inputs and outputs
where programs are represented as sequences of machine-
language instructions operating on integer data in registers.
APE is, however, representation independent and equally ap-
plicable to GP (e.g., [14]) and GP variants, evolvable hard-
ware (e.g., [18]), and other forms of evolutionary automata
induction,etc.

As an example of APE’s operation, consider searching for
an extremely simple program function,max, that compares
two integer variables,x andy, and determines their maxi-
mum. C code solving this problem might look as follows:

if (x > y)
y = x;

1We remark here, and further discuss later (x5), that a drastic reduction
in test set size can be detrimental to the gradient necessary to learn the target
function. This can possibly be mitigated by reintroducing some concrete
tests.



Evolving this functionality in a generic representation—one
that includes arithmetic, Boolean logic, variable assignment,
comparison, and arbitrary control flow—requires test cases
that contain concrete pairs of integer values forx andy. An
induction system might require many such pairs to learn that
the desired feature is the order relation (<) betweenx and
y. Of course it is not known a priori what sets of pairs suf-
fice for solution and it is not practical to evaluate all possi-
ble input pairs.2 Existing systems therefore use anad hoc
set of tests, perhaps randomly constructed. Incomplete test-
case sets however allow for the possibility that a “solution”
is not general—that is, it may not produce the required re-
sult (y max(x; y)) for all x andy. This is because the
evolved programs may contain essentially extraneous instruc-
tions that do not adversely influence the computation of the
desired function on the test suite, but may have deleterious
effects on other, non-tested, inputs. If, on the other hand, a
smaller range of integers (e.g., 8-bit integers) is considered in
its entirety, resulting “solutions” are valid only on restricted-
size inputs. Solutions found usingad hoc test cases therefore
require an external proof of correctness, currently performed
by humans (if at all). On the other hand, if it were known
that a solution had passed all possible tests (perhaps infinite
in number), its correctness for any input will have been estab-
lished through its evolution. Tractable fitness evaluation and
general solutions are the goals of APE.

In the example of themax function, APE can abstract the
values ofx andy asXAbs andYAbs to yield the two-element
abstract test set:

fXAbs > YAbs ; XAbs < YAbsg

That is, the first test case initializesx to an abstract value
that denotes any integer greater thany and initializesy to
an abstract value that denotes integers less thanx. Similarly,
the second test case givesx an abstract value that denotes
all integers less thany and givesy an abstract denotation of
all values greater thanx. This abstract test set—along with
an abstract evaluator derived from the representation being
evolved (in our case: arithmetic, Boolean logic, assignment,
comparison, and control flow) that can compute with abstract
values—completely specifies the target functionfor all pos-
sible input values. The abstract evaluator, for example, can
compare two registers containing abstract values (of the “<”
relation) and return a definite result: true or false. Compar-
ing abstract values to concrete values, or performing arith-
metic not defined for abstract values, may further propagate
the undefined value(s) or it can produce a fault (which could
identify the program as unfit, for example). If evolutionary
search finds a solution that passes both test cases of this ex-
ample, then it has found a completely general solution for all
integers. Furthermore, such a solution is correct for integers
of unbounded size. Note that APE reduces test-case size and

2On contemporary processors, integers typically reside in at least 32 bits;
the domain formax is therefore of size(232)2, an infeasible number for
exhaustive evaluation.

simultaneously guarantees solution correctness. In Section 3
we give an abstract interpreter for generic machine-language
instructions that handles concrete values (integers) and ab-
stract values (of the “<” linear order).

APE abstracts relationships between the concrete data com-
prising a conventional set of tests. It is therefore applicable to
programs that compute only with relationships between the
data elements and not necessarily with the values of the ele-
ments. The functionmax, for example, does not require the
concrete values of its arguments, but only information about
their relative position in the linear order. In particular, if the
function requires all of the information contained in its argu-
ments to compute its result, abstraction via APE is not ap-
parently useful. However, APE can cope with many types of
computations. Functions that compute properties of the shape
of data structures—e.g., the depth of a tree, for example—are
candidates for APE. Similarly, functions computing proper-
ties of numeric values, such as the sign (+ or �), stand to
benefit from APE.

Using APE, we have evolved two programs:4-max finds
the maximum among four input integers;3-sort sorts three
input integers into ascending order. The latter is the first sort-
ing program evolved in a representation that does not include
high-level “primitives” for ordering elements (cf. [13, 17]).
The evolved routines were synthesized solely from generic
machine language instructions—no domain specific opera-
tors that could artificially simplify evolution’s task were in-
troduced. The sort routine is the largest machine-language
program discovered automatically, by evolutionary search or
other machine methods, to date. Since APE guarantees that
solutions are correct for any integer inputs, a human proof
of its correctness is unnecessary. Random search conducted
for both functions confirms that the directed evolutionary ap-
proach is indeed effective for4-max and3-sort.

The nextsection describesabstract interpretation [1]—
the program analysis technique on which APE is based. It
also covers prior work related to program induction and MLI
in particular, as well as work on sorter evolution. Section 3
describes the APE virtual register machine and contains the
details of our particular APE implementation. Sections 4 and
5 contain the experimental setup and results. We summarize
with a discussion.

2 Background

APE is based on ideas ofabstract interpretation [1, 3] from
programming language theory. Abstract interpretation is used
in program analyses to perform compile-time optimization.
To convey the idea of abstract interpretation (and of APE), we
first give an example of abstractly interpreting a conventional
program with respect to an abstract domain. Then, we cata-
log some program and circuit induction approaches that may
stand to gain from APE; we also supply details of prior work
on machine-language induction, the form of program induc-
tion employed in this paper’s APE examples. An overview of



prior work on sorter evolution/induction concludes this sec-
tion.

2.1 Abstract Interpretation

The canonical example of abstract interpretation applied to
a conventional program—one written by humans—is that of
the “rule of signs.” The description presented here is a dis-
tillation of the introduction provided in Field and Harrison’s
book ([3], p. 526). Consider a program with expressions that
perform standard arithmetic (addition, multiplication) on in-
tegers. We wish to analyze statically the program to deduce
the sign (“+” or “�”) that each variable or expression may
take.3 We transform the domain of integersZ into the ab-
stract domainZ# = f+;�g. An integer variable or expres-
sion in the original program, under abstract interpretation, as-
sumes the value “+” if it is known to be positive throughout
its lifetime and the value “�” if it is always less than0. Ad-
ditionally, we use the symbol? (bottom) to denote an unas-
signed value (that may during interpretation become “+” or
“�” and the symbol> (top) to denote an expression or vari-
able that can assumeboth “+” and “�”.

Now, given the “rule of signs” that states that multiplica-
tion of two positive integers gives a positive result (as does
multiplication of two negative integers) and that multiplica-
tion of opposite signs gives a negative integer, we can ab-
stractly interpret the sign of the assignmentz = x � y by
knowing only the signs ofx andy. If x andy are both posi-
tive (or are both negative), the resultz is also positive; other-
wise, the sign must be negative. Abstract interpretation of the
program overZ# infersz’s sign by evaluating the right-hand
side using the “rule of signs.” All variables are initialized
to ? before interpretation begins; inputs are initialized with
their abstract sign.

If we introduce a sign rule for addition, we must handle
the situations where the sign becomes indeterminate (either
“+” or “�”). In such situations, the abstract value becomes
> which represents either alternative. For example, in the
assignmentu = x+ y, the sign ofu is positive ifx andy are
both positive, negative ifx andy are both negative, and>
otherwise. The undefined value? (or the overdefined value
>), when supplied to an arithmetic operator, typically forces
the abstract result to>.

Note how an implementation of the “rule of signs” could
be used to evolve abstractly functions sensitive to the signs
of their integer arguments without regard to the integers’ ac-
tual values. In this manner, an infinite domain (Z) is approxi-
mated by a smaller finite one (Z#). In this paper, APE manip-
ulates domains—somewhat more complex than (Z#)—that
linearly relate the magnitudes of integers and thereby admit
comparison (but not arithmetic in general).

Whereas abstract interpretation is a compile-time analy-
sis technique possessing strong termination properties4, APE

3For simplicity, we take the sign of zero to be “+”.
4Typically in abstract interpretation, domains are finite and functions on

operates dynamically during evaluation and, in the case of a
non-terminating concrete program, need not ensure termina-
tion of the abstract program. As we shall see, APE simultane-
ously computes with both abstract and concrete values within
the same program.

2.2 Program/Circuit Induction

Machine-language Induction (MLI) ( e.g., [11, 16, 2, 4, 5]) is a
form of genetic algorithm (GA) [6, 9] that—analogous to ge-
netic programming (GP) [14] of Lisp expressions—searches
the space of machine-language programs. GAs use princi-
ples from evolutionary theory (populations, fitness criteria,
recombination) to search large non-linear spaces. GAs typi-
cally usecrossover [6] as the “genetic operator.” Instead, we
notably usemacro-mutation—the “headless chicken” opera-
tor of Jones [12]—since we found (e.g., [11]) that it consis-
tently works better than crossover.

The early MLI experiments of Friedberget al. [4, 5] were
not successful when compared to random search. Friedberg
et al. however anticipated and influenced the MLI ideas of
today. Cramer [2] describes a more recent experiment that
uses a representation similar to a machine language, but en-
dowed with high-level iteration operators. Nordin’s contem-
porary system [16] manipulates native machine-code (as op-
posed to the interpreted virtual machines used here) to speed
fitness-test evaluation. Neither Cramer [2] nor Nordin [16]
provide experimental validation that their search experiments
were truly effective—by comparing to random search5, for
example. Though the prior MLI approaches [4, 5, 2, 16],
can conceptually admit arbitrary control flow (forward and
backward) and hence unstructured loops,etc., these systems
do not provide mechanisms for this; hence, the experiments
are limited either to forward control flow [16, 4, 5] or to it-
eration via high-level loops [2]. Our approach has been to
experimentally demonstrate mechanisms that can evolve gen-
eral functions—free to utilize any control flow evolved from
conditional branches—from generic machine-language prim-
itives. Random search validates our results.

Another promising venue for APE isevolvable hardware
(see [18] for examples) for here too the number of test cases
can be enormous. As with the APE examples in this paper,
the hardware operators (gates) must be transformed to the ab-
stract operators (collections of gates) that manipulate abstract
values.

2.3 Sorter Evolution

In his paper on co-evolution [8], Hillis tackles the problem
of evolving asorting network. A sorting network provides a
set of parallel lines, each carrying an element to be sorted.
Comparisons and exchanges between elements are affected

abstract values are monotonically increasing [3, 1].
5Our experience [10] indicates that for small problems it is often possi-

ble for random search to find solutions in time comparable to evolutionary
methods.



by connecting a pair of lines. Minimizing comparisons is the
goal of Hillis’ paper. In sharp contrast to ours, Hillis’ system
is specialized for sorting. On the other hand, our sorters—
though evolved from a generic and general machine-language
representation—currently handle only small inputs (three el-
ements) in contrast to Hillis’ networks which process 16 el-
ements. Kozaet al. [15] implemented a system similar to
Hillis’ in reconfigurable hardware constructed from an FPGA
and evolved optimal 7-element sorting networks.

O’Reilly and Oppacher [17] first reported results of evolv-
ing a general sort using a GP framework that included high-
level looping and aswap operator. The experiments did not
result in perfect sorters. Their notion of generality is slightly
broader than that of this paper; not only did they stipulate
that any integer sequence of fixed length be sorted (as we do
in this paper with length-3 sequences), but that the input se-
quence be of variable length as well. Kinnear [13] extended
O’Reilly and Oppacher’s work [17] with an additional opera-
tor tailored for sorting (order) that exchanges two elements
into ascending order. Although GP was able to find general
sorting solutions when given theorder “primitive” for sort-
ing two elements, the resulting solutions were proved gen-
eral only by human inspection; our sorters are automatically
proved general by virtue of APE. Unfortunately, the GP ex-
periments on sorting [17, 13] lack the validation of random
search.

3 Virtual Register Machine A

Here we define an APE virtualregister machine (VRM) that
operates on abstract domains suitable for solving the4-max
and3-sort problems. This VRM is called VRM-A (“Ab-
stract”) and is very similar to the VRM-S that we defined pre-
viously [10]. Specifically, VRM-A’s instructions are those of
VRM-S with the omission of the latter’s I/O instruction and
the inclusion of theMod arithmetic instruction for complete-
ness. We refer the reader to the definition of VRM-S [10]
for details of VRM evaluation (branching, termination, ex-
ceptional arithmetic conditions,etc.) as well as for complete
descriptions of the instructions.

The notation VRM-A(n;m) names a particular VRM-A
that consists of external state (m registers containing either an
integer or an abstract value), internal state (a program counter
and comparison flag) and a sequence ofn immutable abstract
instructions.

3.1 External State: Registers

Let theregister state be a vector
~R � hR0; : : : ; Rm�1i

of m values; a value may either be an integer or an abstract
value denoting some property of the input test data. We define
the functionAbs(Ri)! Bool so that the VRM interpreter
can determine if the content ofregisterRi is abstract.

Program inputs (abstract or concrete) are placed in the ini-
tial state~R. Outputs are taken from the final register state~R0.

Non-input registers are initialized concretely to zero.

3.2 Internal State: PC, Flag

In addition to the external register state, VRM-A maintains
two pieces of internal state: a program counter (PC) and a
comparison flag (Flag). The program counter is an integer,
0 � PC < n, that selects which instruction to fetch and
execute. Branch instructions modify thePC to point to the
branch’s target; all other instructions always increment the
PC to point to the next instruction. ThePC is initially set to
zero.

TheFlag reflects the result of the last comparison instruc-
tion executed. It can assume the valuesless, greater, and
equal. Flag is initially undefined. Only the comparison in-
struction (see below) can modify theFlag state.

3.3 Instruction Set

A program is a vector ofn instructions
~I � hI0; : : : ; In�1i

The program counter naturally corresponds to an index of~I .
A programterminates whenPC = n, that is, when evaluation
steps past the end of the program. (Our evaluation strategy
also limits the maximum number of instructions evaluated;
see Section 3.5.) Figure 1 contains the essential VRM-A’s
instructions and their operational semantics. Additionally,
VRM-A also includes instructions to clear aregister to zero
(Clr, similar toSet), to decrement a register (Dec, similar
to Inc) and the arithmetic functionsSub, Mul, Div, and
Mod. (See [10] for explicit definitions.) In total, VRM-A
contains 17 different instructions and its instruction set forms
the core of the instruction sets of contemporary processors.
Note that VRM-A doesnot contain domain-specific instruc-
tions (such asswap [17] or order [13]) that could abet
sorter evolution, for example.

New to VRM-A is the abstract operation of the instruc-
tions under APE. TheMov instruction simply transfers the
content of its source to the destination regardless of whether
source (or destination) are concrete or abstract. Similarly,
Set andClr overwrite the register contents with concrete
integer constants. The functionsInc, Dec, andNeg, Add,
etc., first check if the register is abstract or concrete. If it is
abstract, the destination register is made undefined (?); oth-
erwise, the operation on the concrete integer(s) is performed
and the destination register updated.

The Cmp instruction is central to APE for evolving the
functions of interest,4-max and3-sort. It can examine
the order implied by two abstract values. Note that if both
of Cmp’s registers are concrete, an integer comparison is per-
formed. If both are abstract, they are comparedwith respect
to their position in the abstract linear order. All elements
of the linear order are contained in every test of the test-case
set and the test set consists of all permutations of this order
(x4.1). If one register is abstract and the other concrete, the
comparison is undefined and? is placed in theFlag. The re-



Mov(Rdst,Rsrc) �

�
PC  � PC + 1
Rdst  � Rsrc

Set(Ra) �

�
PC  � PC + 1
Ra  � 1

Inc(Ra) �

0
@ PC  � PC + 1

Ra  �

�
? if Abs(Ra)
Ra + 1 otherwise

Neg(Ra) �

0
@ PC  � PC + 1

Ra  �

�
? if Abs(Ra)
0�Ra otherwise

Add(Rdst,Rsrc) �

0
@ PC  � PC + 1

Rdst  �

�
? if Abs(Rdst) _ Abs(Rsrc)
Rdst +Rsrc otherwise

NOP �
�

PC  � PC + 1

Cmp(Ra,Rb) �

0
BBBB@

PC  � PC + 1

Flag �

8>><
>>:

? if (Abs(Ra) ^ :Abs(Rb)) _ (:Abs(Ra) ^ Abs(Rb))
less if Ra < Rb
greater if Ra > Rb
equal otherwise

J(offset) �
�

PC  � min (max (0;PC + offset) ; n)

Jl(offset) �

�
PC  �

�
min (max (0;PC + offset) ; n) if Flag = less
PC + 1 otherwise

Jg(offset) �

�
PC  �

�
min (max (0;PC + offset) ; n) if Flag = greater
PC + 1 otherwise

Je(offset) �

�
PC  �

�
min (max (0;PC + offset) ; n) if Flag = equal
PC + 1 otherwise

Figure 1: Partial operational semantics for the virtualregister machine VRM-A. Not shown areClr (similar toSet), Dec
(similar toInc), and arithmetic instructionsSub, Mul, Div, Mod (similar toAdd).



sultingFlag state governs the conditional branch instructions
Jl, Jg, andJe. In this manner, dynamic control flow may
be effected by the results of comparisons of abstract values.

3.4 Abstract DomainZ<

The abstract values of VRM-A specify a finite linear order
of sizen on the relation “<” among integers. Here,n corre-
sponds to the number of input integers to a program. More
formally, let

Z<(n) =
�
X<

1 ; : : : ; X
<
n

	

denote an abstract domain ofn abstract values,X<
1 ; : : : ; X

<
n ,

whereX<
i < X<

j if i < j.
In VRM-A, theCmp instruction, operating on two abstract

valuesX<
i andX<

j , will compare their indices to ascertain
whether or not the “<” relation holds. As described in Sec-
tion 4.1, a test set contains all permutations ofZ<(n).

3.5 Evaluation Function
An interpreter evaluates ann-instruction VRM-A(n;m) pro-

gram ~I with respect to anm-register input state~R and an
integer number of evaluation steps (instructions),K > 0. EA
maps a triple to a singleton:

EA :
�
~I; ~R;K

�
! ~R0 (1)

EA produces the final register state~R0 after executing at most
K instructions.6

We overload the notation:EA(~I; t) ! ~v means that the
evaluation of test caset on program~I produces answer vector
~v; the initial and finalregister state, the layout of~v, andK are
implied from the context;EA(~I; t)[i] denotes thei-th answer
element.

4 Experimental Setup
This section describes the search methods—population-based
macro-mutation (GA-MM), and random search—used in find-
ing solutions to4-max and3-sort. Before describing the
individual methods, we first define their test-case sets and fit-
ness functions. The quantitative settings (e.g., test-case and
program size) are given in the next section (x5).

4.1 Test Cases
The abstract test-case set for a program ofn input integers is

T<(n) = Permute(Z<(n))

wherePermute(S ) denotes the set of all permutations of the
finite setS. Note thatPermute(S ) containsn! elements. For
3-sort and4-max which operate on three and four input
integers respectively, the test case sets areT<(3) andT<(4).

6Since our VRM-A evaluator is an interpreter (essentially Figure 1), it
can easily be halted after evaluation ofK instructions.

For example,3-sort is tested on the six sequences:

T<(3) = f


X<

1 ; X
<
2 ; X

<
3

�
;


X<

1 ; X
<
3 ; X

<
2

�
;


X<
2 ; X

<
1 ; X

<
3

�
;


X<

2 ; X
<
3 ; X

<
1

�
;


X<
3 ; X

<
1 ; X

<
2

�
;


X<

3 ; X
<
2 ; X

<
1

�
g

Similarly, the tests for4-max contain the 24 permutations of
Z<(4).

Although APE reduces the number of test cases via ab-
straction, the size of the test case set remains exponential in
n. This means that APE evolution of programs with large
inputs remains intractable.

4.2 Fitness Functions

For the fitness functions for3-sort and4-max, lower val-
ues indicate better fitness and a fitness of zero indicates a per-
fect program.

The fitness function for evolving3-sort is

Fsort(~I ) = n!�
X

t2T<(n)

nX
i=1

Equal(EA(~I; t)[i]; X
<
i )

wheren = 3 andEqual(x; y) gives1 if x equalsy and0
otherwise. The3-sort fitness is a measure of how close
the program is to sorting the test sequence into ascending or-
der; every incorrect value in the result registers imposes a
unit penalty. Note that concrete values in the output are con-
sidered incorrect; the entire abstract sequence must occur in
linear order in the outputregisters for the sort to be correct
for all possible inputs.

The fitness function for evolving4-max is

Fmax(~I ) =
X

t2T<(n)

max (t)� EA(~I ; t)

wheren = 4, max gives an abstract sequence’s maximum,
andEA(~I; t) is an element ofZ<(n). Again, concrete integer
answers are incorrect and taken to be�1 (i.e., �maxint in
VRM-A). Here, the fitness is a measure of the distance of the
program’s abstract answer to the correct abstract answer.

4.3 Search Methods

Two search methods are compared: population-based macro-
mutation (GA-MM) and random search.7 Point-wise muta-
tion was not used.

Population Selection Population selection, for the construc-
tion of successive generations, is performed viak-tournament
selection (see,e.g., [7]). Let P be the population (set) of
VRM-A programs. To select a single individual fromP , tour-
nament selection examinesk individuals inP and selects the
one with best fitness. When the fitness function cannot dis-
tinguish a single best, one of the best is chosen at random.

7Preliminary experimentation indicated that conventional GA crossover
finds solutions to3-sort and4-max; however, we found GA-MM to do
so somewhat faster. Comparison of macro-mutation to crossover for MLI
can be found elsewhere [11].



4-max

#Solns #Evals #Solns
#Evals

GA-MM 4 6:2� 109 6:5� 10�10

Random 0 1� 1010 0

Parameters: program size,N = 16; registers,M = 12;
instruction limit,K = 10N

3-sort

#Solns #Evals #Solns
#Evals

GA-MM 3 1:37� 1010 2:2� 10�10

Random 0 1:5� 1010 0

Parameters: program size,N = 64; registers,M = 12;
instruction limit,K = 8N

Table 1: Search results for the4-max and3-sort problems. Common parameters are: population size,jP j = 4096;
ProbMM = 0:25. The ratio #Solns=#Evals is a measure of search efficiency.

Operator: Two-Point Macro-mutation Population-based
macro-mutation is a search method that, instead of recombin-
ing fit individuals, randomly mutates a subsequence of con-
secutive instructions in a fit individual. Our GA-MM uses
the “headless chicken” crossover operator proposed by Jones
[12]. No information “crosses over” between individuals un-
der this operator.

To effect macro-mutation, GA-MM first selects a subse-
quence of instructions from a program~I starting at a random
point 0 � pi < n in program~I . The lengthk > 0 of the
subsequence is chosen randomly such thatpi < pi + k � n.
The instructionspi to pi + k � 1 are replaced with random
instructions.

4.3.1 Random Search

The role of random search is to indicate whether a heuristic
search (e.g., GA-MM) is effective (better than guessing) for a
particular problem.

Random search randomly generates an individualp, eval-
uatesp and computes its fitness, and (optionally) recordsp’s
fitness as the best ifp improves on the current best fitness.
This process continues until a sufficient number of global so-
lutions are found or until the number of program evaluations
exceeds a predetermined threshold.

5 Results

The APE VRM-Awas implemented in our custom GA frame-
work (cf. [11]). Table 1 contains the results for finding4-max
and3-sort solutions using macro-mutation (GA-MM) and
random search. The table also contains the parameter settings
of the experiments. GA-MM searches were halted when the
best fitness remained constant for 50 generations (stasis). In
addition to the number of general solutions found, the table
lists the total number of fitness evaluations performed and the
search efficiency.

Initially, we attempted to evolve2-max (maximum of two
input integers) using the APE test setsT<(2). However, GA-
MM did not improve on random search and was therefore
ineffective. We suspect that the small APE test set of only
2! elements does not provide enough of a gradient for the
GA to learn the desired function. Therefore, we turned to

4-max with its larger test suiteT<(4) of 24 elements. (An-
other way of increasing the gradient is to increase the number
of test cases by adding concrete tests to the abstract set; we
have not verified whether or not this approach can be used
to solve2-max.) On the4-max problem, random search
found no solutions whereas GA-MM found four; therefore,
evolutionary search is effective for this problem. A sample
4-max solution is in Figure 2. The four abstract input values
are supplied inR2; : : : ; R5, and the problem size inR1,8 The
program result is computed intoR0.

Solutions to3-sort were harder to come by. Twice
the computational effort over4-max produced 3 general so-
lutions. No perfect solutions were found during the initial
searches with stasis at 50 generations. For each good approx-
imate solution (fitness� 4) found during the initial searches,
we repeated GA-MM search with a stasis setting of 10000
generations. Out of the initial searches’ five good solutions,
three yielded general3-sort algorithms after the extended
search.9 An evolved3-sort is shown in Figure 3. The three
input integers are placed in registersR2; : : : ; R4 and the prob-
lem size (concrete integer 4) inR1. The result is taken from
registersR5; : : : ; R7.

Note that since APE fitness computation complexity scales
with O(n!), searching forn-max andn-sort, for largen,
is intractable (cf. x4.1).

6 Summary

The main contribution of this paper is the idea of abstractly
representing test cases—and abstractly evaluating represen-
tations with respect to the abstract tests—for induction prob-
lems. This abstract approach has two significant benefits: it
can drastically reduce the number of test cases, thereby low-
ering fitness evaluation costs; and, it can guarantee the cor-
rectness of discovered solutions. For evolutionary induction
of programs, we presented an implementation of this idea.
Abstract program evaluation enabled evolution of correct and
general solutions to two problems: finding the maximum of
four integers and sorting three integers. We believe that ab-

8The problem-size input is superfluous in the4-max and3-sort ex-
periments; it was inherited from prior experiments.

9The three solutions were found in searches requiring 479, 2231, and
7521 generations.



stract treatment of executable representations and test cases
can enable solution of yet harder problems via automatic in-
duction in many domains.
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Address Instruction
0: Mov(R0,R3)
1: Cmp(R2,R0)
2: Jl(+4)
3: Neg(R11)
4: Cmp(R3,R4)
5: Mov(R0,R2)
6: Clr(R10)
7: Mul(R1,R7)

Address Instruction
8: Jg(1)
9: Mov(R2,R5)
10: Mov(R5,R4)
11: Jl(-10)
12: Jg(-11)
13: Cmp(R10,R6)
14: Sub(R2,R2)
15: Div(R5,R3)

Figure 2: Sample evolved4-max program.

Address Instruction
0: Mov(R6,R4)
1: Neg(R9)
2: Mov(R4,R3)
3: Sub(R9,R11)
4: NOP
5: Mov(R5,R4)
6: Mov(R7,R2)
7: Set(R0)
8: Mov(R4,R2)
9: Add(R8,R0)
10: Mov(R2,R6)
11: Cmp(R3,R7)
12: Jg(+10)
13: Mov(R6,R4)
14: Neg(R9)
15: Mov(R4,R3)
16: Sub(R9,R11)
17: NOP
18: Mov(R5,R4)
19: Mov(R7,R2)
20: Cmp(R10,R11)
21: Mov(R4,R2)
22: Add(R8,R0)
23: Mov(R2,R6)
24: Cmp(R3,R7)
25: Jg(+10)
26: Cmp(R7,R2)
27: Jg(-1)
28: Neg(R8)
29: Add(R11,R4)
30: J(-20)
31: Add(R6,R9)

Address Instruction
32: Cmp(R9,R7)
33: Sub(R3,R8)
34: Mul(R5,R8)
35: Clr(R5)
36: Mul(R5,R8)
37: Clr(R5)
38: NOP
39: Cmp(R2,R7)
40: Jl(-43)
41: Mov(R2,R3)
42: Dec(R5)
43: Dec(R0)
44: Add(R9,R4)
45: Mov(R3,R7)
46: Jg(-28)
47: Je(-53)
48: Dec(R5)
49: Set(R3)
50: Mod(R8,R5)
51: Add(R4,R8)
52: Add(R6,R11)
53: Div(R9,R10)
54: Set(R7)
55: Set(R11)
56: Neg(R4)
57: Cmp(R1,R2)
58: Inc(R3)
59: Cmp(R1,R3)
60: Dec(R5)
61: Mov(R7,R6)
62: Mov(R3,R7)
63: Jg(-28)

Figure 3: Sample evolved3-sort program.


