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Abstract- This paper introduces abstract program evalua-
tion (APE) that, for certain kinds of evolutionary induc-
tion problems, abstractly captures the maximal set of a
problem’s fitness tests. Abstraction of test cases can sub-
stantially reduce the number of such cases—fewer test
cases lead to faster fitness computation. APE thereby can
make some heretofore untenable induction problems solv-
able. Furthermore, since the computational representa-
tion (program, circuit, etc.) beingevolved with APE is ab-
stractly tested on every possible inputevolved sdutions
which pass all abstract tests are general—APE guaran-
tees correctness for every possible input. APE transforms
operators in the representation to compute with the ab-
stract values of the abstract test cases instead of with con-
crete values {.e., integers or reals); it is a form of symbolic
evaluation of the executable representation. We discuss
induction problems to which APE is suited as well as its
limitations.

APE, in the context of a machine-language representa-
tion, has been used tevolve gneral solutions to two in-
duction problems: finding the maximum of four integers;
and, sorting three integers into ascending order. General
solutions to both problems are difficult for evolutionary
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To make evolutionary search in the spaces of computa-
tion structures tractable, systems in practice consider only a
subset;] C T, (perhaps randomly chosen over time) against
which they evaluate new candidates to attain approximate fit-
ness measures. This strategy reduces the computational ex-
pense of fitness determination, but now admits “solutions”
that may not be correct in general. Alternately, it may not be
possible to design an approximate testB¢hat provides any
useful solutions at all.

This paper proposeabstraction of test cases from large,
perhaps infinite, sets containing concrete tests to small and fi-
nite sets of abstract tests. Along with appropriate transforms
of the operators of the representation being evolved, this pro-
posal makes some heretofore untenable induction problems
tractable. The central idea is &waluate programs symboli-
cally rather than concretely.

Abstract program evaluation (APE) is introduced here as
a mechanism for collapsing a concrete test-case set into a
smaller, but abstract, set for two purposes:

e reduction of fithess computation times

e guarantee of solution correctness
The first point is achieved because the abstract test set is

search because large test-case sets seem necessary. SinGgmaller than the concrete set; the second point is met since

APE drastically reduced test-set sizes, general solutions—
which are correct for all possible input integers—were
obtained for both problems. The sorter routines are the
largest evolved machine-language programs reported to
date and the first sorting programs evolved using only a
low-level representation {.e., one without high-level op-
erators for ordering and exchanging elements). Random
search results confirm that evolutionary sarch is indeed
effective on the two problems.

1 Introduction

the abstract test set contains the entire concrete set (with re-
spect to some program property). Reductions due to APE
may be quite large; for example, in the experiments of this
paper, APE reduces infinite test sets to abstract sets contain-
ing only a few K 10) elements.

In this paper we describe APE in the context of generic
machine-language induction (ML&g., [4, 5, 2, 16, 11])—
software program induction over integer inputs and outputs
where programs are represented as sequences of machine-
language instructions operating on integer data in registers.
APE is, however, representation independent and equally ap-
plicable to GP é€g., [14]) and GP variants, evolvable hard-

Induction of executable representations—programs, circuitSyare g.g., [18]), and other forms of evolutionary automata
or arbitrary automata—by evolutionary search requires thenduction,etc.

frequent measurement of a candidate solution on a set of fit- As an example of APE’s operation, consider searching for
ness tests to ascertain the candidate’s fitness. For target fungn extremely simple program functiomax, that compares

tions that map large domains to some rangg.,(integers to
integers), a set of testg that identifies a correct and gen-

eral solution is likely to be very large, if not infinite. Fitness

attribution with respect to such a sgtis therefore a compu-

tationally expensive process; a new candidate requires on the y

order of| 7| evaluations to precisely ascertain its fitness.

two integer variablesx andy, and determines their maxi-
mum. C code solving this problem might look as follows:

if (x >vy)
:X,

Iwe remark here, and further discuss la§&)( that a drastic reduction
in test set size can be detrimental to the gradient necessary to learn the target
function. This can possibly be mitigated by reintroducing some concrete
tests.



Evolving this functionality in a generic representation—onesimultaneously guarantees solution correctness. In Section 3
that includes arithmetic, Boolean logic, variable assignmentywe give an abstract interpreter for generic machine-language
comparison, and arbitrary control flow—requires test casestructions that handles concrete values (integers) and ab-
that contain concrete pairs of integer values¥andy. An stract values (of the<” linear order).
induction system might require many such pairs to learn that APE abstracts relationships between the concrete data com-
the desired feature is the order relaticn) (betweenx and  prising a conventional set of tests. It is therefore applicable to
y. Of course it is not known a priori what sets of pairs suf- programs that compute only with relationships between the
fice for solution and it is not practical to evaluate all possi-data elements and not necessarily with the values of the ele-
ble input pairs Existing systems therefore use adhoc ~ ments. The functiomax, for example, does not require the
set of tests, perhaps randomly constructed. Incomplete testoncrete values of its arguments, but only information about
case sets however allow for the possibility that a “solution”their relative position in the linear order. In particular, if the
is not general—that is, it may not produce the required refunction requires all of the information contained in its argu-
sult (y «+ max(x,y)) for all x andy. This is because the ments to compute its result, abstraction via APE is not ap-
evolved programs may contain essentially extraneous instrugarently useful. However, APE can cope with many types of
tions that do not adversely influence the computation of theeomputations. Functions that compute properties of the shape
desired function on the test suite, but may have deleteriousf data structures-eqg., the depth of a tree, for example—are
effects on other, non-tested, inputs. If, on the other hand, aandidates for APE. Similarly, functions computing proper-
smaller range of integers.{., 8-bit integers) is considered in ties of numeric values, such as the sign ¢r —), stand to
its entirety, resulting “solutions” are valid only on restricted- benefit from APE.
size inputs. Solutions found usig hoc test cases therefore Using APE, we have evolved two programds:max finds
require an external proof of correctness, currently performedhe maximum among four input integeBs;sor t sorts three
by humans (if at all). On the other hand, if it were known input integers into ascending order. The latter is the first sort-
that a solution had passed all possible tests (perhaps infinitag program evolved in a representation that does not include
in number), its correctness for any input will have been estabhigh-level “primitives” for ordering elementsf( [13, 17]).
lished through its evolution. Tractable fitness evaluation and'he evolved routines were synthesized solely from generic
general solutions are the goals of APE. machine language instructions—no domain specific opera-
In the example of theax function, APE can abstract the tors that could artificially simplify evolution’s task were in-
values ofx andy asX 45, andY 4, to yield the two-element troduced. The sort routine is the largest machine-language

abstract test set: program discovered automatically, by evolutionary search or
other machine methods, to date. Since APE guarantees that
{Xabs > Yavs, Xaps < Yaps} solutions are correct for any integer inputs, a human proof

of its correctness is unnecessary. Random search conducted
for both functions confirms that the directed evolutionary ap-
proach is indeed effective fdr- max and3- sort .

The nextsection describeabstract interpretation [1]—

That is, the first test case initializesto an abstract value
that denotes any integer greater thamnd initializesy to
an abstract value that denotes integers lessxha&@imilarly,
the second test case givesan abstract value that denotes

. ; ) the program analysis technique on which APE is based. It
all integers less thay and givesy an abstract denotation of . . :
. ... also covers prior work related to program induction and MLI
all values greater thax. This abstract test set—along with

. in particular, as well as work on sorter evolution. Section 3
: oo : : . Hescribes the APE virtual register machine and contains the
evolved (in our case: arithmetic, Boolean logic, assignment . . ; . )

etails of our particular APE implementation. Sections 4 and

comparison, and control flow) that can compute with abstracg : . .
o contain the experimental setup and results. We summarize
values—completely specifies the target functionall pos- with a discussion

sible input values. The abstract evaluator, for example, can
compare two registers ntaining abstract values (of thec”
relation) and return a definite result: true or false. Compar2 Background

ing abstract values to concrete values, or performing amhAPE is based on ideas abstract interpretation [1, 3] from

metic not defined for abstract values, may further propagatero ramming lanauage theorv. Abstract interoretation is used
the undefined value(s) or it can produce a fault (which could’®Y glanguag - P

identify the program as unfit, for example). If evolutionar In program analyses to perform compile-time optimization.
ne program ' Pi€). Y 1o convey the idea of abstract interpretation (and of APE), we
search finds a solution that passes both test cases of this ex-

ample, then it has found a completely general solution for all irst give an example of abstractly interpreting a conventional

. A : rogram with respect to an abstract domain. Then, we cata-
integers. Furthermore, such a solution is correct for mteger?

of unbounded size. Note that APE reduces test-case size ancixg Some program and FII’CUI'[ induction apprgaches'that may
stand to gain from APE; we also supply details of prior work

20n contemporary processors, integers typically reside in at least 32 bit§) machlne-langugge induction, the form of program !nduc'
the domain fomax is therefore of sizg232)2, an infeasible number for tion employed in this paper’s APE examples. An overview of
exhaustive evaluation.




prior work on sorter evolution/induction concludes this sec-operates dynamically during evaluation and, in the case of a

tion. non-terminating concrete program, need not ensure termina-
tion of the abstract program. As we shall see, APE simultane-
2.1 Abstract Interpretation ously computes with both abstract and concrete values within

. . . . the same program.
The canonical example of abstract interpretation applied to

a co“nvennongl pr?gram—one.wrltten by humans—|§ that .0f2.2 Program/Circuit Induction
the “rule of signs.” The description presented here is a dis-
tillation of the introduction provided in Field and Harrison’s Machine-language Induction (MLI) (eg., [11, 16, 2,4,5])isa
book ([3], p. 526). Consider a program with expressions thaform of genetic algorithm (GA) [6, 9] that—analogous to ge-
perform standard arithmetic (addition, multiplication) on in- netic programming (GP) [14] of Lisp expressions—searches
tegers. We wish to analyze statically the program to deducéhe space of machine-language programs. GAs use princi-
the sign (4" or “ —") that each variable or expression may ples from evolutionary theory (populations, fitness criteria,
take? We transform the domain of integef into the ab-  recombination) to search large non-linear spaces. GAs typi-
stract domainZ# = {+, —}. An integer variable or expres- cally usecrossover [6] as the “genetic operator.” Instead, we
sion in the original program, under abstract interpretation, asnotably usemacro-mutation—the “headless chicken” opera-
sumes the value+" if it is known to be positive throughout tor of Jones [12]—since we foune.§., [11]) that it consis-

its lifetime and the value=" if it is always less thar). Ad-  tently works better than crossover.

ditionally, we use the symbal (bottom) to denote an unas- The early MLI experiments of Friedbegyal. [4, 5] were
signed value (that may during interpretation becomé tr not successful when compared to random search. Friedberg
“—"and the symbolT (top) to denote an expression or vari- et al. however anticipated and influenced the MLI ideas of
able that can assunteth “+” and “ —". today. Cramer [2] describes a more recent experiment that

Now, given the “rule of signs” that states that multiplica- uses a representation similar to a machine language, but en-
tion of two positive integers gives a positive result (as doeslowed with high-level iteration operators. Nordin's contem-
multiplication of two negative integers) and that multiplica- porary system [16] manipulates native machine-code (as op-
tion of opposite signs gives a negative integer, we can abposed to the interpreted virtual machines used here) to speed
stractly interpret the sign of the assignment z x y by  fitness-test evaluation. Neither Cramer [2] nor Nordin [16]
knowing only the signs of andy. If z andy are both posi- provide experimental validation that their search experiments
tive (or are both negative), the resuilts also positive; other- were truly effective—by comparing to random searcfor
wise, the sign must be negative. Abstract interpretation of thexample. Though the prior MLI approaches [4, 5, 2, 16],
program ovetZ # infersz's sign by evaluating the right-hand can conceptually admit arbitrary control flow (forward and
side using the “rule of signs.” All variables are initialized backward) and hence unstructured loogis,, these systems
to L before interpretation begins; inputs are initialized with do not provide mechanisms for this; hence, the experiments
their abstract sign. are limited either to forward control flow [16, 4, 5] or to it-

If we introduce a sign rule for addition, we must handle eration via high-level loops [2]. Our approach has been to
the situations where the sign becomes indeterminate (eith@xperimentally demonstrate mechanisms that can evolve gen-
“+”or “="). In such situations, the abstract value becomeseral functions—free to utilize any control flow evolved from
T which represents either alternative. For example, in theonditional branches—from generic machine-language prim-
assignment. = x + y, the sign ofu is positive ifz andy are  itives. Random search validates our results.
both positive, negative it andy are both negative, and Another promising venue for APE &volvable hardware
otherwise. The undefined value (or the overdefined value (see [18] for examples) for here too the number of test cases
T), when supplied to an arithmetic operator, typically forcescan be enormous. As with the APE examples in this paper,
the abstract result td. the hardware operators (gates) must be transformed to the ab-

Note how an implementation of the “rule of signs” could stract operators (collections of gates) that manipulate abstract
be used to evolve abstractly functions sensitive to the signsalues.
of their integer arguments without regard to the integers’ ac-
tual values. In this manner, an infinite domaif) (s approxi- 2.3 Sorter Evolution
mated by a smaller finite on€ ). In this paper, APE manip- ) , .
ulates domains—somewhat more complex tha# Y—that In his paper on co-evolution [8], Hillis tackles the problem

linearly relate the magnitudes of integers and thereby adml‘i’f evcf)lvmg I?Slolr'“ ng netwc;]rk. A ;ortlng nelztwork prO\t/)ldes a d
comparison (but not arithmetic in general). set of parallel lines, each carrying an element to be sorted.

Whereas abstract interpretation is a compile-time analyCemparisons and exchanges between elements are affected

sis technique possessing strong termination propéri’E

abstract values are monotonically increasing [3, 1].

50ur experience [10] indicates that for small problems it is often possi-

3 o . u
For_5|mp||_C|ty, we takg the sign _Of zerofo _b& o . ble for random search to find solutions in time comparable to evolutionary
4Typically in abstract interpretation, domains are finite and functions Ofnethods.




by connecting a pair of lines. Minimizing comparisons is the Non-input registers are initialized concretely to zero.
goal of Hillis’ paper. In sharp contrast to ours, Hillis’ system

is specialized for sorting. On the other hand, our sorters—3.2 Internal State: PC, Flag

though evolved from a generic and general machine-language » . o
representation—currently handle only small inputs (three el @ddition to the external register state, VRMmaintains
ements) in contrast to Hillis' networks which process 16 el-MWO Pieces of internal state: a program counfC) and a
ements. Kozeet al. [15] implemented a system similar to comparison flagKlag). The program counter is an integer,

Hillis” in reconfigurable hardware constructed from an FPGA < PC <, th‘f"t seleqts WhICh.II’lStI’UCtIOI’I t(.) fetch and

and evolved optimal 7-element sorting networks. executtya. Branch Instructions mo@fy tRE to point to the
O'Reilly and Oppacher [17] first reported results of evolv- branch s target; all othgr instructions aIv_vays_ increment the

ing a general sort using a GP framework that included high—PC to point to the next instruction. THeC is initially set to

level looping and awap operator. The experiments did not ZEro. . .

result in perfect sorters. Their notion of generality is slightly . TheFlag reflects the result of the last comparison instruc-

broader than that of this paper; not only did they stipulatetIon executefd.. .It. can assume the valles, greater., anq

that any integer sequence of fixed length be sorted (as we G%qual.. Flag is initially undefmgd. Only the comparison in-

in this paper with length-3 sequences), but that the input seSt'Iction (see below) can modify tiféag state.

guence be of variable length as well. Kinnear [13] extended )

O'Reilly and Oppacher’s work [17] with an additional opera- 3-3 Instruction Set

tor tailored for sorting¢r der ) that exchanges two elements A programis a vector ofn instructions

into ascending order. Although GP was able to find general I'={(ly,...,I, 1)

sorting solutions when given tle der “primitive” for sort-  1hg program counter naturally corresponds to an indek of
ing two elements, the resulltmg solutions were proved.genA programter minateswhenPC = n, that is, when evaluation
eral only by human !nspect|on; our sorters are r:1utomat|call)étepS past the end of the program. (Our evaluation strategy
proved general by virtue of APE. Unfortunately, the GP ex-554 imits the maximum number of instructions evaluated:
periments on sorting [17, 13] lack the validation of random 4o section 3.5.) Figure 1 contains the essential RS-

search. instructions and their operational semantics. Additionally,
) ) ) VRM- A also includes instructions to clearegister to zero
3 Virtual Register Machine A (d r, similar toSet ), to decrement a registeDéc, similar

to I nc) and the arithmetic functionSub, Mul , Di v, and

Here we define an APE virtuagister machine (VRM) that  \nq. (See [10] for explicit definitions.) In total, VRM4
operates on abstract domains suitable for solvinghtheax  ¢ontains 17 different instructions and its instruction set forms
and3- sort problems. This VRM is called VRMA ("Ab-  {he core of the instruction sets of contemporary processors.
stract”) and is very similar to the VRM-that we defined pre- - Note that VRM:4 doesnot contain domain-specific instruc-
viously [10]. Specifically, VRMA'’s instructions are those of jons (such aswap [17] or or der [13]) that could abet
VRM-S with the omission of the latter’s I/O instruction and gqrter evolution, for example.
the inclusion of thevbd arithmetic instruction for complete- New to VRM-A is the abstract operation of the instruc-
ness. We refer the reader to the definition of VRMA0]  {jons under APE. Thavbv instruction simply transfers the
for details of VRM evaluation (branching, termination, ex- content of its source to the destination regardless of whether
ceptional arithmetic conditionsic.) as well as for complete  goyrce (or destination) are concrete or abstract. Similarly,
descriptions of the instructions. _ Set andCl r overwrite the register contents with concrete

The notation VRMA,, ,) names a particular VRMA - jnteger constants. The functiohsic, Dec, andNeg, Add,
that consists of external state egisters comining eitheran  gic first check if the register is abstract or concrete. If it is
integer or an abstract value), internal state (a program countgfhstract, the destination register is made undefindddth-
and comparison flag) and a sequence ohmutable abstract  gpyise, the operation on the concrete integer(s) is performed

Instructions. and the destination register updated.
The Cnp instruction is central to APE for evolving the
3.1 External State: Registers functions of interest4- max and3- sort. It can examine
the order implied by two abstract values. Note that if both

Let theregister state be a vector . X ) .
R = (R, Ron1) of Cnp’s registers are concrete, an integer comparison is per-
- ) ) m—

of m values; a value may either be an integer or an abstradPmed. If both are abstract, they are companith respect

value denoting some property of the input test data. We defint? their position in the abstract linear order. All elements
the functionAbs(R;) — Bool so that the VRM interpreter of the linear order are contained in every test of the test-case
can determine if the content cégisterR; is abstract. set and the test set consists of all permutations of this order

Program inputs (abstract or concrete) are placed in the ini(34-1) If one register is abstract and the other concrete, the
tial states. Outputs are taken from the final register stite ~ comparison is undefined andis placed in thé-lag. The re-



PC+— PC+1
NbV( RdSt’ RSl’C) = ( Rdg «— Rgc
PC«— PC+1
Set(Ra) = ( Ra «— 1
PC+— PC+1
Inc(Ra) = if Abs(Ra)
Fa { Ra+1 otherwise
PC+— PC+1
Neg( Ra) = 1 if Abs(Ra)
Ra «— { 0 — Ra otherwise
PC+— PC+1
Add( R4g, Rsrc) = L if Abs(Rggt) V Abs(Rsrc)
Ryt < Ryg + Rsrc  otherwise
NP = (PC«—PC+1
PC «+— PC+1
1 if (Abs(Ra) A ~Abs(Rp,)) V (~Abs(Ra) A Abs(Rp))
Cm( Ra, Rp) = Flag «— less if Ra < Ry,

greater if Rg > Ry,
equal  otherwise

J(offset) = ( PC «— min (max (0,PC + offset) ,n)
JI (offset) = ( PC +— { glénfrllax (0,PC + offset) , n) gtklftla?\?vi:ele&s
Jg(offset) = ( PC +— { ‘F?éninllax (0,PC + offset) , n) gﬂllerl\% i:egreater
Je(offset) = ( PC «— { gléninllax (0, PC + offset) , n) gﬂféerl\% i:eequal

Figure 1. Partial operational semantics for the virtrgglister machine VRMA. Not shown arell r (similar to Set ), Dec
(similar tol nc), and arithmetic instructionSub, Mul , Di v, Mod (similar toAdd).




sultingFlag state governs the conditional branch instructionsFor example3- sor t is tested on the six sequences:
JI, Jg, andJe. In this manner, dynamic control flow may

< — < < < < < <
be effected by the results of comparisons of abstract values. TE@) = X5 X545, (X5, X5, X5,
(X5, X7, X5) (X5, X5, XY,
3.4 Abstract Domain Z < (X5, X5, X5) (X5, X5, X))

The. ahstract values. of VRMU‘ spequ a finite linear order Similarly, the tests fod- max contain the 24 permutations of
of sizen on the relation £” among integers. Herey corre- 7<(4)

sponds to the number of input integers to a program. More Although APE reduces the number of test cases via ab-

formally, let straction, the size of the test case set remains exponential in
Z<(m)={X7,..., X5} n. This means that APE evolution of programs wigiige
_ inputs remains intractable.
denote an abstract domairvofibstract valuesY ~, ..., X5,
whereX = < X=if i < j. 4.2 Fitness Functions

In VRM- A, theCnp instruction, operating on two abstract . )
values X~ and X5, will compare their indices to ascertain FOr the fitness functions f@- sor t and4- max, lower val-
whether or not the £” relation holds. As described in Sec- Ues indicate better fitness and a fitness of zero indicates a per-
tion 4.1, a test set contains all permutationsZof(n). fect program. _ _ _

The fitness function for evolving- sort is
3.5 Evaluation Function n
An interpreter evaluates aninstruction VRM:A () pro- FeortD)=nl= Y " Bqual(E4(I,1)]il, X7)
gram I with respect to ann-register input staté? and an teT<(n) i=1
integer number of evaluation steps (instructiod$)> 0. £ 4

; . wheren = 3 and Equal(z,y) gives1 if z equalsy and0
maps a triple to a singleton:

otherwise. The8-sort fitness is a measure of how close
Eq: (_f, ﬁ’ K) SR (1) the program is to sorting the test sequence into ascending or-
der; every incorrect value in the result registers imposes a
& 4 produces the final register staﬁé after executing at most unit penalty. Note that concrete values in the output are con-
K instructions? sidered incorrect; the entire abstract sequence must occur in
We overload the notationSA(f, t) — ¥ means that the linear order in the outputegisters for the sort to be correct

evaluation of test cageon programl produces answer vector for all possible inputs.

#; the initial and finafegister state, the layout of andK are The fitness function for evolving- nmax is
implied from the contextf 4 (I, ¢)[i] denotes thé-th answer Fonan(F) = Z maz(t) — E4(F, 1)
element. reT<(n)

. wheren = 4, max gives an abstract sequence’s maximum,
4 Experimental Setup and€ 4(I,t) is an element of <(n). Again, concrete integer
This section describes the search methods—population-basg@swers are incorrect and taken to-beo (i.e., —mazint in
macro-mutation (GA-MM), and random search—used in findy/RM- 4). Here, the fitness is a measure of the distance of the

ing solutions to4- max and3- sor t . Before describing the  program’s abstract answer to the correct abstract answer.
individual methods, we first define their test-case sets and fit-

ness functions. The quantitative settingg.( test-case and 4.3 Search Mehods

program size) are given in the next sectigh)( .
Two search methods are compared: population-based macro-

4.1 Test Cases mutation (GA-MM) and random search Point-wise muta-

The abstract test-case set for a program ofput integers is tion was not used.

Population Selection Population selection, for the construc-
T<(n) = Permute(Z<(n)) tion of successive generations, is performedivtaurnament
selection (seeeg., [7]). Let P be the population (set) of
wherePermute(S ) denotes the set of all permutations of the yRM- 4 programs. To select a single individual frdP tour-
finite setS. Note thatPermute(S) containsn! elements. For  nament selection examingsndividuals in P and selects the
3-sort and4- max which operate on three and four input one with best fitness. When the fitness function cannot dis-
integers respectively, the test case setd&ré3) and7'<(4).  tinguish a single best, one of the best is chosen at random.

6Since our VRM:A evaluator is an interpreter (essentially Figure 1), it~ 7Preliminary experimentation indicated that conventional GA crossover
can easily be halted after evaluationfgfinstructions. finds solutions t®- sort and4- max; however, we found GA-MM to do
so somewhat faster. Comparison of macro-mutation to crossover for MLI
can be found elsewhere [11].



4-max 3-sort

#Solns #Solns
#Solns #Evals FEvals #Solns #Evals FEvals
GA-MM 4162x10° | 6.5x 10710 GA-MM 3| 1.37x10° | 2.2 x 10710
Random 0| 1x10%0 0 Random 0| 1.5x 10 0
Parameters: program siz¥, = 16; registers,M = 12; Parameters: program siz&, = 64; registers,M = 12;
instruction limit, K = 10NV instruction limit, K = 8N

Table 1: Search results for the max and 3- sort problems. Common parameters are: population gi2g¢,= 4096;
Probypm = 0.25. The ratio #Solng#Evals is a measure of search efficiency.

Operator: Two-Point Macro-mutation  Population-based 4- max with its larger test suitd'<(4) of 24 elements. (An-
macro-mutation is a search method that, instead of recombirether way of increasing the gradient is to increase the number
ing fit individuals, randomly mutates a subsequence of conef test cases by adding concrete tests to the abstract set; we
secutive instructions in a fit individual. Our GA-MM uses have not verified whether or not this approach can be used
the “headless chicken” crossover operator proposed by Jonés solve2- max.) On the4- nmax problem, random search
[12]. No information “crosses over” between individuals un- found no solutions whereas GA-MM found four; therefore,

der this operator. evolutionary search is effective for this problem. A sample
To effect macro-mutation, GA-MM first selects a subse-4- max solution is in Figure 2. The four abstract input values

guence of instructions from a prograﬁstarting atarandom are supplied ilRs, . . ., Rs, and the problem size iR, ,® The

point 0 < p; < n in programf. The lengthk > 0 of the  program result is computed inf@,.

subsequence is chosen randomly suchghat p; + k& < n. Solutions to3- sort were harder to come by. Twice

The instructiong; to p; + k — 1 are replaced with random the computational effort ovet- max produced 3 general so-

instructions. lutions. No perfect solutions were found during the initial

searches with stasis at 50 generations. For each good approx-
4.3.1 Random Search imate solution (fithess 4) found during the initial searches,

we repeated GA-MM search with a stasis setting of 10000

The rtr)]le of random s.ea:ccr:h i.s to ti)ndicat(ra] whether a hiurisu(i‘;enerations. Out of the initial searches’ five good solutions,
search€g., GA-MM) s effective (better than guessing) fora ¢ yielded generd@- sor t algorithms after the extended

particular problemr.] | indiviguabal search. An evolved3- sort is shownin Figure 3. The three
Random search randomly generates an indivignabal- inputintegers are placed in registéts, . . . , R4 and the prob-

uatesp and compultes its fitness, and (optionally) recqrds lem size (concrete integer 4) iR;. The result is taken from
fitness as the best #f improves on the current best fitness. registersRs R-

This process continues until a sufficient number of global so- Note that since APE fitness computation complexity scales
lutions are found or until the number of program evaluationswith O(n!), searching fon- max andn- sor t , for largen
exceeds a predetermined threshold. is intractable &. 54.1) ' '

The APE VRM:A was implemented in our custom GA frame- The main contribution of this paper is the idea of abstractly

work (cf. [11]). Taple 1 contains the results.fOFfinding max representing test cases—and abstractly evaluating represen-
and3- sort solutions using macro-mutation (GA-MM) and ations with respect to the abstract tests—for induction prob-
random search. The table also contains the parameter settingsns  This abstract approach has two significant benefits: it
of the experiments. GA-MM searches were halted when the.ay grastically reduce the number of test cases, thereby low-
best fitness remained constant for 50 generations (Stasis). f}ing fitness evaluation costs; and, it can guarantee the cor-
addition to the number of general solutions found, the tablgecimess of discovered solutions. For evolutionary induction
lists the total number of fitness evaluations performed and thgg programs, we presented an implementation of this idea.
search efficiency. , Abstract program evaluation enabled evolution of correct and
Initially, we attempted to evolvg- max (maximum of tWo  ganera solutions to two problems: finding the maximum of

input integers) using the APE test sgtS(2). However, GA- o integers and sorting three integers. We believe that ab-
MM did not improve on random search and was therefore

ineffective. We suspect that the small APE test set of only sThe problem-size input is superfluous in themax and3- sort ex-
2! elements does not provide enough of a gradient for theeriments; it was inherited from prior experiments.

GA to learn the desired function. Therefore, we turned to °The three solutions were found in searches requiring 479, 2231, and
7521 generations.




stract treatment of executable representations and test cases
can enable solution of yet harder problems via automatic in-

duction in many domains.
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