@ Bell Laboratories Cover Sheet for Technical Memorandum

The in/ ~an contained heré:n is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)
Title- C Reference ¥Manual Date- January 15, 1974
T™- 74-1273-1

Other Keywords- Compiler
Languages

Author) Location Extension Charging Case- 39199
D.M. Ritchie MH 2C-517 3770 Filing Case- 39199-11

ABSTRACT

C is a new computer language designed for both non-numerical and numerical applications.
The fundamental types of objects with which it deals are characters, integers. and single- and
double-precision numbers, but the language also provides multidimeasional arrays, structures
containing data of mixed type, and poiniers to data of all-types.

C is based on an earlier language B, from whi~h it differs mainly in the introduction of the no-
tions of types and of structures. This paper is a reference manual for the original implementa-
tion of C on the Digital Equipment Ccrporation PDP-11/45 under the UNIX time-sharing sys-
tem. The language is also available on the His 6000 and 18M S/370.

Pages Text 30 A5 Other K 5§ Towal 30
No. Figieres 0 No. Tables 0 . No. Refs. 6

£-1932.C 16-71) SEE REVERSE SIDE FOR DISTRIBUTION LIST

Comiten B MEMOEANLUINY TO

COke

ABO, %V
AFMBRUSTER ,MISS M =
83RTLETT,WADE §

“1 1 1T'LipPHULS LABCAATORIES, THNC.
DISTRIBUTION

TM-T4=-1273-1

(KEFER GEI 13.7-3)

COMPLETF MFAGRAND''M TO COVER SHEIT

PEITERGON, FALPH W BECKETT,J T
PILLA,“ICHAEL A
PINSCH, ELLIOT N

4+ PRIM, ROBEFT C

KALEIGH, THCFAS M
ROBER.S,CHARLES S
KODIHAN,MFS EATRICIA A
RODFIGUEZ, EFNESTO J
FOSLER, LAWFEINCE
SEA®S,W4 O

SEMMELMAN,C L

SNYDcF, MRS CORCTREA B
S2ANG, THOMAS C
SPIRES,F J

SCH,H P

SFORDLNCL FILZS

OFFICIAL ¥IT: COPY
PLUS ONE (QrY FOF

EACR ADDITIONAL FILING
CA5F PEFERENCED

BICKFORD, N
DAT: FILE CCPY
{FOFw £ 1328)

19 LiTCRENCE CCPIES BLUE,J L

BOCKUS,F? J
BUDEN, ¥ J

ON,¥ISS M J CXER,CARY A
5 TERRY,M E BORKIN,S A
TIOMESOY, X BKADLEY, R &
THOMSON,M-L1 GAA.‘DT RICE?
,m ST] TEACY,%ES C E

SHLY T2

BERGLAND,G L[AVID
BERNSTZIN, LYWRENCE
BEYER, JEAN-IAVID

BILINSII,D J
BILOWOS, PICEARD M
BIRCHALL,R &
BISHOP,MISE V L
BLIN, JAMES C

BLY,JOSEPH A

BOHACHEVSKY,I O
BONANNI, LOFEINIO E

e FERIJUN,K K
REITHAZPT,ALLAN R

COVER SEEET GNLY T0 COVE? 34EZT ONLY 1D
DIMMICY,JAMES O
DERKSEN,S E
DOLOTTA,T A
DOMPIFRE,J A
DRAXE, k3 L
DRISCOLL, PATKICK J
CUDLEY,MFS E H
DUFFY, FRANCIS P
EHLINGER, JAMES C
EIGEN,D

EITELBACH, DAVID L
ELLIOTT,R J

ELY,T C

ERDLE, K =
ESSTRMAN, ALAN R
IST.IK.R G
FAE{SCH,MICHAEL P
FELDMAN,STUART 1

HBARKR, CHN A

HESS..-..T(.'- s
HOERN,MISS wARI:Z 7

¥LGLIUZZI, MISS M E

{--, .-rl»"" TUTEIMAN,CAVIC M BRIL..HART, FO3ERT FINUCANE,JOHK J
VAN BEAUSEWN,J CAVIZ ARCWN, WILLI®" R TISCHEF,X 3
AL 1155 = A BUCHSEAUM,S 2 FLUFR, ZTACEAFY C
WAR «JACK L BULLEY, AYMCMD ™ T
WASSEZEMAL,MeS % BUEG,. ¥ FORT,JAMES W £
WAT3CH, T S BURNEITE,W A FOUNTQUK1DIS,A
DIJKMARN, M WEBSZF, SUSAL A BURROWS,T A POWLKES,~ B s
M WEXFLOLAT,FICHARD L BURR,STEFAN FOX,PHYLLIS
E? i WILSON,DUNRLD E BUTLER,DAVID = FOY,J C
AJK,"J S AJ WOLFEZ, KCEEFT M BIOWY,D E FRANK,E 3
S WRIGHT,MS LINCA S CAMPBELL,J = FRANK,FUDOLPH J
LK GLatN YACO3ELLIS, RCBEKRT 3 CAHPBE..L, TEPHEN T FnOST,H PONNELL
LT YAMIN,MRS E & CPNADAY, PUTCL 3 FULTON,ALAN W
T 8¢ NAMES JRAWAY,F E GABBE,JO&N T
Mo A JAY CASPERS,HRS ZARBAKA E GARCIA,R F JJDIC:.‘:HAP..ES *
SHAHAM,P L CILSTELLANO,M=S M A GATES,G & KACRIGAN,TE
GrO53, 2RTHUF G COVER SHEET ONLY 7O CAVINESS,JCEN O GAWPON,L J
BAIGhT,r C CHAMBERS, T M GAY,FRANCIS A

HHLL, ANDREW D) JR
HAMILTCH, PA"'RICIA

HOLTMAN,JAMES P
I1PPOLITI,O ©
IVIZ,EVAN L
JESSUP,RICHARD F
JOHNSON, STEPHEN €

KFESF,W 4 ALCALAY,CAVID COLBY,u W
FERNIGAAN, BRIAN W ALMQUIST,R P COLE,LOULS M
LUNERER,GOTIFKIZD » R AMPON, I COLTCN,JOH™
MARANZANO, JOSEPH F ANDERSON,MRS C M COOK,THOMAL
MC GILL,ROLERT ANDERSON,MS K J CCOPER,A E
MC GONEGAL,MISS € A ARMSTRONG, CCUGLAS ¥ COSTANTINO,

MC ILRCY,M DOUGLAS

~T2RSSPONCEICE FILZIS

4 COFIES FLUS ONE

CCPY FOR EACH FILING
CASE CHRIST,C W
CICOR,J P
ABRAHAM,STUART A
ACKERMAN,A F

AHRENS ,RAIMER B

ARNOLD, GECRGE W

CHAMBERS3,MKS 3 C
CHANG,FERBERT ¥
CHEN, ZDWARD
CHERRY,MS L L-
CHRISTIANSCS,Z D

CLIFFORD, RC=IRT M
COBEZN, ROBERT M
COHEN, HARVTY?

COSTELLO,PZTIR E GREEMSPAN,S J

GEPNZR,JAMES R
GIBB, KENNETH R
GILBERT,MRS HINDA S

GILLETTZ,DZAN KELLY,Z J
GIMPEL,JAMES F KEMP,C #
GITHENS, JOEN A KENNEZY,RC2ZRT &
GLUCK,F KEKR,E A
GNANADESLIEKAN,R KERTZ,2ZNIS R

GOGUEN,MS NANCY
GOLABEX,MISS R
GORMAN,JAMES E
GRAMPF,F T
GRAVEMAN,R F
GRAYSON,C F JR
GREENBAUM,B J
GREENHALGH,H WAIN

KILLMZZ,JCEN C J7
XNOWLTIN, KENKETH
KNUDSIN,DCNALD 2
KNUD3IS,DEAN O
KOKNEGAY,R L
KOSMAN, ~OBZAT A
KREIDES,CANIEL N
KROPFL,®AlL.TZ?R J
KRUSFAL,JOSZIP: E

$MCOONALD,H S ARNOLD,S L CCULTER,J "ESINALD GUERRIERQ,JOSEPH R

MZNHINGER,R B ATAL,P S CRAWFORD,J ¥ GUNDERMAN, R

MILLE,MIS5 ARLINE LT AXCN,S L CUTLER,C ChAFIN GUTSCEERA,K D LEE, D‘\BIS 4

MOKGAM,S P BADURA, DEUNIS C D ANDREA ,MRS LOUISE A HAFER,E B LZGENEATSEN, S
MORRIS,ROBEFT BAKER,B S DAVIDSON,CHASLES L BALL,MILTON S JR LEHRMAY, HIIJ_IL‘!)
MUGLIA,PATRICIA N BASEIL, RICHARL J OE LEEUW,C HALL,W G LESK,MICTHAEL E
OSSANNA,J F JR EAUER,MISS H A DETRANG, MRS K HANSEN,R J LEWIS,C P
PERITSKY,MARTIN M BAUGH,C R DEUTSCH, DAVIC N HARRISON,NZAL T LICWISXS,d 3

MERCURY CISTRIPUTICN......

s NAMED B3Y AUTECK

COMPLETE MEMO T%:

127-svp

COPL3P = COMPUTIG/ZROGRAMMING LANGUAGES/GENEIRAL PURPOSE

COVER ShEIZT TO:

CCPL

1.

3.

12-CIR 13-CIR 127

GET A COMPLETE CCFY:

bE SURE YOUR CCRAECT ADDRESS IS GIVEN ON TEE OTHER SIDE.
FOLD THIS SHEET IN HALF WITH THIS SIDE QUT ANC STAPLE.
CIRCLEZ THE ADDKESS AT RIGHT. USE NC ENVELCPE.

> CITED AS REFERENCE SOURCE

= CCMPUT ING/ FROGRAMMING LANGUAGES, PPCCESSORS/SURVEY PAPERS

3%S TOTAL

65 1200089000060 60098098008 0¢880000060800100000N00Iutacsetssssnessesscassessasesssosesansacccsirsncsccccncsonaans

ONLY

RITCEIE, > “
MH 2CS1a

TH-T4=-1273-1
TCTAL PAGIS 3

v

PLEASE SENT A COMPLEZTE COPY TO THE ADDRESS 3I30WN CN TiI
OTHER SI2E

NO ENVELOPE WILL BE NEECED IF YOU SIMPLY STAFLE TEIS IIWT:R
SHEET 70 THE COMPLETZL COPY,

I¥ CCPIZS ARE NC LONGER AVAILAELE PLEASE FCIsARD THIS
PEQUEST TC THE CORRESPONDENRCE FILES,

LD THIFPHOLT LABORATTRILL, 1IK.

SOVFR SHTLT UNLY TO

ETERT, JHE.™3S A
LLANEFMAY, I
LINMEWER,LUTZE 1
LIN,SHEE
LITOFSKY,EA%°Y
LI, X
LOIKITS ,E7w20 A
LOMUTO, N
LUMMIS, POEES
LUTZ, FENG
LYCKLAMA,n:InT
LYONS,T 3
4RJDEE, MPE . ™
MAHLEF,G ~
vELUOLA, T A

vINOY,F R -
4L TAXIDES, 3
£TZ, KOREFT T

4cYER, CAVID
“ICHAELS, M
MILLER, A
“ILLEF,S
“ILL3,C A
WILNE,D ©
SOLINELLI, 30z J
wOLTA, T W
“OKGAN, CEN
“CRRIS,ANCkEa A JR
4URK, PHILLIP L
MORZENTI,O 2
“IENZER,T B

“Us3A,J D
MEHRLICH, o *
FLSON,N=F
WINKS, WILLIAS
~OLL, LAURA W
NORTOR,HERBZRT O
NCAITZ,D A

O CUNNELL,T ¥

2 NEILL,DENNIS M
D> SHEF,W T

3 SULLIVAN,JTEN A
CSEREF,ERIT
CLSEN,RONALD S
DPFERMAN,D T

¢ NAMZID IY AUThOR

COVEN LT GNLC TC

2

DECHAND, 7

oo
I

PATZL,C ¥ &
PATTION,GAFONER ©
PENNLINO,
PETERSIN,T &
FFISTER,FCEEFT &

PHIPPS, GARY = STRING, PETEF 5
PIRZ,FxANS STANCAVISH,s J
PITTIS,CHAFIES J STANZIIONE,L C

PLIM,R B

P.LONSKY, I
POPPER, C

£

To#, %138 THEFRY
TECTTER, ELWARD T
F TCRIY,JCHN W
Vi LEZIMWZN,i ICHAPD
JLIFY A Vi ¥,FOERRT C

ROSEK,RICHARD C VIGZIL,5 C
FOOME, W1LZIAM © VCIZARU,JCHN K
XOSENTHAL, ThARLES & VCILAZRBST,FIITH &

VRIANAC,G M
VYSSCTSKY,VITTOR A
WRGNZR,BFUCE D

WAFNER,D O

SALMON,MIZS sUTH L W2.SILEW, STEPEEN G
SATZ,L R VATXINS,G 7T
SAVOLAINE, WEZEF, THOMAS A
SCHATZEL, RICHARD H WELINER,G J JR
SCHLEGEL,C T WELSCH,RICHAFD J
SCEONERUN S WHRALEN,J T
WHIPPLI,JORN d
SCHURTFR,= H WHITEHEAD, LCNNIE D
SCHUYLER WILLIAMS, K ©

SCTHW
SZAGPRE!

WILSON,M P
WOLF,R B

»?
SZAKS,ETWARL R WOCDRUFF, JORN L
SEERY, JUTITH B WFISLEY,PAKCALL D
SEFRY,MISS ANNE T YRFSEY,C L
SIKINO,®W T YAMIN, MICHAEL
SEMAN, JCEN R YCUNGS, EDWAAC A
SHANK,J C ZACCAFIA,GAETANC
SHANK,R A ZEXC,TIMCTEY J
SHAC,T § ZYELIS.P M
SHAW,ROEZFT M 135 BAMES

> CITED AS REFERINCE SOUFCE

Bell Laboratories

Subject- C Reference rv_ianua! , Date- January 15, 1974
f A9t
! From- D. M. Ritchie

- 74-1273-1

MEMORANDUM FOR FILE

1. Intrccusiion

C is a compuer languagz based on the earlier language B [1]. Tre langucges and their comgilars
differ in two majcr ways: C introduces the noticn of types. and defines appropriate extra syntax and
semantics: aiso. C on the pDP-11 is a true compiler, producing machine code where B produced int2r-
pretive code.) '

Most of the software for the UNIX time-sharing system [2] is wriiten in C, as is the operating sys-
em tiself. C is aiso avaiizble on the His 6070 computer at Murray Hiil and and on the IBM Sys-
em/370 at Hotmdel [3]. This paper is a manual only for the C language itself as implemented on
the pp-11. However, hints are given occasionally in the text of implementation-dependetit features.

The UNI% Programmer’s Manual [4] describes the library routines available to C programs under
UNIX, and aiso the procedures for compiling programs under that system. “The Gcos C Library™ by
Lesk and Barres [5] descrides routines available under that system as well as compilation procedures.
Many of these routines, particularly the ones having to do with /O, are also provided under UNIX.
Finally. “Programming in C— A Tutorial,” by B. W. Kernighan {6]. is as useful as promised by its ti-
tle ard the zuthor’s previous introductions to allegedly impenetrable subjects.

2. Lexica! ccnventicns

Therz are s:x kinds of tokens: identifiers, keywords, constants, strings, expressiony operators, and
other s2parators. In general blanks, tabs, new'ines, and comments as described below afe ignorcd ex-
cept is they serve ic separate tokens. At least one of these characiers is required to separate other-
wise acjacent ideniifiers, constants, and certain operator-pairs.

If the input siream has been parsed into tokens up 10 a given character, the next token is taken tc
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters /= introduce a comment, which terminaies with the characters o/,

2.2 lIdentifiers {Names)

An identifier is a seauence of letters and digits: the first character must be alphabetic. The urder-
score “*_" courn's as alphabetic. Upper and iower case letters are considered different. No more than
the first eight characters are significan', and only the first ssven for external identifiers.

2.5 Keywerds
The following identifiers are reserved for use as keywords, and may not be used otherwise:

C Refererce Manual - 2

int treak
ctar continue
Aze if
Ccuble else
struct for
auto do
extern while
register switch
static case
goiv default
retumn entry
sizeof

The entry xayword is not currently implemented by any compiler but is reserved for future use.

2.3 Cons:2nis
There arz several kinds of constants, as icilows:

231 Integsr constants
AR intzz2r constant is a sequance of digits. An integer is tuxen to be octal if it begins with O, de-
cimal otheraise. The digits 8 and 9 have cctal value 10 and 11 respectively.

2.3.2 Character consiants

A charac:er constant is 1 or 2 characters enclosed in single quotes “ ™. Within a character constant
a single guoie must be preceded by a back-slash *\"". Certain non-graphic characters, and “\" itself.
may be escaped according to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ W\

The escape “\ddd" consists of the backslash followed by 1, 2, or 3 octal digits which are taken to speci-
fy the value of the desired character. A special case of this construction is *“\0"" (not followed by a ui-
git) which indicates a null character.

Character constants behave exactly like integers (not, in particular, like objects of character type). In
conformity vith the addressing structure of the PDp-11, a character constant of length 1 has the coda
for the given character in the low-order byte and 0 in the high-order byte: a character censtant of
length 2 has the code for the first character in the low byte and that for the second character in the
high-order bvie. Character constants with more than one character are inherently machine-dependent
and should te avoided.

2.3.3 Floating constan:s

A floating constart consists of an integer part, a decimal point, 1 iraction part, an e, and ar optional-
ly signed intager exponent. The integer and fraction parts both consist of a sequence of digits. Either
the integer part or the fraction part (not both) may de missing; either the decimal point or the e and
the exponer: (not both) may be missing. E-wery floating constant is taken to be double-precision.

2.4 Strings

A string is 1 sequence of characters surrouaded by double quotes **"™. A string has the tyvce array-
of- haracters 'sze below) and refers 1o an zrea of storage initiaiized with the given characters. The
compiler pizzas a aull byte (\) at the end of each stning so that programs which scan tne siring can
find its end. In a string, the character “"" must be preceded by a “\"'; in addition, the same escapes
as described f{or character constants may be used.

C Referewce Manual - 3

3. Syntax nctation

In the syntax notation used in this manual, syniactc categories are incicated by .ualic type, and
iterai words and characters in gothic. Alternatives are listed on separate lines. An ortonal terminal
or non-terminal symbol is indicated by the subscript “ofpt,” so that

{ expression,, }

would indicate an optional expression in braces.

4. What's in a Name?

C bases the interpretation of an identifier upon two atisibutes of the identifler: its sro-zze c’ass and its
r.pe. The storage class determines the locaticn and lifetime of the storage associated wiiz an identifier:
:me tvpe determines the meaning of the values found in :he identifier’s storzge.

There are four declarabie storage classes: automatic. static, external, and register. Automatic vari-
=nles are local to each invocation of a functicn, and are ziscarded on return: static variz=ies zre local to
- ‘unction. but retain their values independantly of inv=ations cf the funcion; exte--:l variakiss are
~Jependent of any function. Register variaties are storz< in the fast registess of the machinz: like au-
:amatic variables they are local (0 each function and diszzpear on return.

_ C supports four fundamental types of chiects: charzceers, integers, single-, and Z:zubie-pracision

“ Toating-point numbers.

Characters (daclared,. and hereinafter called, cher) are chosen from the asch sz:; ihey occupy
the right-most seven bits of an 8-bit byte. It is also possible tc inizrpret chars as signed: 2's ~ -
complement 8-but numberc.

Integers (int) are representec in 16-bit 2's compizment noiation.

Single precision floating point (float) quantities have magnitude in the rangs approximately
10=°8 or 0: their precision is 24 bits cr about seven decimal digits.

Double-precision floating-point (double) quantites have the same rznge as fiozs and a preci-
sion of 36 bits or about 17 decimal digits.

Besides the four fundamental types there is a concepizally infinite class of derived types censtructed
frem the fundamental types in the following ways:

arrays of objects of most types;

functions which return objects of a given type;
. pointers to objects of a given type;

structures cortaining objects of variou. *ypes.

I7 general these methods of constructing objexts can be zpplied recursively.

5. Objects and lvalues

An objec: is a manipulatable region of storage; an Ivalte is an expression referring to in object. An
cavious example of an lvalue expression is 2a identifier. There are operatcrs which yi2id Ivalues: for
axample. if E is an expression of pointer type. then *E is an lvafue expression referring 3 th2 obrect to
which E points. The name ‘‘lvalue™ comes from the assignment expression “"El = E27 in which the
l2ft operanid E1 must be an lvalue expression. The discission of each operator below irdicaizs wheth-
e- it expects Ivalue operands and whether it yizlds an Ivaiue.

€. Conversiors

A number of operaturs may. depending con their operands, cause comvession of 182 vaiue cof an
crerand from one type (o another. This sect:on explairs the result (0 be excected from sucn cenver-
S.0NSs.

R

ST N W

Mg A PR AT S TR, g T s e SR e
; .

C Reference Manual - 4

6.1 Characters and integers

A char c¢oject may be used anywhere an int may be. In all cases the char is convzrted to an int by :
propagating its sign through the upper 8 bits of the resultant int2ger. This is consistzat with the two's R
complement representation used for both characters and intzgers. (However, the sign-propagation ;
feature disappears in other implementations.) AT

6.2 Float and double e

All floating arithmetic in C is carried out iui double-precision: whenever 2 float appzirs in an 2xpres- :
sion it is lengthened to double by zero-padding its fraction. When a double must e converied to
float, for example by an assignment, the double is rounded before truncation to float :2ngth. ‘ P

6.3 Float and double: integer and character
All ints and chars may be convaried without loss of significance to float or doubie. Conversion of P

float or double to int or char takss place with iruncation towarss 0. E»rroneous results can be expected -
if the magnitude of the result excaads 32,767 (for int) or 127 (izr char).

6.4 Pointers and integars

. - . 1 . . : = '—{ P
!ntegers and pointers may be zcced and compared: in such z Zise the int s conver=: as spec:Zad in Jala 4
the discussicn of the zddition operztor. . .
Two pcinters to objects of the same type may be subtracted: in this cas2 the rest is cenvered to ST -:
an 1nteger as specified in the discussion of the subtraction operz:or. C e T
7. "..pressions =
The precedence of expression cperators is the same as the orcer of the major subsections of this sec- ; »
tion (highest precedence first). Thus the expressions referred 10 s the operands of + (§7.4) are those -
A R - - P
expressions defined in §37.1—7.3. Within each subsection, the operators have the sime precedence. A
Left- or right-associativity is specified in each subsection for the operators discussed 1:erein. The pre- C L
cedence and associativity of ail the expression operators is summarized in an appendix. 7
Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers :
itself free to compute s.oexpressicns in the order it believes most efficient, even if th2 subexpressions P
involve side effects, o7
7.1 Primary expressions e
Primary expressions involving ., — >, subscripting, arnd functicn calls group left to riznt. -
P
711 identifier -
An identifier is a primary expression, provided it has been suitably declared as disczssed below. Its .
type is specified by its declaration. However, if the type of the identifier is *“array cof ...", thea the -
value of the identifier-expression is a pointer to the first object ia the array, and the tyze of the expres- o
sion is “‘pointer to ..."”". Moreover, an array identifier is not an vaiue expression.
Likewise, an identifier which is declared “function returning ...", when used except n the function- ‘
name position of a call. is converted to “pointer to function returting ...,
N -
7.1.2 constant) N
A decimal, octal, character, or floating constant is a primary 2Xpression. its type i int in the first B
three cases, double in the last.
7.1.3 string S0

A string is a primary expression. Its type is originally “array cf char; but followirz the same rule . .
as ir §7.1.1 for identifiers. this is rrodified to “pointer 1o char” :ad the restit is a po.ater to the first R
character in the string. N

A ans

C Reference Manucl - §

7.1.4 | expression)

A parenthesized expression is a primary <xpression whose type and value are identical to these of
the unadorned expression. The presence cf parzntheses does not affect whether the expression is an
Ivalue.

7.1.5 primary-expression | expression)

A primary expression followed by an expression in square brackets is a primary espression. The in-
tuitive meaning is that of a subscript. Usually, the primary expression has type “pointer to ...", the
subscript expression is int, and the type of the result is *“...”. The expression “EI[EZ]” is idenucal
(by definition) to “* ((E1)+ (E2)). All the clues needed to understand this notaticn are contzined
in this section together with the discussions in §§ 7.1.1, 7.2.1, and 7.4.1 on identifiers, =, and + respec-
tivelv: §14.3 below summarizes the implications.

7.1.6 primary-expression (expression-list_,)

A function cail is a primary expression followed by parentheses containing a possibly e=roty.
comma-separated list of expressions which constitute me actual arguments to the function. Tre -ri-
mary expression must be of type “function returning ...”, and the result of the function call is ¢f = pe

. As indicated below, a hitherio unseen xdentlﬁer followed immediately by a left par=nthzss is
contextually declared to represent a function returning an integer; thus in the most common ::se.
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type cha- are
converted to int.

In preparing for the_call to a function, a copy is made of each actual parameter; thus. all argurent-
passing in C is strictly by value. A function may change the values of its formal parameters, bu! these
changes cannot possibly affect the values of the actual parameters. On the other hand. i* is per_e:th
pussible to pass a pointer on the understanding that the function may change the value of the ob 2::t
which the pointer points.

Recursive calls to any function are perm1551ble

1.1.7 primary-Ivalue . member-of-structure

An lvalue expression followed by a dot followed by the name of a member of a structure is 2 pri-
mary expression. The object referred to by the lvalue is assumed 10 have the same form as the s:ruc-
ture containing the structure member. The result of the expression is an Ivalue appropriately cset
from the origin of the given lvalue whose type is that of the named structure member. The given
lvalue is not required to have any particular type.

Structures are discussed in §8.5.

1.1.8 primary-expression — > member-of-structure

The primary-expression is assumed to be a pointer which points to an object of the same form zs the
structure of w~ich the member-of-structure is a part. The result is an Ivalue appropria:zly offset from
the origin of the pointed-to structure whose type is that of the named structure member. The tyvpe of
the primary-expression need not in fact be pointer; it is sufficient that it be a pointer, character, or in-
teger.

Except for the relaxation of the requirement that E! be of pointer type, the expression
“E1->MOQOS" is exactly equivalent to “(+E1).MOS".

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 = expression

The unary * operator means indirection: the expression must be a pointer. and the result is an ivi
referring 1o the object to which the expression points. If the type of the expression is “pointer i ...".
the type of the resultis **..."

g

C Reference Manual - 6

7.2.2 & Ivalue-expression
The result of the unary & operator is 2 pointe: to the objzct referred 10 by the lvalue-expression. If
the type of the Ivalue-expression is **...", the type of the result is “pointer to ...".

7.2.3 —~ expression
The result is tte negative of the expression, and has the same type. The type of the expiession
must be char, int, fleat, or double.

7.2.4 ! expression

The result of the !cgical negation operator ! is 1 if the value of the expression is 0, 0 if the value of
the expression is non-zero. Th> type of the result is int. This operator is applicabie only to ints or
chars.

1.2.5 ~ expression
The ~ operator yiz!ds the one's complement of its operand. The type of the expression must be int
or char, and the rescit is int.

7.2.6 ++ ivalue-expression

The object referred to by tha Ivalue expression is incremented. The value is the new value of the
Ivalue cxpression and the type is the tvpe of the lvalue. If the expression is int or char, it is incre-
mented by 1: if it is a pointer to an object, it is incremented by the length of the cbject. ++ is appli-
cable only to these types. (Not, for example, to float or double.)

727 ~— halue-expression -~ -— - -
The object referred to by the Ivalue expression is decremented analogously to the ++ operator.

7.2.8 Ivalue-expression ++ ‘

The result is the vaiue of the object referred to by the lvaiue expression. After the result is noted,
the object referred 10 by the Ivalue is incremented in the seme manner as for the prefix ++ operator:
by 1 for an int or char, by the length of the pointed-to ohject for a peinter. The type of the result is
the same as the type of the Ivalue-expression.

729 Ivalue-expressicn ——

The result of the 2xpression is the value of the object referred to by the the Ivalue expression. After
the result is noted, the object referred to by the Ivalue expression is decramented in a way analogous
to the postfix ++ operator.

7.2.10 sizeof expressicn

The sizeof operator vields the size, in bytes, of its operand. When applied 1o an array, the result is
the toial number of bytes in the array. The size is determined from the declarations of the objects in
the expression. This expression is semantically an irteger constant and may be used anywhere a con-
stant is required. Its major use is in communication with routines like siorage allocators and 1/O sys-
tems.

7.3 Multiplicative oparators
The multiplicative operators =, /, and % group lefi-to-right.

7.3.1 expression = expression

The binary + operatcr indicates multiplication. If both operands are int or char, the result is int: if
one is int or char and one float or double, the former is converted to double, and the result is double;
if both are float or deuble. the result is doubje. No other comtbirations are allowed.

A D L ST R L T

t

P
Sy
A

C Reference Mznual - 7

7.3.2 expression / expression
The binary / operator indica:es division. The same type considerations as for multiplication apply.

7.3.3 expression % expression
The binary % operator yields the remainder from the division of the first expression by the second.

Both operands must be int or char, and the result is int. In the current impicmentation, the remainder
has the same sign as the dividend.

7.4 Additive operators
The additive operators + and — group left-to-right.

7.4.1 expression + expression

The result is the sum of the expressicns. If both operands are int or char, the result is int. If both
are float or doubie. the result is double. If one is char or int and ons is fioat or double, the fermer is

verted by multipiving it by the length of the object to which the pcinter points and the reszlt is a
pointer of the same tvpe as the originz: pointer. Thus if P is a pointer 10 an object, the expressicn
“P+1" is a peinter to another object ¢i the same type as the first an? immediately following it in
storage.

No other type combinations are ailowsd.

74.2 expression — expressior

The result is the difference of the operands. If both operands are int, char, fioat, or doutie, the
same-type considerations as fer + apply. If an int or char is subtracted from a pointer, the former is
converted in the same way as explained under + above.

If twe pointers io objects of the same type are subtracted, the result is converted (by Givision by the
length ¢! the object) to an int representing the number of objects separating the pointed-to objects.
This conversion wiil in general give unexpected results unless the pointers point to abjects in the same
array, since pointers, even to objects of the same type, do not necessarily differ ty a multiple of the
object-length.

7.5 Shift operators
The shift operatois < < and >> group left-to-right.

7.5.1 expression < < expression
152 expression >> expression

Both operands must be int or char, and the result is int. The second operand should be non-
negative. The value of “EI<<E2” is E} (interpreted as a bit pattern 16 bits long) left-shiftad E2
bits; vacated bits are O-filled. The value of “E1>>E2” is El (interpreted as a two's complement,
16-bit quantity) arithmetically risht-shifted E2 bit positions. Vacated bits are filled by a copy of the
sign bit of E1. [Note: the use of arithmetic rather than logical shift does not survive transpor:ation
between machines.]

7.6 Relational operators

The relational operators group ieft-to-right, but this fact is not very useful; “2<b<c¢" does not mean
what it seems to.

7.6.1 expression < expression
76.2 expression > exgpression
75.3 expression <= expression
7.6.4 expression > = expression

The operators < (less than), > (greater than), <= (less than or equal 19) ard >= (greater than or
equal to, all yieid O if the specified relation is false and 1 i it s true, Orerand conversion is exzclly
the same as for the - operator except that pointers of any xind may be compared: the result in this
case dep2nds on the relative locations in <tcrage of the pointed-1o objects. It does not seem to be very
meaningful to compare pointers with integess other than 0.

C Reference Manual - 8

7.7 Equality operators
7.7.1 expression == expression
7.7.2 expression := expressicn

The == (equal to) and the != (not egual to) operatoss are exactly analogous to the relational opera-
tors except for their lower precedence. (Thus “a<b ==c¢<d” is | whenever a<b and c<d have the
same truth-vzlue).

7.8 expression & expression

The & operator groups lefi-to-right. Both operands must be int or char; the result 1s an int which is
the bit-wis= logical and function of the operands.

1.9 expression * expression

The ~ cperator groups lefi-to-right. The operands must be int or char; the result is an int which is
the bit-wise exclusive or function of its operands. - -

7.10 expression | expressicn
The | operator groups left-to-right. The operands must be int or char; the result is an int which is
the bit-wise inciusive or of its operands.

1.11 expression && expressior

The && operator returns ! if both its operands are non-zero, 0 otherwise. Unlike &, 8& guarantees
left-to-right evaluation: moreover the second operand is not evaluated if ke first op2rand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be .-

a pointer. -

7.12 expression || expression

The Il operator returns 1 if either of its operands is non-zero, and 0 otherwise. Unlike I, Il guaran-
1.:s left-to-right evaluation: moreover, the second operand is not evaluated if the value of the first
ogerand IS non-zero. -

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer.

1.13 expression 7 expression : expression

Conditional expressions group left-to-right. The first expression is evaluated and if it is non-zero,
the result is the value of the second expression, otherwise that of third expression. If the types of the
second and third operand are the same, the result has their common type; otherwise the same conver-
sion rules as for + apply. Only one of the second and third expressicns is evaluated.

7.14 Assignment operators

There are.a number of assignment operators, all of which group right-to-left. All require an lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The value is
the value s:ored in the left operand after the assignment has taken place.

7.14.1 Ivalue = expression

The value of the expression replaces that of the object referred to by the ivalue. The operands need
not have the same type, but both must be-int, char, float. double, or pointer. If neither operand is a
pointer, the assignment takes place as expected, possibly preceded by conversion of the expression on
the right.

When beth operands are int or pointers of any kind, no conversion aver takes place; the vaiue of the
expressior: is simply stored into the object referred to by the lvalue. Thus it is possible to gencrate
pointers which will cause addressing exceptions when used.

C Reference Manual - 9

7.14.2 Ivalue =+ expression
7.143 Ivalue = — expression
7.14.4 lIvalue == expressisn
4.5 [Ivalue =/ expression
6 Ivalue =o expression
7 lvalue =>> expression
& Ivalue = < < expression
.9 l.alue =& expression
.10 Ivalue =" expression
4 11 lvalue =i expression
The belavior of an expression of the form “El =op £2” may be inferred by taking it as equive'ent
to “Eil = E1 op E2"; howzver, El is evaluated only once. Moreover, expressicns like *i =+ p” in
which a pcinter is added t> :1 integer, are forbiddzn. T

7.13 expression , expression

A pair of exprassions szrzrated by a comma is °valuate" lett-to-right and the value of the left ex-
pressxcq is discarced. The :vpe and value of the result arz the type and value of the right operand.
This operator grcups left-:c-right. It should be zvoided in situ;tions where comma is given a special
meaning, for example in actual arguments to funczon calls (§7.1.6) and lists of initializers (§10.2).

8. Declarations

Declarations are used witsin function definiticris to specify the interpretation which C gives to each
identificr; they do not necassarily reserve storage associated with the identifier. Declarations have the
form

declaratinn:
.. i d i .
decl-specifiers declarator: Ilst_' :

The declarators in the declzrator-list contain the identifiers being declared. The decl-specifiers consist
of at most one type-specifier and at most one storzge class specifier.

decl-specifiers:
npe-specifier
sc-specifier
ripe-specifier sc-specifier
sc-specifier r.pe-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
atcio
static
extem
register

The auto, static, and register declarations also szrve as definitions in that they cause an appropriate
amount of storage 10 be reserved. In the extern c:se there must be an extesnal definition (see below)
for the given identifiers somewhere outside the function in which they are declared.

There are soms severe resirictions on register identifiers: there can be at most 3 register identifiers
in any function. and the type of a register identifier can only be int, char, or pointer (not float, double,
structure, function. or array'. Also the address-of perator & cannot be applied to such identifiers. Ex-
cept for these restrictions ‘in return for which cne is rewarded with faster, smaller code), register
identifiars benave as if they weare automatic. In faot implementations of C are frees to treat register as
synonymous with auto.

If the sc-specifisr is missing from a ceclaration, it is generzlly taken tc be auto.
g

C Reference Manual - 10

8.2 Type specifiers
The type-specifiers are

1ype-specifier:
int
char
fioat
dcuble
struct { type-decl-list)
struct identifier | type-deci-list }
struct identifier

The struct specifier is discussed in §8.5. If the type-specifier is missing from a declaranon it is s gen-
erally taken to be int.

8.3 Ueclarators
The declarator-list appearing i a declaration is a comma-separated sequence of declarators.

« declararor-list:
decloraior
declaraior , declarator-list

The specxﬁers in the declaration indicate the type and storage class of the objects to which the declara-
ors refer. Decldrators have the syntax:

declarator:
identifier
» deciarator
declarator ()
declarator { consrant-expressron]
(declarator)

The grcuping in this definition is the same as in expressions.

8.4 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declara-
tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier, it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

If a declarator has the form
D

for D a declarator, then the contained identifier has the type “pointer to ..."”, where *
which the identifier would have had if the declarator had been simply D.

If a declarator has the form
D()

than the contained identifier has the type “function returning ..”, where **..." is the type which the
identifier would have had if the declarator had been simply D.

L2

is the type

A declarator may have the form

Dlconstant-expression}

D(]

In the first case the constant expression is an expression whoese value is daterminable at compile time,

T

. L Reference Marnual - 11

and whdse type is int. in the second the constant 1 is used: (Constant expressions 7z ¢aized precise-
ly in §15.) Such a deciarator makes the contaxned identifier have type “array.” If ite cradoraed de-
clarator D would specify. a non-array of type “...”, tnen the declarator “D[i]” yieids a '-“imensicral
array with rank / of objects. of type “...". If the unadormed declarator D woui. specify an

n-dimensional array with rank /X l,x ..%i, then the declarstor “Dli 1" yieids an
(n+1)-dimensional array with rank /, x: X..xiXi,

An array may be constructed from one of the hasic types, from a pointer, from a structure, or from
another array (to generate a mulii-dimensional array).

Finally, parentheses in declarators do not alter the type of the contained identifier excezt insofar 2s
they alter the binding of the components of the deciarator.

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are ~s
follows: functions may not return arrays, structures or functions, although they r.ay retur= po.nters :0
such things; there are no arrays of functions, although there may be arrays of poiniers 2 functlc"<)
Likewise a structure may not contain a function, but it may contain a pointer to a function.

As an example, the declaration
int i, «ip, £0), «fip(), (+pf) ():

declares an integar i, a pointer ip 1o an integer, a fu-u:tionj returning an integer. a functics fip retum-
ing a pointer to an integer, and a pcinter pfi to 2 function which returns an integer. Also

float fa{17], =afpi17]:
declares an array of float nuriibers and an.array of pointers to float numbers. Finally
static int x3d{3](51{7);

declares a static three-dimensional array of integers, with rank 3x5x7. In compl:te detail, x3d is an 2r-
ray of three items: each itemn is an array of five arrays; each of the ltier arrays is an array of seven in-
tegers. Any of the expressions “x3d™, “x3dlil”, “x3d[il{j}", “»3dli)ljlIk}" may reasorably aprear

in 2n expression. The first three have type ‘“‘array”, the last has tyve int.

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { rype-decl-list |
The type-decl-list is a sequence of type declarations for the members of the structure:

type-decl-list:
tyce-declaration
type-declaration type-deci-list

A type declaration is)ust a declaration which does not mention a storage class (the sorage cizss
“member of structure™ here being understood by cortext).

type-declaration:
1ype-specifier declcraror-list .;

Within the structure, the objects declared have addresses which inciease as their declaraticzs are reasi
left-to-right. Each component of a siructure begins on an addressing boundary appropriate 0 iis type.
On the pDP-11 the only requirement is that non-characters begin on a word boundary; thez{ore, there
may be 1-byte, unnamed holes in a structure, and all structures have an even length in byts.

Another form of structure specifier
struct identifier { type-deci-list }

This form is the same as the one just discussed. excent that the identifier is remembered 5 the srx-
ture rag of the structure specified by the list. A subsequent declaration may then be givez using thc
structure tag but withcut the list, as in the third form of structure specifier:

C Reference Mcnual - 12

struct identifier

Structure tags aliow definition of self-referential structures; they alsc permit the long part of the de-
claration to be giver. once and used several times. It is however absurd to declare a structure which
contains an instance of itself, as distinct from a pointer to an instance of itself.
A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully,
is
struct tnode {
cnar tword(20];
int count;
struct tnode =*left;
struct tnode *right;
|5 o
which cont2ins an array of 20 characters, an integer, and two poiaters to similar structures. Once this
declaration has been given, the following declaration makes sense:

struct tnoce s, *sp;

which declires s 10 be a structure of the given sort and sp to be a pointer to a structure of the given
sort.

The name; of structure members and structure tags may be the same as ordinary variables, since a
distinction can be made by context. However, names of tags and members must be distinct. The
same rmember name can appear in different structures only if the two members are of the same type
and if their origin with respact to their structure is the same; thus separate structures can share a com-

mon initial segment

9. Statements o
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form
expression ;
Usualiy expression statements are assigr.ments or function cails.
92 Compound staiement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ starement-list }

Statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

it (expressicn) staterment
1t { expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In
lhg second case the second substatement is execuied if the expression is 0. As usual the “eise” ambi-
guity is rescived by connecting an else with the last encountered elseless if.

AR T s

C Reference Manual - 13

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zerc. The
test takes place before each execution of the statement. .

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatement is exscuted repeatedly until the value of the expression becomes zero. The test
takes place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-1_, ; expression-2,,, ; expression-3_,) statement
This statement is equivalent to

expression-1;

while (expression-2) {
statement
expression-3,

Thus the first expression speccifies initialization for the loop; the second specifies a test, made befors
each iteration, such that the loop is exited when the expression becomes 0; the third expression typi-
cally specifies an incrementation which is performed after each iteration.

Any or all of ti.s expressions may be dropped. A missing expression-2 makes the implied while
clause equivaient to “while(1)”; other missing expressions are simply dropped from the expansion
above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on the
value of an expression. It has the form

switch (expression) statement

The expression must be int or char. The statement is typically compound. Each statement within the
statement may be labelled with case prefixes as follows:

case constant-expression :

where the constant expression must be int or char. No two of the case constants in a switch may have
the same value. Constant expressions are precisely defined in §15.

There may also be at most cne statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and compared with each case con-
stant in an undefined order. If one of the case constants is equal to the value of the expression, con-
trol is passed to the st.tement following the matched case prefix. If no case constant matches the ex-
pression, and if there is a defauit prefix, control p~sses to the prefixed statement. In the atsence of a
derault prefix none of the statements in the switch s executed.

Case or default prefixes in themselves do not alter the flow of control.

C Refererce Manual - 14

9.8 Break siatement
The statement
brezk ;
causes terrination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement

certinue ; o o o
causes contcl to pass to the loop-continuation portion of the smallest enclosing while, do, or for state-
ment; that is :0 the end of the loop. More precise.y, in each of the statements

white {...) | do { for(...){

corzin:; pontin: ; contin:;
twhile (...);

a continue is equivalent to “‘goto contin™.

_9.10 Retum statement
A function returns to its caller by means of the return statement, which has one of the forms

retum ;
return (expression) ;

In the firsi :: r.s value is returned. In the second case, the value of the expression is returned to the
caller of the unction. If required, the expression is converted, as if by assignment, to the type of the
function in which it appears. Flowing off the end of a function is equivalent to a return with no re-
turned valus.

9.11 Goto s:atement
Control mzy be transferred unconditionally by means of the statement
gotc expression ;

The expression should be a label {3§9.12, 14.4) or an expression of type “pointer to int” which evalu-
ates to a label. It is iliegal to transfer to a label no: located in the current function unless some extra-
language provision has been made to adjust the stack correctly.

9.12 Labelled statement
Any staterent may be preceded by label prefixes of the form
iden:i<er :

which serve 0 declare the identifier 2s a label. More details on the semantics of labels are given in
§14.4 below.

9.13 Null stziement
The null s:ztement has the form

A null staterment is useful to carry a label just before the “}” of a compound statement or to supply a
nul! body to 2 looping ::2tzment such as while.

3
3
’

C Reference Manual - 15

10. External definitions

A C program consists of a sequence of external definitions. External definitions may be given for
functions, for simple variables, and for arrays. They are used both to declare and to reserve storage for
objects. An external definition declares an identifier to have storage class extern and a specified type.
The type-specifier (§8.2) may be empty, in which case the type is taken to be int.

10.1 External functicn definitions
Function definitions have the form

Jfunction-definition:
type-spec;ﬁerw Sunction-declarator function-body

A function declarator s similar to a declarator for 2 “function returning ..” except that it lists the for-
mal parameters cf the function being defined.

Junction-declarator:
declcrator (parameter-list)

parameter-{si:
identifier
iden:ifier , parcmeter-list

The funciion-body has the form

Sfurction-body:
type-decl-list function-staternent

The purpose of the type-decl-list is to give the types of the formal parameters. No other identifiers
should be declared in this list, and formal parameters should be declared cnly here.

The function-siatement is just a compound statement which may have declarations at the start.

Jfunction-statement:
{ dectaration-list_, statement-list }

A simple example of a complete function definition is

int max(a, b, ¢)
int a, b, ¢;

int m;
m= {(a>b)7a:h;
retum{m>c? m:c);

}

Here “int™ is the type-specifier; *‘max(a, b, ¢)” is the function-declarator; “int a, b, ¢;” is the type-
decl-list for the formal parameters; *{ ... " is the function-statement.

C converts all ficat actual parameters to double, so formal parameters declared float have their de-
claration adjusted to read double. Also, since a reference to an array in any context (in particular as an
actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
parameters declared “array of .. are adjusted to read “pointer to ... Finally. because neither struc-
tures nor functions can be passed to a function, it is useless to declare 1 {crma! parameter to be a
structire or function (pointers to structures or functions are of course permit-ed).

A free return statement is supplied at the end of each function definition, sc running off the end
causes control, but no value, to be returned to the caller.

10.2 External data ceiinitions
An external data dennition has the form

C Reference Manual - 16

data-definition:
extemn_, npe-specifier,, init-deciarator-iist,, ;

The optional extern specifier is discussed in § 11.2. If given, the ini‘-declarator-list is a comma-
separatec list of declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator 4
init-declarator , init-declarator-list

init-declaracor:
declarator initializer oot

Each initializer represents the initial value for the corresponding object being defined (and declared).

initializer:) 1
constant
{ constant-expression-list)

constant-expression-list: u
cons:ant-expression 3
constant-expression , constant-expression-list

Thus an initializer consists of a constant-valued expression. or comma-separated list of expressions, in-
side braces. The braces may be dropped when the expression is just a plain constant. The exact
meaning of a constant expression is discussed in §15. The expression list is used to initialize arrays;
see below.

The type of the identifier being defined should be compatible with the type of the initializer: a deu-
ble constant may initialize a float or double identifier; a non-floating-point expression may initialize an
int, char, or pointer.

An initializer for an array may contain a comma-separated list of compile-time expressions. The
length of the array is taken to be the maximum of the numter of expressions in the list and the
square-bracketed constant in the array’s declarator. This constant may be missing, in which case 1 is
used. The expressions initialize successive members of the array starting at the origin (subscript 0) of
the array. The acceptable expressions for an array of type “array of - are the same as those for type
“.”. As a special case, a single string may be given as the initializer for an array of chars; in this case,
the charactess in the string are taken as the initializing values.]

Structurer can be initialized, but this operation is incompletely implemented and machine-
dependent. Basically the structure is regarded as a sequence oi words and the initializers are placed :
into those words. Structure initialization, using a comma-separated list in braces, is safe if all the 3
members of the structure are integers or pointers but is otherwise ill-advised.

The initial value of any externally-defined object not expiicitly initialized is guaranteed to be 0.

11. Scope rules

A complete C program need not all be compiled at the same time: the source text of the program
may be kept 1n several files, and preconpiled routines may be loaded from libraries. Communication
among the functions of a program may be carried out hoth through explicit calls and through manipu-
lation of externai data.

Therefore, there ace two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used wit ut drawing
“undefined identifier” diagnostics; and second. the scope associzted with external idertifiers, which is
characterized by the rule that references tc the same externai identifier are references to the same ob-
ject. 3

v,

C Reference Manual - 17

11.1 Lexical scope

C is not a block-structured 'znguags: this may fairly be ccnsidered a defect. The lexical scope of
names declared in exiernal definitions extends from their czfinition ttrough the end of the file in
which they appear. The lexical scope of namec declared 2t the head of functions (either as formal
parameters or in the declarations heading the statements consztuting the function itself) is the body of
the function.

1t is an error to redeclare identifiers already declared in the current ccatext, unless the new declara-
tion specifies the same type and storage class as already posscssed by the dentifiers.

11.2 Scope of externals

If a function declares an identifier i0o be extern, then somewhere amoczg the files or libraries consti-
tuting the complete program there must be an external definizon for thz identifier. All functions in a
given program which refer to the same externa! identifier refer (o the sa—e object, 50 care must be tak-
en that the type and extent specified in the definition are -ompatible wiih thcse specified by each
function which references the data.

In pDP-11 C, it is explicitly permitted for (compatible) ex:zmal definizons of t=2 same identifier to
be present in several of the separately-compiled pieces of a cc=plete prozmam, or even twice within the
same program file, with the important iimitation that the idenZfier may be iniualized in at most one of
the definitions. In other operating sys:ems, however, the compiler mus: know in just which file the
storage for the identifier is allocated, and i1 which file the ideziifier is m2rely being referred to. In the
implementations of C for such systems, the appearance of :he extem keyword before an external
definition indicates that storage for the identifiers being declarzd will be ziiocated in another file. Thus
in a multi-file program, an external datz definition without th2 extem specifier must appear in exactly
one of the files. Any other files which wish to give an ext. nal definition for the identifier must in-
clude the extern in the definition. The identifier can be initizized only :a the file where storage is al-
located.

In PDP-11 C none of this nonsense is necessary and the extem specifier is ignored in external
definitions. :

12. Compiler control lines

When a line of a C program begins with the character #, it s interpre:ed not by the compiler itself,
but by a preprocessor which is capable of replacing instances :f given icantifiers with arbitrary token-
strings and of inserting named files into the source program. in order to cause this preprocessor to be
invoked, it is necessary that the very first line of the program begin with #. Since null lines are ig-
nored by the preprocessor, this line need contain no other infcemation.

12.1 Token replacement
A compiler-conurol line of the form

define identifier wcken-string

(ncte: no trailing semicolon) causes the preprocessor to replacz subsequzat instarces of the identifier
wits th= given string of tokens (except within compiler control lines). The replacement token-string
has comments removed from it, and it is surrounded with tizaks. No rescanning of the replacement
string is attempted. This facility is most valuabie for definiticn of *‘manifsst constaats™, as in

define tabsize 100

int table[tabsizel;

12.2 File inclusion

Large C programs ofien contain many external datz definiticas. Since the lexiczi scope of external
definitions extends to the 2ad of the program file, it is good pmuctice to put all tha axternal definiticns
for data at the start of the program file. so that the functions defined within the ile need not repeat
tedious and error-prone declarations for each external identifer they use. It is ziso useful to put a
heavily used structure definition at the siart and use is structu—= tag to deciare the 2uto pointers to the

- S -

C Reference Marnual - 18

structure used within functions. To further exploit this technique when a large C program consists of
several files, a compiler controt line of the form

include " filename"™
results in the replacement of that line by the entire con:ents of the file filename.

13. Implicit declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration.
Sometimes the storags class is supplied by the context: in external definitions, and in declarations of
formal parameters and structure members. In a declaration inside 2 function, if a storage class but no
type is given, the identifier is assumed 10 be int; if a type but no storage class is indicated, the
identifier is assumed to be auto. An exception to the latter rule is made fer functions, since auto func-
tions are meanir.gless (C being incapable of compiling code into the stack). If the type of an identifier
is “function returning .., it is implicitly declared to be extern.

In 2n expression, an identifier followed by (and not currentiy declared is contextually declared to be
“function returning int".

Undefined identifiers not followed by (are assumed to be labeis which will be defined later in the
function. (Since a label is not an lvalue, this accounts for the “Lvalue required” error message some-
times noticed when an undeclared identifier is used.) Naturally, appearance of an ider.tifier as 2 label
declares it as such.

For some purposes it is best to consider formal parameters as belonging to their own storage class.
In practice, C treats parameters as il they were automatic (except that, as mentiuned above, formal
parameter arrays and floats are treated specially).

14. Types revisited :
~ This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures

There are only two things that can be done with a stru:ture: pick out one of its members (by means .

of the . or —> operators); or take its address (by unary &). Other operztions, such as assigning from
or to it or passing it as a parameter, draw an error message. In the future, it is cxpected that these
operations, but not necessarily cthers, will te allowed.

14.2 Functions

There are only two things that can be done with a furction: call it, or take its add:ass. If the name
of a function appears in an expression not in the function-name position of a call, a pointer to the
function is generated. Thus, to pass one function to another, one might say

int f();
glh;
Then the definition of g might read

g(funcp)
i{nt {+funcp)();

(sfuncp){);

)

Notice tirat f was declared explicitly in the calling routine since its first apnearance was not followed by

(.

C Reference Manual - 19

143 Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to the
first member of the array. Because of this conversion, arrays are not Ivalues. By definition, the sub-
script operator [] is interpreted in such a way that “E1[E2]” is identicai to “s((E1) +(E2))". Because
of the conversion rules which apply to +, if E! is an array and E2 an integer, then E1[E2] refers to
the E2-th member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

A consistent rule is followed in the case of multi-dimensicnal arrays. If E is an n-dimensional array
of rank ixjx...xk, then E appearing in an expression is converted to a pointer to an
(n—1)-dimensional array with rank jx...xk. If the » operator, either expiicitly or implicitly as a result
of subscripting, is applied to this pointer, the result is the pointed-to (»—1)-dimensional array, which it-
self is immediately converted into a pcinter.

For example, consider
int x{3][s];

Here xis a 3x5 array of integers. When x appears in an exgression, it s converted 1o a pointer to (the
first of itree) S-membered arrays of integers. In the expression ~x{[i}”, which is equivalent to
“a(x+i)", x is first converted to a pointer as described; then iis converied to the type of x, which in-
volves multiplying i by the length the object to which the po*- t2r pcints, namely S integer objects.
The results are added and indirection applied to yield an array (of 3 inizgers) which in turn is convert-
ed to a pointe- to the first of the integers. If there is another subscript the same argument applies

again; this time the result is an integer.

It follows from all this that arrays in C are stcred row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of stcrage consumed by an array but
plays no other part in subscript calculations.

14.4 Labels)
Labels do not have a type of their own; they are treated as having type “array of int”. Label vari-
ables should be declared “pointer to int”; before execution of a goto referring to the variable, a label
(or an expression deriving from a label) should be assigned to the variable. :
Label variaoles are a bad idea in general; the switch statement makss them almost aiways unneces-
sary.

15. Constant expressions

In several places C requires expressions which evaluate to a ccnstant: after case, as array bounds,
and in initializers. In the first two cases, the expression can involve cnly integer constants, character
constants, and sizeof expressions, possibly connected by the binary operators

+ =+ / % &1 " << >>

or by the unary operators

Parentheses cap be used for zrouping, but not for func.ion cails.

A bit more latitude is permitted for initializers: besides constant expressions as discussed above, one
can 2iso apply the unary & operater to external scalars, and to external arrays subscripted with a con-
stant expression. The unary & can also be applied implicitly by appezrance of unsubscripted external
arrays. The rule here is that initializers must evaluate either to a censtant or to the address of an
external identifier plus or minus a constant.

")

ARV

C Reference Manual - 20

16. Examples.
These examples are intended to illustrate some typical C constructions as well as a serviceable style

of writing C programs.

'16.1 Inner product
This function returns the inner product of its array arguments.

double inner{v1, v2, n)
?ouble vill,v2(l:

double sum;
inti;
sum = 0.0;
for (i=0;i<n; i++)
sum =+ vi[i] = v2[il;
retum(sum);

}

The foliowing version is somewhat more efficient, but perhaps a little less clear. It uses the facts that
parameter arrays are reaily pointers, and that all parameters are passed by value.

double inner(vt, v2,n)
double sv1, *v2;

double sum;
sum = 0.0;
while(n—-)

sum =+ sy1++ * *v2++;
retumn{sum);

}

The declarations for the parameters are really exactly the same as in the last example. In the first case
array declarations ““[] were given to emphasize that the parameters would be referred (o as arrays; in
the second, pointer declarations were given because the indirection operator and ++ were used.

16.2 Tree and character processing

Here is a complete C program (courtesy of R. Haight) which reads a document and produces an al-
phabetized list of words found therein fogether with the number of occurrences of each word. The
method keeps a binary tree of words such that the left descendant tree for each word has all the words
lexicographically smaller than the given word, and the right descendant has all the larger words. Both
the insertion and the printing routine are recursive. :

The program calls the library routines getchar to pick up characters and exir to terminate execution.
Printf is called to print the results according to a format string. A version of printf is given below
(§816.3).

Because all the external definitions for data are given at the top, no extern declarations are necessary
within the functions. To stay within the rules, a type declaration is given for each non-integer func-
tion when the function is used before it is defined. However, since all such functions return pointers
which are simply assigned to other pointers, no actual harm would result from ieaving out the declara-
tions; the supposedly int function values would be assigned without error or complaint.

+ define nwords 100 /* number of different words */
define wsize 20 /+ max chars per word */
struct tncde /+ the basic structure */

char tword{ wsize];

int count;

struct tnode sleft;
struct tnode »right;

C Reference Manual - 21

struct tnode space[nwords]; /* the words themselves */

int nnodes nwords ; /* number of remaining slots */
struct tnode *spacep space; /* next available slot =/

struct thode »freep; . I free list s/

/=

* The main routine reads words until end-of-file (\O" retumed from "getchar”)
= "tree” is called to sort each word into the tree.

=/
main{)
struct tnode stop, *tree();
char ¢, word[wsize];
inti;
i=top =20,
while (c=getchar())
fla’<=c8c<=72i'A<=28&c<=7){
it (i<wsize—1) 3
word[i++] = ¢: i
) else
it (i)
word[i++]} = \¢';
. top = tree(top, word);
T i=0;
}
tprint(tep);
/.
= The central routine. If the subtree pointer is ruli, allocate a new node for it.
* If the new word and the node’s word are the same, increase the node’s count.
= Otherwise, recursively sort the word into the left or right subtree according
* as the argument word is less or greater than the node’s word. '
s/
struct tnode *tree(p, word)

struct tnode *p;
char word[];

struct tnode +alloc();
int cond;

/+ Is pointer null? »/
if (p==0) {
p = alloc();
copy {word, p— >tword);
p—>count = 1;
p—>right = p—>left = 0;
| retum(p);
/* Is word repeated? «/
it { (cond=compar(p—>tword, word)) ==0) |
p—>count++;
retum(p);

o

/* Sort into i2#t or right «/

if (cond<C) :
p—>left = tree(p—>left, word}: ‘

else :
p—>right = tree(p— >right, wors});

C Reference Manual - 22

re.am(p);

)
/

« Print the tree by printing the left subtree, the given node, and the right subtree.

o/
tprint(p)
struct tnoce *p;

while (p) |
tprint(p—>left);
printt (*%d: %s\n", p— >count, p—>tword);
p = p—>right;
)
/e :
- String comparis~n: return number (>, =, <) 0
. sccerdingass. (>, =, <) "?
’//
compar(s1, s2)
s:har *s$1, *s2;
\

intct, c2:
while{{c1 == *§1++) == (€2 = *s2++))
if (c1=="\0")

return(0);
retum{c2—c1);

/*

« String copy: copy s1 into s2 until the null
= character appears.

*/

copy(s1, s2)

char *s1, *s2;

\ while (*s2++ = *s1++);

/o

» Node allocation: retum pointer to a free node.
+ Bomb out when all are gone. Just for fun, there
» is a mechanism for using nodes that have been
* freed, even though no one here calls "fres.”

74

struct tnode *alloc ()

struct tnode »t;

if (freep) {
t = freep; :
freep = freep—>left;
return{t):

it (——nnodes < 0) |{
printf ("Out of space\n");
exit{);

}

return (spacep++);

C Reference Manual - 23]

» Tha uncalled routine which puts a node on the free list.
./

free(p)

struct tnode *p;

p—>left = freep;
treep = p;

To illustrate a slightly different technique of handling the same problem, we will repeat fragments of
this example with the tree nodes treated explicitly as members of an array. The fundamental change is
to deal with the subscript of the array member under discussion, instead of 2 pointer to it. The struct
declaration becomes

struct tnode {
char tword{wsizel;
int count;
int left;

\ int right; i

and alloc becomes

ailec()
Tintt
t = ——nnodes;
if (t<=0) {
printf ("Cut of space\n”);
exit();
| return(t);

The free stuff has disappeared because if we deal with exclusively with subscripts some sort of map has
to be kept, which is too much trouble.

Now the rree routine returns a subscript also, and it becomes:

tree(p, word)
char word(];

int cond;

if (p==0) {
p = allec():
copy (word, space[pl.tword);
spacelp].count = 1;
space[pl.right = space[p].left = O;
return(p);

if ({cond=compar(space[p].tword, word)) ==0) |
space[p].count++;
retum{p);

}
if (cond<0)

space[p].left = tree(space(p].left, word}:
elsa

space[p].right = tree(spacelp].right, word);
retumn(p);

C Reference Manual - 24

The other routines are changed similarly. It must be pointed out that this version is noticeably less
efficient than the first because of the multiplications which must be done to compute an offset in space
corresponding to the subscripts.

The observation that subscripts (like “alil™) are less efficient than pointer indirection (like
“+ap™) hoids true independently of whether or not structures are involved. There are of course many
situations where subscripts are indispensable, and others where the loss in efficiency is worth a gain in
clarity.

16.3 Formatted output

Here is a simplified version of the printf routine, which is available in the C library. It accepts a
string (character array) as first argument, and prints subsequent arguments according to specifications
contained in this format string. Most characters in the string are simply copied to the outpul; two-
character sequences beginning with “%” specify that the next argument should be printad in a style as
follows:

%d decimal number

%0 ccial number

%c ASCII character, or 2 characters if upper character is not null
%s string (naull-terminated array of characters)

%f floating-point number

The actual parameters for each function call are laid out contiguously in increasing storage locations;
therefore, a function with a variable number of arguments may take the address of (say) its firct argu-
ment, and access the remaining arguments by use of subscripting (regarding the arguments as an ar-
ray) or by indirection combined with pointer incrementation.

If in such a situation the arguments have mixed types, or if in general one wishes to insist that an
Ivalue should be treated as having a given type, then struct declarations like those illustrated below
will be useful. It should be evident, though, that such techniques are implementation dependent.

Printf depends as well on the fact that char and float arguments are widened respectively to int and
double, so there are effectively only two sizes of arguments to deal with. Printf calls the library
routines putchar to write out single characters and ftoa to dispose of floating-point numbers.

printf(fmt, args)
i:har fmt[];

char *s;
struct { char *scharpp; };
struct { coutle *doublep; };

int *ap, x, C; .
ap = &args; /+ argument pointer +/
for (5
while((¢ = sfmt++) t="%") {
if(c =="10")
retumn;
putchar(c);

switch (¢ = *mt++) {
/+ decimal */
case ‘'d”:
X = *ap++;
if{x<0) |
X = —X;
if(x<0) { /s is — infinity */
printf("—32768");
continue;

putchar{’—"";

printd(x);
sontinue ;

/* cctal «/

case ‘0"
printo{*ap++):
continue ;

/+ float, double =/

case 'f":
/¢ let ftoa do the real work +/
ttoa(+ap.doublep++);
continue;

/% ¢t aracter ¢/

case 'C";
putchar {*ap-++);
continue;

/= string */

case 's’:
s = sap.charpp++;
while(c = *s++)

putchar{c);

continue ;

putchar(c);

}

/s

» Print n in decimal ; n must be non-negative
s/ ’
?rintd(n)

inta;

if (a=n/10)
printd(a);

putchar(n%10 + 0');

Vi

» Print n in octal, with exactly 1 leading O
s/ ’

printo(n)

if (n)
printo((n>>3)&017777);
putchar((n&07) +°0");

[

MH-1273-DMR-

Att:
References
Appendix 1

D.

C Reference Manual‘- 25

M. Ritchile

C Reference Manual - 26

REFERENCES

1. Johnson, S. C, and Kefnighan, B. W. “The Programming Language B.” Comp. Sci. Tech. Rep.
#8., Bell Laboratories, 1972.

2. Ritchie, D. M., and Thompson, K. L. *“The UNIX Time-sharing System.” C. ACM 7, 17, July, 1974,

‘ " pp. 365-375.

1. Peterson, T. G., and Lesk, M. E. “A User’s Guice to the C Language on the IBM 370.” Internal
Memorandum, Beil Laboratories, 1974.

4. Thompso:, K. L., and Ritchie, D. M. unix Programmer’s Manual. Bell Laboratories, 1372.

3. L;;k, M. E., and Barres, B. A. “The Goos C Library.” Internal memorancum, Bell Laboratories,
1974.

e 6. Kernighan, B. W. “Programming in C— A Tutorial.” Unpublished internal memorandum, Bell La-
boratories, 1974.

APPENDIX 1
Syntax Summary

1. Expressions.

expression:

primary

* expression

& expression

— exgression

| expression

~ expression

++ Ivalue

—— lvalue

Ivalue ++

Ivalue ——

sizeof expression

ex, “ession binop expression
expression ? expressicn . expression
Ivalue asgnop expression
expression , expression

primary:

Jvalue:

‘identifier

constant

string

(expression) _
primary (expression-list,,)
primary [expression]

Ivalue . identifier

primary —> identifier

identifier

primary | expression]
Ivalue . identifier
primary —> identifier
* oxpression

{ Ivalue)

The primary-expression operaiors

01 .

have highest priority and group left-to-right. The unary operators

->

& — ! ~ ++ —— sizeof

C Reference Manual - 27

have priority below the primary operators but higher than any binary operator, and group right-
to-left. Binary operators and the conditional operator all group left-to-right, and have priority
decreasing as indicated:

binop:

he /I %

+ —_

>> <<

< > <= =

C Reference Manuai - 28

3

-

I
&8
i
?:

Assignment operators all have the same priority, and all group right-to-left.

asgnop:

The comma operator has the lowest priority, and groups left-to-right.
2. Declarations.

declararion:
decl-specifiers dedararor-listw ;

decl-specifiers:
type-:pecifier
sc-zoecifier
type-specifier sc-specifier
sc-sxcifier type-specifier

sc-specifier:
auto
static
extem
register

type-specifier:
int
char
float
doubie
struct | nype-decl-list }
struct identifier { type-deci-list }
struct identifier

declarartor-lisz
declzrator
declzrator , declarator-list

declarator:
ider.ifier
* decigrator
declzrator ()
dec!zrater [constant-expression_, |
(declarator) e

npe-decl-lisc
et nype-Jeclaration
type-declaration rype-decl-list

oype-declaracon:
type-specifier declarator-list ;

= 3. Statements.

¥

T A

sta:ement:
ex~ession ;

{ statement-list }

if (expression } statement

it { expression) statement else statement
while (expression) statement

for (expressicn,, ; expression,, ; expression,,) statement
switch { expression) statement

case constant-expression . statement
default : statement

break ;

continue ;

retun ;

retum (expression) ;

goto expression ;

identifier : statement

statement-list:
statement
statement srarement-list

4. Ex:ernal definitions.

program:
external-definition
external-definition program-- - -

external-definition:
function-definition
data-definition

Sunction-definition:
npe-specifier,, function-declarator function-body

Sfunction-declarator:
declarator (parameter-list,)

parameter-list:
identifier
identifier , parameler-list

Sunction-body:
npe-decl-list funcrion-statement

function-statement:
{ dectaration-list,,, statement-list }

data-definition:
extern_, type-specifier,, init-declarator-list_, ;

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer -

w;m&m&%&&mﬁéﬂ B RRRE Bal R

o

C Reference Manual - 30

iritializer:
constant
{ constant-exprezsion-list }

cansram-expression-lis::
constan t-expression
constant-expression , cons:ant-acpression-list

constant-expression:
expression
5. Preprocessor

define identifier token-string

include " filename"™

R
. -
-
e
Z .

