
Distributed Computing with Data:
A CORBA-Based Approach

John M. Chambers, Mark H. Hansen,
David A. James, Duncan Temple Lang

jmc,cocteau,dj,duncan@research.bell-labs.com

Bell Labs, Lucent Technologies
Murray Hill, NJ 07974

Contents

1 Introduction 1

2 Examples and PreviousApproaches 2
2.1 Analysis of Manufacturing Data. 2
2.2 Key Features of DistributedComputing. . . . 3
2.3 Issues in Distributed Computing. 4

3 CORBA 4

4 Using CORBA 5

5 Future Work 6
5.1 Statistical Data Definition. 7
5.2 Statistical Database Connectivity. 7
5.3 CORBA and Statistical Systems. 7
5.4 Visualization 8

6 Conclusions 8

Abstract

Statistical computing is part of a more general process, which
can be calledcomputing with data. Besides traditional statis-
tical analysis, this involves acquiring, organizing, and visu-
alizing data, often in large, structured datasets organized in
database management systems and used for purposes beyond
analysis. An important challenge for statistical computing
(and statistics in general) is to increase the scope of our in-
volvement in this diverse environment. At the same time, the
computing environment itself is becoming more diverse in all
respects: data and users are widely spread and using many
different systems.

We describe research looking towards the next generation
of software for such applications, centered on the idea ofdis-
tributed computing with data. By this we mean distributed

in two fundamentally different, but related, senses. First, the
data and the tasks users apply to the data are distributed geo-
graphically, over a heterogeneous network of computers and
operating systems. Second, the programming environment
we envision is distributed over a variety of languages and
other software.

We describe research towards a programming environment
suitable for distributed computing with data. As a key to this
environment, we propose to take advantage of the CORBA
standard for distributed, object-oriented computation. This
paper describes the background for our approach, the reason-
ing for the CORBA proposal, and some initial experiments in
the new approach.

1 Introduction

Those of us who create software for computing with data—
for the organization, visualization, and analysis of data—face
an important opportunity and challenge. Thepotentialscope
of the use of our software has expanded greatly. How can
we ensure that the actual scope will increase comparably in
response?

The scope of computing with data has undergone (and con-
tinues to undergo) expansion on several dimensions, includ-
ing:

� computing power,

� number of services and overall size of applications,

� distribution(the Internet and the World Wide Web), and

� range of users and application developers.

The combined effect is a vast potential for the use of data in
all kinds of human endeavor.

The opportunity is to have the use of our software expand
correspondingly: to use the enhanced computer power; to

http://cm.bell-labs.com/stat/jmc
http://cm.bell-labs.com/who/cocteau
http://cm.bell-labs.com/stat/dj
http://cm.bell-labs.com/stat/duncan

adapt to the new applications; to spread out over the Web;
to attract and serve the new users.

Like any opportunity, this is also a challenge. If we fail to
respond, other software will fill the niches opening up. Our
software and, more importantly, the ideas that it implements
will be increasingly relegated to the margins of this growing
activity.

How can we respond? Clearly, so broad an opportunity
will stimulate many responses and a good number of these
will be valuable. The key limitation is the amount of time,
care, and mental energy required from skilled practitioners.
Many of the obvious reactions to the challenge involve too
much work, too much duplication of effort, and too manyad-
hocsolutions to fundamental problems.

This paper proposes an approach to the opportunity. The
approach is the basis for current research in computing
with data in Statistics Research at Bell Labs. More gener-
ally, though, the approach benefits greatly from co-operation
among many groups. The more we can all find common
ground the greater the general benefits. This paper outlines
the general basis for the approach and some areas where co-
operation can be beneficial.

The general response needs to be in terms of what we will
call distributed computing with data: an environment for pro-
gramming and for using software that is distributed in four
senses:

1. geographically, e.g., over the Web;

2. over different applications;

3. over different types of user interaction;

4. over different computer hardware and operating sys-
tems.

For example, the environment needs to accommodate client
access to a wide variety of services, using the Internet and
the Web seamlessly. The environment needs to allow appli-
cations to interface easily: re-implementing each facility in
each system is a luxury we cannot afford. The environment
needs to accommodate the increased range of users by pro-
viding graphical and other user interfaces suitable to less spe-
cialized users, but at the same time it has to provide powerful
languages and computational systems to create the tools be-
hind such user interfaces. Finally, the environment needs to
take advantage of the increased variety of computers and of
the potential for inter-connecting such a varied range of com-
puters to accomplish difficult and specialized tasks.

There are a number of ways to approach the design of such
an environment. Some related work has already been done,
within our discipline and elsewhere. We believe one partic-
ular approach is compellingly attractive. It will be the basis
of the major research project at Bell Labs in this area in the

near future. We also propose the approach to the community
in general, since it is an intrinsically open, cooperative, and
all-inclusive attack on the problems identified above.

We propose the use of the Common Object Request Bro-
ker Architecture (CORBA) and in particular of the Interface
Definition Language (IDL) associated with it, as the basis for
distributed computing with data. The rest of this paper de-
scribes what this proposal means, argues for the advantages
of this approach, and outlines with an example how the ap-
proach provides the key tools for distributed computing with
data.

2 Examples and Previous
Approaches

We will use one particular example that illustrates some es-
sential requirements of many applications, and thus it is likely
that readers have had to address very similar issues. Once the
example has been displayed in Figure1, most readers should
be able to relate it to their own experiences just by relabelling
the elements of the figure.

2.1 Analysis of Manufacturing Data

The example involves the organization, visualization, and
analysis of test results obtained at the end of the manufactur-
ing of electronic chips and similar components (these com-
ponents are manufactured on silicon disks calledwafers in
batches calledlots). Specialized hardware (probe testers) ex-
amine each of the chips on each manufactured wafer for func-
tional acceptability. Each test results in a code for success
or failure (of various types). Every wafer manufactured at
any of the factories of a company such as Lucent Technolo-
gies is subjected to these tests (as potential users would likely
hope!), and the data from the tests is recorded in databases
maintained at individual factory sites (in Lucent’s case for
example, in Allentown, Pennsylvania; Orlando, Florida; or
Madrid, Spain, among other places).

The test results contain a lot of information; understanding
it is critical for managing the manufacturing process. Spatial
patterns of failures, variations over time, and the relation to
various factors in the manufacturing process are all important
and difficult aspects of using the data.

Techniques and software for visualizing and modeling the
data have made important contributions in recent years. In
particular, plots based on computations in S provided vi-
sualization of the test results that allowed engineers to see
patterns much more readily and quickly. Interactive, non-
programming interfaces to this visualization added to the ease
of use. The interactive interfaces were then made available

2

Allentown Madrid Orlando

B

S
Process

Java
GUI Front End

To Report Generation

D

Wafer
Testing

A

C

Figure 1: Using distributed computing, via Java applets, S, and
database software, to view test results from chip manufacture. Ar-
rows indicate data transfer.

over the company intranet linking the users at widely sepa-
rated sites.

Figure1 illustrates the basic architecture: the probe test
equipment at each location (A) generates data and stores the
data in databases locally. The databases (B) are managed by
database management software, often a standard system used
for all the manufacturing data at the factory. To visualize
the test results, the data is selected from the database, read
into the statistical or visualization system and displayed. A
graphical user interface allows users to choose different dis-
play styles and to select particular aspects of the data, as well
as providing mechanisms for selecting the dataset of interest.
The facilities can be provided on the Web by using suitable
software to implement the displays and by providing user ac-
cess through such mechanisms as CGI (Common Gateway
Interface) scripts or Java applets.

2.2 Key Features of Distributed
Computing

The example illustrates the key features of many modern ap-
plications: data are generated, often in quantity, for important
purposes not under control of the statistical software; the data
stored in Database Management Systems (DBMS) may be di-
verse in either geographical location or in the schema used;
users are likewise widely distributed, using varied comput-
ing equipment, and not usually prepared to deal directly with
general software for data analysis; oftentimes security con-
siderations need to be addressed to ensure that proprietary
information can only be accessed by authorized clients and
users. With all these challenges, understanding the data by
the appropriate people can be a very important contribution
to the organization.

The software to support this example has evolved through
several stages and a number of languages. The “core” soft-
ware for visualization and modeling such data is the S-Wafers
library (Hansen and James, [3]), which provides functional-
ity in S to organize, analyze, and plot the data. This software,
like most applications, needs to operate in a context where
data flow into and from the system, with users directing the
task to be carried out through some kind of interface, possi-
bly graphical for those uninitiated in the statistical system it-
self. Visual Basic [2] and Java front-ends, for example, were
both used to provide graphical interfaces to S-wafers in which
communication among S and the databases was done through
text files. To take advantage of the company Web, CGI scripts
provided users with access to the data and to the plots.

In Figure1, a user brings up a Java applet (C) and selects a
database (B), which sends a list of available lot names to the
applet for the user to analyze; the user selects some lots by
name, and the applet then sends these selected lot names to
the S process (D); the S process obtains the data correspond-
ing to these lots from the database (B), and finally generates
suitable plots.

In a precursor to the current project, Chambers, Hansen,
and Mattingly [4] developed a general interface between S
and Java, for which the wafers application provided a demon-
stration example. This architecture provided a general inter-
face, unlike the earlier special-purpose interfaces (e.g., the
Visual Basic Wafers-GUI described in [2]). S functions and
Java applications or applets communicated by exchanging ob-
jects. Both languages implemented an interface to a general
object format (using the string-based data dump format in S,
[1, Chapter 5]). The computational results from S were com-
municated to the Java user interface as objects, and evalua-
tion requests from Java were similarly passed to S as (string)
objects. An additional Java application managed communi-
cation between the systems.

These approaches, and many similar ones in other exam-
ples, provide valuable software to users, but they are all to

3

varying degrees unsatisfactory as the architecture for large-
scale distributed computing with data. The simple appearance
of Figure1 hides a number of problems that make distributed
programming difficult and can hurt the reliability of the re-
sulting application.

2.3 Issues in Distributed Computing

There are potentially as many programming lan-
guages/systems in Figure1 as there are boxes A to D.
Each time one system acts as a client of another system, the
client must know how to invoke a request from the particular
server and how to interpret the data, if any, that the server
supplies in response to the request. When the systems are,
in addition, distributed over the Web, the client must know
how to identify the server (for example, as a particular CGI
interface on a particular site on the Web); it must then send
its request to that particular server. For the application to be
reliable, each client needs to ensure that the supposed server
is available, that the request was communicated successfully,
and that the server satisfied the request.

For the application developer, this situation results in prob-
lems such as the following.

� The communication process between systems is low-
level, usually in the form of “flat files”, streams of un-
structured text, or special-purpose formats designed for
the particular example. There is little potential for reuse
of the communication structure and little general data
structure to build on.

� The writer of an application needs to know enough of
each server system’s language and capabilities to trans-
mit a request and interpret the result. In Figure1, the
writer of the test probe software needs to know how
to create tables and supply data in the database system,
while the writer of the S application needs to know how
to identify and extract test data, and how to turn the re-
sult into an S dataset. Similarly for any other communi-
cation required.

� At best, the implementers of each piece application have
to understand the details of communication management
and worry about restarting computations, determining
the cause of communication failure, and ensuring in-
tegrity of the transmitted data. At worst, no one has time
to worry about such issues, leaving the user of the appli-
cation unprotected.

� Security issues are either inadequately addressed or sim-
ply ignored.

Recognition of some of these problems stimulated the work
on the S/Java interface. Experience with the initial versions

of this software convinced us that distributed computing with
data was indeed a viable and important next step. At the
same time, it was clear that our attempts were solving, in
a rather minimal way, general problems of communication
and distributed computation. In addition, extending the de-
sign to multiple systems and convincing owners of other lan-
guages and systems to adopt such an approach were likely to
be daunting projects.

What was needed was a general, powerful, and high-level
approach that we could adapt for our needs rather than having
to design and implement ourselves.

3 CORBA

We will not attempt a general discussion of CORBA here (see
one of the many references, such as [5, 6], and the papers on
the Web, such as those athttp://www.omg.org). In-
stead we will mention some of the key aspects of CORBA
for computing with data, and address a few of the questions
about using it.

The Common Object Request Broker Architecture or
CORBA is best understood in the context of object-oriented
applications (although CORBA specifically provides inter-
faces to non object-oriented systems through the so-called
delegation interfaces), and the 3-tier distributed model. This
model defines a middle tier between clients and servers al-
lowing for one common interface that all applications use for
object location, method invocation, data transfer, plus many
other services (this middle layer is referred to as the Object
Request Broker or ORB).

As its name implies, CORBA is not a system, language
or piece of software, but rather an architecture and a set of
specifications. The overall goal is a standard for client/server
computations, using objects distributed over a heterogeneous
network of computer hardware and software. Implementa-
tions of the architecture enable application software to make
requests of other software (acting as a client) and/or to pro-
vide methods that may be invoked by other software (acting
as a server).

Reduced to a (very) skeletal description, here is the model
CORBA provides for computations. Any computation of-
fered by a server is anobject; these objects provide their ser-
vices asmethods(oroperationsas CORBA refers to them). A
client gets some computation by getting a reference to the ob-
ject in the server; then, it invokes whatever methods it wants
on that object.

For a number of reasons, this model greatly improves the
implementation environment for distributed computing with
data.

1. Communication is invisible.All the method invocations
behave as if they were local computations. In particular,

4

the client can ignore any question of where the service is
located (this is oftentimes referred aslocation transpar-
ent).

2. Programming is language-neutral.Programmers devel-
oping clients in a particular language that provides ac-
cess to CORBA do not need to know the details of what
language was used to implement some object whose
methods they want to use, e.g. the S syntax.

3. Class definitions are explicit and general.The data ob-
jects used and provided by servers and clients are explic-
itly defined using a language for class definition (inter-
facein CORBA terminology) that matches well to such
languages as Java, C++ and the most recent version of S
[1].

4. Everything is dynamic and self-describing.An impor-
tant feature of CORBA is that it provides for dynami-
cally querying (and specifying) essentially all the infor-
mation about classes and methods.

The first two items by themselves allow for direct use of
CORBA to improve programming for distributed computing
with data; in Section4 we will indicate how this would apply
to the example in Figure1. More general and more exciting
possibilities arise from the last two items. Some possibilities
are outlined in Section5.

With all this, CORBA is definitely no free lunch, although
there are some essentially free dishes such as the commu-
nication services. Support for CORBA is large and grow-
ing (Netscape Navigator is bundled with an ORB and the
upcoming Sun’s Java Developer’s Kit 1.2 provides an IDL
interface), but it has competitors, e.g., Microsoft’s DCOM
(Distributed Component Object Model), and others. And no
architecture can magically solve intrinsically hard problems.
Integrating deeply inconsistent views of data (for example,
some aspects of statistical software with some aspects of re-
lational databases) remains hard whatever the context. Orga-
nizing very large computational tasks in a distributed environ-
ment is hard because the underlying information content and
the algorithms to produce don’t easily convert to a distributed
environment in most cases. Providing easy but flexible and
extensible interfaces to important computations with data re-
quires much care and considerable inspiration.

In all these hard problems, however, the importance of
choosing a better underlying architecture, such as we believe
CORBA provides, is that we are left with more time to work
on the really hard or important tasks, with less time wasted
re-solving old problems, duplicating other systems’ software,
or worrying about the details of distributed computing.

4 Using CORBA

As we noted before, Figure1 makes the interaction among
its component systems look simpler than conventional imple-
mentation techniques allow. The arrows in the figure gener-
ally involve sending some data from one part of the system to
another. We would like to think that we could create a “rea-
sonable” definition of the data involved and then just make
the request. The test data would be stored in the database; the
statistical system would get it from the database and do some
computing on it; the GUI front-end gets information from the
statistical server or the database server and provides the user
with corresponding choices for plots and reports.

The first, and essential contribution of CORBA is to bring
the actual programming environment closer to this reasonable
view. Two components, such as the statistical (client) pro-
cess and the database server, need only understand the data
involved in terms of the essential structure, which each can
understand in its own language. The structure and the avail-
able methods are declared in the Interface Definition Lan-
guage. For example, all of the components in Figure1 deal
with wafer test data (except perhaps the GUI), so they need to
agree on what information such data contains. The agreed-on
answer just needs to be defined once, say as an IDL definition
of the class, sayProbeTest .

typedef sequence<string> StringVariable;

interface ProbeTest f
attribute StringVariable results;
attribute string code;

g;

This definition is one of many possible; it corresponds
roughly to the example on page 46 of reference [1]. The test
results are a vector of strings, one for each of the sites on each
wafer in the lot. The stringcode identifies what kind of de-
vices are being manufactured here, which in turn allows the
software to find out other information for plotting. If this was
agreed to be the useful way of dealing with the information,
then the database software for the application would likely
advertise a method, say:

ProbeTest getLot(in string lotId);

This takes a string identifying the particular wafer lot of inter-
est, and returns aProbeTest object. Similarly, a class with
a getLotIds method provides a list of lot names stored in a
given database to any client; this is the method that the Java
GUI applet invokes as soon as the user selects a database (see
Figure2).

The helpful aspects of this approach are that this descrip-
tion can be automatically coerced into an object in Java, S, or
other systems, and that the actual transmission of data implied

5

between the components is transparent to the application pro-
grammer. The statistical system, acting as a client, invokes
the methodgetLot (perhaps via C++ bindings for CORBA),
just as if it were a local computation. The object reference re-
turned would then be coerced into a corresponding object in
the statistical system. Figure2 shows the same general appli-
cation as Figure1, but this time using CORBA to supply the
interactions. The arrows now indicate method invocation, and
the actual programming is now much nearer to the simplicity
suggested by the picture; in fact, the programming actually
is lessinfluenced by the details of the systems than the fig-
ure suggests. The communication of a request, for example,
from the GUI appears as a local method invocation in the Java
code, independent of the location or even the language of the
server.

Allentown Madrid Orlando

B

S
Process

Java
GUI Front End

To Report Generation

D

Wafer
Testing

A

plot()

C

yield()

getLot()

getLotIds()

update()

Figure 2: Viewing test results, with CORBA providing the inter-
action. Arrows indicate invocation of the corresponding method,
pointing towards the server providing the method.

Now that the definition of the data and methods is based on
a standard interface specification, it is no longer required any
special coding for each pair of systems involved, and applica-
tions can invoke and respond to requests fromanyother ap-
plication that supports the CORBA interfaces, independent of

the client’s and server’s language implementation, or operat-
ing system they run on. For example, database software often
supplies some summary calculations. These are likely to be
less flexible than those of a good statistical system, but might
be faster on large datasets, so why not invoke them directly
from the GUI? In Figure2, the GUI invokes ayield method
to get the average of successful tests; this method happens
to be computed directly by the database interface (perhaps
using JDBC, Java’s Database Connectivity, to do the actual
database access).

It needs to be emphasized that this scenario is a very
mild, vanilla use of CORBA. It supposes a minimal up-
front investment in developing higher-level tools, working
directly from the standard facilities in CORBA. Even so,
the communication requirements are drastically reduced,
and the explicit definition of the classes and methods
involved improves the clarity and understandability of
the programming. In the next section, we contemplate
some more interesting directions. A demonstration sys-
tem along the lines discussed here was implemented
at Bell Labs; the system is discussed on the Web, at
http://cm.bell-labs.com/stat/project/CorbaDemo .

5 Future Work

Some initiatives in the area of statistical software that can
contribute to more effective use of CORBA-based distributed
computing are outlined briefly in this section. The devel-
opment of commonly understood interfaces (classes) of data
among different statistical systems will provide well-defined
structure for distributed use of multiple systems. The defi-
nition of methods to deal with database software in terms of
such classes of statistical data will give us a start on an im-
proved connection between statistical and database software.
Making CORBA programming directly available from statis-
tical languages will simplify future programming with data in
a distributed environment.

Besides these directions, all relatively specific to statis-
tical software, we anticipate that new general programming
tools can be created to raise the level of programming for dis-
tributed computing. We expect that future work with CORBA
will benefit from the dynamic, self-describing data available
for all CORBA software. Other languages and systems, such
as the most recent versions of Java, and S, also provide dy-
namic access to metadata about the software in the language.
Eventually, much of the detail of programming inter-system
requests will be automated through the use of such informa-
tion.

6

5.1 Statistical Data Definition

The Interface Definition Language provides a general mech-
anism for defining classes (interfaces, in CORBA terminol-
ogy). These interface definitions can contain attributes (simi-
lar to slots in other languages) and operations (the signatures
for methods defined on objects from the class), as well as ex-
ceptions for error handling.

Mutual understanding of some operations for a particular
interface is needed for a client application to make a request
of a server. The client has to provide a request in terms of
an operation that the server has advertised, via an interface
definition. The objects that appear as arguments to the oper-
ation or as the result of it are communicated between client
and server, both of which must have enough understanding of
the definition of the objects to make use of them.

For statistical systems (and other software) to offer ser-
vices or to use each others services, they will need some basic
interface (class) definitions on which to base communication.
In the short term, one advantage of CORBA’s implementa-
tion in languages such as C++ is that interfaces can be imple-
mented for many systems (S being an example) by users; no
modification of the core software is required. But much more
desirable in the long term thanad hocinterface design would
be agreement among owners of statistical systems or (even
better) among professional statistical societies on a suitable
set of base classes for the Statistical Data Definition.

5.2 Statistical Database Connectivity

The data used for statistical analysis increasingly derives, di-
rectly or indirectly, from information stored in database man-
agement systems, usually those built on the relational data-
base model. Equally important is that much important data
involved in science, government or industry with thepotential
for useful data analysis resides in such systems. One of the
impediments to more effective statistical involvement with
such data is the lack of an open,generalinterface between
relational data and the typical models for observational data
in statistics. As a result, extracting data from such systems is
not seen sufficiently as a natural part of the cycle of statistical
analysis, and such involvement as does exist lacks reusability
when too tied to specific statistical or database systems.

The statistical model for observational data—in simple
form that of observations on some number of variables for
each of some set of observational units—has much in com-
mon with the relational model, in particular with the result
of a query in the standard query language for such databases.
As mentioned in Section3, there are some intrinsically hard
problems in matching the models perfectly. However, there
is also a very great potential benefit for a simple, general,
and extensible way of relating the common kinds of data in
databases to statistical data classes, and by providing commu-

nication mechanisms in the statistical systems to select and
modify data in standard database terminology, transparently
to the user.

Standards exist on the database side to build on: the struc-
tured query language (SQL) for formulating queries to any
conforming database system, and the JDBC as a program-
ming interface for implementing queries and dealing with the
results. By combining JDBC with CORBA and suitable sta-
tistical data definitions in IDL, we intend to provide a gen-
eral base for communication between statistical software and
databases. An encouraging feature is that some extremely
simple interface and method definitions would be a sufficient
base to get things going.

An interface for statistical data compatible with the gen-
eral relational model for databases will be most effective if it,
too, can become a standard accepted by statistical and com-
puting groups. As a step towards this goal, we will examine in
our research on distributed computing some simple versions
of such an interface, and present them to our colleagues for
comment.

5.3 CORBA and Statistical Systems

Presently, with some effort, users of a statistical system can
interact with existing CORBA server objects and even pro-
vide objects within the statistical environment as servers.
This is done using the usual CORBA approach of generat-
ing IDL descriptions of the server and compiling C++ or Java
code to provide access to the CORBA facilities. Finally, op-
erations are developed in the statistical system to interface to
the C++ or Java code.

The prospects for integrating statistical software via
CORBA, however, go potentially much farther. We believe
that statistical systems can easily provide builtin CORBA
support to insulate their users from such low-level CORBA
programming. This is made possible by the dynamic, object-
based nature of CORBA, which allows systems to discover
and interpret interface definitions in IDL. When operating as
a client, the statistical system can dynamically translate a call
in the statistical system’s language to a remote method invo-
cation on a CORBA object. Similarly, existing data objects
and/or methods in a given statistical environment can be au-
tomatically made to act as CORBA servers. The system need
only translate the description of the data structures into IDL
to make this possible. This and translation between CORBA
and each statistical system’s objects can be performed in a re-
cursive manner by unraveling the recursive IDL description
of the objects.

As an example, this facility, combined with the statistical
database connectivity above, will provide a rich environment
for programming seamless database access from a statistical
language. In many practical applications with large datasets,

7

such programming will eventually allow the evaluator man-
ager in the statistical language to do key translations of user
requests to, for example, apply certain computations of selec-
tion, sorting, and summary during the database query rather
than later in the statistical system.

5.4 Visualization

In addition to statistical languages and database management,
nearly all the examples similar to those shown here involve
interactive graphics or visualization of data. We will ex-
plore existing software suitable to be used in the IDL-style
approach to distributed computing, ideally collaborating with
the developers of these packages. We hope to find that ex-
isting graphical tools are accessible to integration into this
framework.

6 Conclusions

The distribution of computing services, geographically over
the Web and computationally over different languages and
operating systems, presents both an opportunity and a chal-
lenge for statistical software. We have proposed a CORBA-
based approach for distributed computing with data, an ap-
proach that is neutral to programming languages (imple-
mentable in C, C++, Java, etc), operating system (Unix,
Linux, Windows 95/98/NT, OpenVMS, MacOS, OS/2) com-
puter architecture, and network infrastructure. Because of its
formal descriptive definition of data structure and because of
the dynamic, self-defining nature of objects on the network,
CORBA offers the potential for a high-level interoperability
among systems, and a powerful distributed programming en-
vironment for users.

As one step in realizing this approach, we hope to cre-
ate, together with the statistics and scientific communities,
a Statistical Data Definition standard that distributed applica-
tions can rely upon for communication. We have also outlined
some of our future efforts in the areas of database connectiv-
ity, statistical system use of CORBA, and visualization.

References

[1] John M. Chambers.Programming with Data: A Guide to
the S Language. Springer-Verlag, 1998.2.2, 3, 4

[2] Lorraine Denby and David A. James. A graphical user in-
terface for spatial data analysis in integrated circuit man-
ufacturing. In Michael Meyer and James Resenberg, edi-
tors,Computing Science and Statistics, volume 27. Inter-
face Foundation of North America, 1995.2.2, 2.2

[3] Mark Hansen and David A. James. A computing envi-
ronment for spatial data analysis in the microelectronics
industry.Bell Labs Techn. J., 1997. 2.2

[4] John Chambers, Mark Hansen, and Jonathan
Mattingly. S and Java: Experimenting with
data analysis on the web. Bell Labs Research
Memorandum, 1998. Available on the web at:
http://cm.bell-labs.com/stat/doc/SJava.ps .
2.2

[5] Alan Pope. The CORBA Reference Guide. Addison-
Wesley, 1998.3

[6] Jon Siegel. CORBA Fundamentals and Programming.
Wiley, 1996. 3

8

	Introduction
	Examples and Previous Approaches
	Analysis of Manufacturing Data
	Key Features of Distributed Computing
	Issues in Distributed Computing

	CORBA
	Using CORBA
	Future Work
	Statistical Data Definition
	Statistical Database Connectivity
	CORBA and Statistical Systems
	Visualization

	Conclusions

