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1 Introduction

In this short communication we briefly discuss the idea
of context-rich graphical displays for exploratory data
analysis. We illustrate this concept through two case
studies and attempt to distill a handful of useful princi-
ples that may be used when analyzing data from other
areas.

If we consider graphical techniques such as scat-
ter plots, histograms, boxplots, quantile plots, etc., as
context-free in the sense that they are applicable to data
sets collected in any field of interest, context-rich then
refers to graphical displays highly tailored to specific ap-
plications. This allows us, for instance, to augment fa-
miliar displays with information that is often implicit
but not fully exploited by field investigators. By making
explicit this information through graphics we are able
to better articulate the analysis’ goals, methods, conclu-
sions, and limitations.

This idea has a long tradition. Many well-known dis-
plays are context-rich, for instance, Napoleon’s failed
Russian campaign [Tufte, 1983], Playfair’s wheat price,
wages, and the reigns of British kings from 1565
through 1821 [Tufte, 1983], cholera outbreak in Lon-
don’s 1850’s [Cliff and Ord, 1981]; more recent exam-
ples include EVENTCHARTS [Goldman, 1992], Cave-
plots [Becker et al., 1994], SeeNet [Becker et al., 1991],
etc. Extra information is effectively displayed in the
context of the application in all of the above mentioned
displays, e.g., weather hardships that Napoleon’s army
experienced, the steady economical improvement of the
British empire, censoring in the case of EventCharts,
network topology in the case of SeeNet, etc. See
[Cleveland, 1993], [Tufte, 1983], [Tufte, 1990] for many

more examples.

2 Case Studies

In the following case studies we show how graphical dis-
plays in combination with analysis of variance decom-
positions allows us to study the longitudinal and spa-
tial dependence of covariates on manufacturing metrics.
This approach is semi-parametric in that no longitudi-
nal/spatial structure is imposed on the response or its
covariates. In both examples, the response 1s measured
at multiple points, in the first example along an optical

fiber and on the surface of silicon wafers in the second
example. The response is first smoothed and an analy-
sis of variance model fitted at each location. We will fit
linear models

Y = XB + E

where all elements in the model are matrices; (y; ,) de-
notes the smoothed response for the i’th observation at
the p’th position, X is a designed matrix corresponding
to some parametrization of the covariates, (85 ) is the
coefficient for the k’th term at the p’th position, and
(€&,p) is the residual from the i'th observation at the pth
position. From this process we get multiple sets of coef-
ficients and effects (one set per location) that we display
longitudinally along a fiber and spatially on a wafer.

2.1 Optical Fiber

Two important quality characteristics of the transmis-
sion along optical fiber cables are the power attenua-
tion and dispersion as the light signals travel along the
fiber. Their measurement is done with an optical time-
domain reflectometer (OTDR) that sends laser pulses
along the fiber and measures their back-scatter intensi-
ties at equally-spaced points. To measure the fiber atten-
uation at a single point on the fiber, multiple signals of
specified width are sent and their backscatter averaged.
This process is repeated for positions pi,ps,...,ps, to
form a collection of power measurements (in dB) that
traces the signal attenuation along the fiber. Figure 1
shows one such trace.

Although not distinguishable from Figure 1, the vari-
ance of the measured attenuation is largerly dependent
on position (i.e., as the signal travels further into the
fiber, the measurement error is known to increase). Var-
ious factors were known to have a possible effect on the
variance, but the form of this dependence was not un-
derstood in the presence of manufacturing variability.

To characterize the OTDR measurement error along
the fiber, a 24-run full factorial experiment was con-
ducted varying the power of the input laser or “plugin”
(low versus high), the width of individual light pulses
(short, medium and long), and the number of pulses that
are averaged at each point on the fiber (50, 100, 150, and
200). At each condition 100 replicates were taken and
their loess [Cleveland, 1979] smoothed variance is shown
in Figure 2.
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Figure 1: Power along an optical fiber.
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Figure 2: Designed settings from a full-factorial experi-
ment. The top 12 shaded panels correspond to runs with
high plugin and the bottom 12 panels with low plugin.
Each column depicts the response at one pulse width.
Each row shows the response for one level of number of
averages: 200, 150, 100, and 39. The number in the up-
per left-hand corner of each panel indicates the order of
experimentation.

Traditionally, experiments like this have been ana-
lyzed by first reducing the response (the variance traces)
to scalars (e.g., means or medians variance). Then an
analysis of variance would be conducted on these sum-

maries. This approach ignores the possible dependence
of the factors on positions along the fiber; if the effects
are monotone and significantly large, adequate settings
may be concluded, but the intrinsic variability along the
fiber could not be assessed.

Instead, without too much extra work, we may esti-
mate the effect of the covariates at fixed intervals along
the fiber. Had we had information as to the functional
form of the variance traces as the covariates vary, we
would had modeled it directly. Since we did not, we fit-
ted models at one-kilometer intervals to log(s), and then
collected the terms into traces to understand the effects’
dependence on position. Figure 3 shows how the effects
of the covariates vary along position on the fiber.
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Figure 3: Effect traces from the full ANOVA model.

We see, for instance, that the two curves correspond-
ing to the terms in pulse width contribute the most to
measurement error, also apparent from Figure 1. More-
over, their contribution is nonlinearly increasing as a
function of position. Similarly, we see that the “plu-
gin” effect of input laser power (high better than low),
is significant and somewhat uniform along the fiber. Fi-
nally, only one term from number of signal averages per
measurement is shown to be significant and linearly in-
creasing along the fiber: this term contrasts averaging
50 signals versus 100 or more. We concluded that 100 or



more averages is adequate.

2.2 Integrated Circuits on a Wafer

Integrated-circuits or “chips” are manufactured on sil-
icon wafers. These wafers are circular disks that may
contain from 40 up to 800 or more chips. Before these
wafers are cut and the microchips packaged, a battery
of tests are applied to each chip to assess whether it 1s
defective or not (for this presentation we will ignore the
numerous outcomes that a chip may experience).

At each site on a wafer, we estimate its probability
of being defective by using a smoother (we use a kernel
smoother, but others may also be used) and then apply
a sequence of transformations to stabilize their variance.
Figure 4 shows one binary wafer where black squares
denote defective chips and white squares denote non-
defective chips; the wafer on the right shows a smoothed
version of the binary wafer where dark areas denote re-
gions of “high” defect probabilities (high with respect
the overall proportion of defective chips.)

Figure 4: A binary wafer and its smoothed version.

We then may want to relate these probabilities to man-
ufacturing parameters, for instance, through designed
experiments.

Traditionally, engineers have summarized each wafer
by its yield (i.e., the proportion of good chips) and per-
formed data analysis on the yield alone. This approach,
like the traditional approach seen in the fiber example,
ignores the spatial structure of the response.

A designed experiment was conducted to study the ef-
fect of two factors on yield; the factors were a diffusion
time and a coating step. Three diffusion times were var-
ied, from short, medium, and long; two coatings were
used, thin and thick.

In Figure 5 we show the interaction between the two
factors by computing the average yield at each factor
combination. We augment this well-known display with
averaged wafers were the value at the /th site represents
the average defective proportion across wafers for the
given factor combination.

Figure 5 suffices to determine the factor combination
that maximizes yield (thick coating and short diffusion
times). However, the engineers were also interested in
untangling the effects of the factors on the wafer sur-
face, thus an extra step was needed. By following the
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Figure 5: Interaction plot for the wafer experiment.

paradigm shown in the fiber example, we fitted an anal-
ysis of variance model at each site on the wafer. We
collected the coefficients of coating and the linear term
of diffusion from all ANOVA’s and displayed them as

wafer objects in Figure 6.

Figure 6: Coefficients for the coating term and for the
linear term of diffusion time.

We then repeated this process for all elements of the
models and display them as wafer objects in a familiar
regression analysis summary table in Figure 7.

The first column in Figure 7 shows how the various co-
efficients vary on the wafer surface; the second column
displays the standard error for each coefficient and site;
similarly the third column shows T-values for each site
and coefficient; the last column shows p-values — light
sites (close to zero) denote chips where the corresponding
coefficient is significantly different from zero. The two
wafers at the bottom show the estimated standard devia-
tion (labeled Root MSE) and the percentage of variability
that the model explains (labeled R-squared): we note
that the model (i.e., changes in diffusion and coating)
can explain a large fraction of the variability in yield.
The intercept wafer indicates that yield is smallest at
the top of the wafers across all experimental conditions.

The coefficient for coating (better seen in Figure 6)
shows smaller yields in the center of the wafer, while
diffusion time has large coefficients outside the center.
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Figure 7: Coefficients from the ANOVA fit

Thus by carrying out the analysis of variance at each
site we have been able to separate the effects of coating
from those of diffusion time on the wafers.

Predictions and residuals may also be plotted as wafers
for model diagnostics.

3 Discussion

As the examples illustrate, by incorporating intrinsic
longitudinal /spatial structure into known graphical
methods we begin to understand the variation in our
data along those dimensions. Notice that in both exam-
ples we employed the analysis of variance decomposition
as a means for exploratory data analysis rather than
an inferential procedure, and then displayed its various
components along the length of the fiber and over the
surface of a wafer. It was through graphical displays that
we assessed the extent of the longitudinal and spatial de-
pendence of the responses. Alternative approaches that
could be used include generalized additive models with

varying  coefficients,  [Hastie and Tibshirani, 1990],
[Hastie and Tibshirani, 1991], and loess  models
[Cleveland, 1979],  [Cleveland et al., 1993],  among

others. In the case of wafers, formal spatial analysis
techniques can be used to estimate the extent of spatial
clustering and its relation to the covariates, for instance
[Taam and Hamada, 1992], but the above graphical

displays were more visually effective.

In both examples the models used did not include lon-
gitudinal/spatial components in the predictors because
it was strongly felt that there was no prior knowledge
that could reasonably describe the longitudinal/spatial
structure in the response or the covariates. Moreover,
by allowing the effects to freely vary over the fiber and
over the wafer surface we guarded against most types of
misspecification; yet the graphics we used to display the
effects and coefficients effectively reveal their longitudi-
nal and spatial dependence.

If the data are not collected through designed experi-
ments, techniques such as principle components or hier-
archical clustering may be appropriate. These are some
of the multivariate techniques whose graphical displays
can easily be augmented with similar symbols or glyphs,
e.g., imagine a cluster dendrogram with wafers at the
leaves.

Figures 5 is an example of this simple technique that
uses glyphs to add contextual information to known
graphical displays. Figure 8 below shows the distribu-
tion of planned yield for a set of wafers; three average
wafers are superimposed to depict the spatial variation
of yield for the lower 25% of the yield distribution the
middle 50% and the top 256%.
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Figure 8: Boxplot of yield plus site-wise averages for the
low 25%, middle 50% and top 25% of the yield distribu-

tion.

Looking at yield by itself clearly fails to convey sys-
tematic patterns of defectives that, if removed, would
significantly improve production. The glyphs in this
case are wafers, but we could imagine plotting boxplots,
stars, thermometers, time-series or other glyphs on scat-
ter plots or other displays as a means to show dependence
(or lack thereof) among the variables.
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