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A Computing Environment

Computingin the sense of J. M. Chambers (1998)
computing with dataAn environment for the

e Organization
e Analysis

e Presentation
of data from IC manufacturing.
Outline

1. IC manufacturing and its data
2. Functionality in the current implementation
3. Extensions for distributed computing

4. Conclusions



Integrated Circuit Manufacturing

Long, complex manufacturing. Fabrication requires
hundreds of steps and typically lasts up to several
weeks.

Multiple layers of minute elec-
-'-'-f~_;"_ | tronics are built sequentially.

Hundred of IC’s are fabricated
) simultaneously on a wafer.
i Wafers are processed lmts.

Production. Thousands of wafers being produced at
any one time. Many technologies and types of
products.



Wafer Map Data

Probe Test Data




|C Manufacturing

e Vast amounts of data for monitoring and control,
e highly structured and spatial data are ubiquitous;

e countless processes leave spatial “signatures” on

the product;

e need for extending Shewhart principles to spatial
processes;

e Need for making spatial data analysis common
practice.



|C Manufacturing

The improvement of IC manufacturing processes
requires

¢ Understanding and insights of spatial processes
e extensions to existing statistical methodology
e new statistical methodology

e a computing environment for implementing the
above



Wafer Map Data

e Failure categories in addition to good/bad
e particle locations, size, and counts

e memory arrays bit failures

e fully continuous “parametric” data

e varying degrees of spatial sampling

e distributed over databases



A Computing Environment

Some functionality

e EXxploratory data analysis and visualization

e Spatial process monitoring

¢ |dentification spatial patterns and defect clustering
e Yield modeling

e Parametric modeling and classification

e Spatial DOE

e Electric tests and defect-type data



A Computing Environment

The base languadgeprovides

e means to express advance computations
e a powerful statistical and graphical engine

e an object-based system to encapsulate spatial data
and their computations

e an extensible environment.



The Current Environment

Simple extensions to common graphical displays by
superposing wafer glyphs

e Composite maps (mean)

NG )

e Boxplots
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The Current Environment

e Smoothing

e Scatterplots
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Wafer Maps as Multivariate Data

We may readily employ many multivariate techniques:

e Regression and anova models

e Loess and other smoothing techniques
e Clustering techniques

e Generalized Linear Models

e Principle components

e Classification and regression trees

For instance, hierarchical clustering algorithms are
quite useful for finding groups of similar wafers.
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Finding Groups of Similar Wafers

We can exploit the above idea to look for groups of
wafers with similar clustered defects.

e Smooth binary data

e Hierarchical clustering (Kaufman & Rousseeuw,
1990)

10 —
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Data Browsers

Interactive graphics for exploring groupings through
“linked plots”

Data to cluster
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Data Browsers
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Data Browsers
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Data Browsers

Data to cluster
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There is a need for better integration of graphics with
the host windowing system.
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Shewhart’s Principles and IC Manufacturing

The principle ofrandomandassignablecauses needs
to be articulated in terms of spatial processes.

Monitoring. To spatially separate “assignable” from
“random” causes.

Diagnosis. To ferret out factors that spatially impact
production.

And the application of SPC in ifsroadeskense.
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Monitoring Production

From Simple graphical superposition of wafer
glyphs...

Planned Yield
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Monitoring Spatial and Random Defects

To more computational intensive wafer-wise yield
decomposition
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Composites may Mask Patterns

Lower/Upper Quartiles:

il
— + seEy |
Spatial Patterns:

90y
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Patterns or Noise?

Modeling yield loss as a superposition of two
destructive mechanisms.

e Large area defects are process-related (by and
large).

e Small area defects are typically random particle
defects.

Compute local averages as a means to enhance local
features.
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Patterns or Noise?

Untangling clustered from random defects.

Smoothing: compute local proportions

e Define a neighborhood and weights to compute
local weighted averages.

e Transform smoothed wafers

Thresholding: partition the wafer into clustered and
random areas.
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Patterns or Noise?

Sequential procedure for detecting threshold:

Z score

Thresholding values
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Separating Clustered from Random Defects

We thus can factor yield into its spatial and random
components:

rim: 0.15,0.
Probed: Jun0698
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Monitoring Spatial and Random Defects

Assignable causes may or may not be spatial

Decomposing Yield into Clustered and Random Effects

decomposed yield (scale removed)
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The lot in the middle shows a high intensity random
component as assignable cause
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SPC In its Broadest Sense

|dentification of problemsndtheir likely sources
through data analysis

Example Tools for diagnosing a “failing” lot:

¢ In-line data (cosmetic, “positrack”) wasn'’t
helpful.

e |V parametric data did provide clues.

IV spatial sampling defines areas within wafers.

Need to easily merge probe and IV maps to properly
account for spatial variation.
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SPC In its Broadest Sense

We compute area yields and match these to IV data to
compute area correlations (Pearson).

Probe

Bin X

Area Defects

IV Param
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Area Cor
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This is a simple tessellation of the wafer map, but
other partitions may be constructed.
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SPC in its Broadest Sense

Top parametric area correlations
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More flexible models than Pearson’s correlations may
be computed within wafer areas.
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SPC In its Broadest Sense

Full Details on most likely IV parameters

Defect Proportions
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E-tests and Defect-type data

2.094

(+0.431) 8.398

e E-test as a canvas

e Defect-type data on top

12.000
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Extensions for Distributed Computing

There is a need for

e Access to distributed data

e Provide analyses to client applications
e Better interactive graphics

e Additional user-interfaces

Build on recent advances in distributed statistical
computing

e CORBA

e S-Java interface and JDBC
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Distributed Data

Multiple data bases, different levels of aggregation

e Probe testing

e Product work flow

e Process control

e SPC

e Facilities management

e Particles, bitmaps

Current interface is through text files (simple, robust,
but labor-intensive).
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External Application

e \arious reporting systems

e \Web applets

e Real-time monitors

e Different platforms and languages

e Complex communications (e.g., sockets, RPC)
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Clients, Servers, and Middleware

S-WAFERSas a multi-server over a CORBA bhus
providing

e Visualization
e CSR and yield spatial factorization

e Spatial monitoring

These services are provided to clients independently of
platform, language, and location where server and
client reside.
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A CORBA Architecture

Particle DB Probe Workflow
B
get Lot ()
updat e()
D
yi el d()
S-Wafers

get Lot 1 ds() Wafer

Testing

\)

JavalC++/Perl/Python
External Application C
e.g. Report Generation




Conclusions

¢ |C manufacturing involves many complex
processes that require large amounts of
highly-structured and spatial data for monitor and
control.

e We've extended existing statistical methodology
to fully exploit the spatial information in these
data.

e S-WAFERSIS a computing environment tailored
for the spatial analysis of IC data that provides
tools for visualization, spatial monitoring, yield
modeling, and other tools.

e \We're facing the challenge of large, de-centralized
databases and provisioning of spatial analysis to
client applications through distributed computing
based on CORBA.
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