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A Computing Environment

Computingin the sense of J. M. Chambers (1998)

computing with data: An environment for the

� Organization

� Analysis

� Presentation

of data from IC manufacturing.

Outline

1. IC manufacturing and its data

2. Functionality in the current implementation

3. Extensions for distributed computing

4. Conclusions
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Integrated Circuit Manufacturing

Long, complex manufacturing. Fabrication requires

hundreds of steps and typically lasts up to several

weeks.

Multiple layers of minute elec-

tronics are built sequentially.

            

Hundred of IC’s are fabricated

simultaneously on a wafer.

Wafers are processed inlots.

Production. Thousands of wafers being produced at

any one time. Many technologies and types of

products.
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Wafer Map Data

Probe Test Data
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IC Manufacturing

� Vast amounts of data for monitoring and control;

� highly structured and spatial data are ubiquitous;

� countless processes leave spatial “signatures” on

the product;

� need for extending Shewhart principles to spatial

processes;

� Need for making spatial data analysis common

practice.
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IC Manufacturing

The improvement of IC manufacturing processes

requires

� Understanding and insights of spatial processes

� extensions to existing statistical methodology

� new statistical methodology

� a computing environment for implementing the

above
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Wafer Map Data

            

� Failure categories in addition to good/bad

� particle locations, size, and counts

� memory arrays bit failures

� fully continuous “parametric” data

� varying degrees of spatial sampling

� distributed over databases
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A Computing Environment

Some functionality

� Exploratory data analysis and visualization

� Spatial process monitoring

� Identification spatial patterns and defect clustering

� Yield modeling

� Parametric modeling and classification

� Spatial DOE

� Electric tests and defect-type data
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A Computing Environment

The base languageSprovides

� means to express advance computations

� a powerful statistical and graphical engine

� an object-based system to encapsulate spatial data

and their computations

� an extensible environment.
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The Current Environment

Simple extensions to common graphical displays by

superposing wafer glyphs

� Composite maps (mean)

=
1
n

 
+ + � � �+

!

� Boxplots

P
ro

po
rt

io
n 

of
 P

la
nn

ed
 Y

ie
ld

0.5

0.6

0.7

0.8

0.9

               

10



The Current Environment

� Smoothing

� Scatterplots
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Wafer Maps as Multivariate Data

We may readily employ many multivariate techniques:

� Regression and anova models

� Loess and other smoothing techniques

� Clustering techniques

� Generalized Linear Models

� Principle components

� Classification and regression trees

For instance, hierarchical clustering algorithms are

quite useful for finding groups of similar wafers.
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Finding Groups of Similar Wafers

We can exploit the above idea to look for groups of

wafers with similar clustered defects.

� Smooth binary data

� Hierarchical clustering (Kaufman & Rousseeuw,

1990)
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Data Browsers

Interactive graphics for exploring groupings through

“linked plots”
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Data Browsers
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Data Browsers
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Data Browsers
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There is a need for better integration of graphics with

the host windowing system.
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Shewhart’s Principles and IC Manufacturing

The principle ofrandomandassignablecauses needs

to be articulated in terms of spatial processes.

Monitoring. To spatially separate “assignable” from

“random” causes.

Diagnosis. To ferret out factors that spatially impact

production.

And the application of SPC in itsbroadestsense.
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Monitoring Production

From Simple graphical superposition of wafer

glyphs...
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Monitoring Spatial and Random Defects

To more computational intensive wafer-wise yield

decomposition
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Trim: 0.15,0.95
Probed: Jun0698

mrf: 0
CSR sig: 0.1

Z.opt: 0.6
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0.85/0.84

from which we can track both theY0 andD0.
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Composites may Mask Patterns

Lower/Upper Quartiles:

= + +

Spatial Patterns:

= + +
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Patterns or Noise?

Modeling yield loss as a superposition of two

destructive mechanisms.

= +

� Large area defects are process-related (by and

large).

� Small area defects are typically random particle

defects.

Compute local averages as a means to enhance local

features.
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Patterns or Noise?

Untangling clustered from random defects.

Smoothing: compute local proportions

� Define a neighborhood and weights to compute

local weighted averages.

� Transform smoothed wafers

Thresholding: partition the wafer into clustered and

random areas.
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Patterns or Noise?

Sequential procedure for detecting threshold:

Thresholding values
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Separating Clustered from Random Defects

We thus can factor yield into its spatial and random

components:
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Trim: 0.15,0.95
Probed: Jun0698

mrf: 0
CSR sig: 0.1

Z.opt: 0.6

0.91/0.80

0.96/0.87

0.94/0.76

0.91/0.88
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0.88/0.79

0.85/0.78

0.85/0.84

The composites for the data, and its clustered and

random component are

= +
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Monitoring Spatial and Random Defects

Assignable causes may or may not be spatial
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The lot in the middle shows a high intensity random

component as assignable cause
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SPC in its Broadest Sense

Identification of problemsandtheir likely sources

through data analysis

Example: Tools for diagnosing a “failing“ lot:

� In-line data (cosmetic, “positrack”) wasn’t

helpful.

� IV parametric data did provide clues.

IV spatial sampling defines areas within wafers.


 �!

Need to easily merge probe and IV maps to properly

account for spatial variation.
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SPC in its Broadest Sense

We compute area yields and match these to IV data to

compute area correlations (Pearson).

 91.4 150.0

-1  1

Probe

Bin X

Area Defects

IV Param

Area Cor

This is a simple tessellation of the wafer map, but

other partitions may be constructed.
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SPC in its Broadest Sense

Top parametric area correlations

-1  1
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More flexible models than Pearson’s correlations may

be computed within wafer areas.
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SPC in its Broadest Sense

Full Details on most likely IV parameters
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E-tests and Defect-type data

 2.094 12.000
• •

 8.398(+0.431)

� E-test as a canvas

� Defect-type data on top
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Extensions for Distributed Computing

There is a need for

� Access to distributed data

� Provide analyses to client applications

� Better interactive graphics

� Additional user-interfaces

Build on recent advances in distributed statistical

computing

� CORBA

� S-Java interface and JDBC
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Distributed Data

Multiple data bases, different levels of aggregation

� Probe testing

� Product work flow

� Process control

� SPC

� Facilities management

� Particles, bitmaps

Current interface is through text files (simple, robust,

but labor-intensive).
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External Application

� Various reporting systems

� Web applets

� Real-time monitors

� Different platforms and languages

� Complex communications (e.g., sockets, RPC)
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Clients, Servers, and Middleware

S-WAFERSas a multi-server over a CORBA bus

providing

� visualization

� CSR and yield spatial factorization

� Spatial monitoring

These services are provided to clients independently of

platform, language, and location where server and

client reside.
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A CORBA Architecture

Particle DB Probe Workflow

B

 
S-Wafers

Java/C++/Perl/Python
External Application

e.g. Report Generation

D

Wafer
Testing

A

plot()

C

yield()

getLot()

getLotIds()

update()
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Conclusions

� IC manufacturing involves many complex

processes that require large amounts of

highly-structured and spatial data for monitor and

control.

� We’ve extended existing statistical methodology

to fully exploit the spatial information in these

data.

� S-WAFERS is a computing environment tailored

for the spatial analysis of IC data that provides

tools for visualization, spatial monitoring, yield

modeling, and other tools.

� We’re facing the challenge of large, de-centralized

databases and provisioning of spatial analysis to

client applications through distributed computing

based on CORBA.
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