
Applying verification methods to non-exhaustive
verification of software/hardware systems

M.C.W. Geilen, D. R. Dams and J.P.M. Voeten

Abstract— In order to handle the increasing complexity of hardware /
software designs, system level design methods are being used. These meth-
ods are directed to produce operational system models at a high level of
abstraction. They can be used to assess early in the design phase if spe-
cific functional or performance requirements can be met. Since the systems
that are being designed are often concurrent and real-time, the behaviour
of these models can become rather complex. It is not always easy to check
whether a model indeed satisfies the desired requirements. If the speci-
fication model has a well-defined semantics, and the requirements can be
expressed exactly, it is possible to automate some of these checks. Several
techniques exist to verify if a given model satisfies certain formally defined
properties. A popular approach is model-checking, which is an automata
based approach in which the verification problem is reduced to standard
checks on finite state automata, as used in the tool Spin [1] for example.

In this paper we investigate the use of such automata based verification
techniques in simulation of high-level system specifications in POOSL [2].
We show how certain properties expressed in the formalism linear temporal
logic (LTL), can be automatically monitored during simulations of complex
distributed systems.

Keywords— formal verification, temporal logic, tableaux, simulation,
object-oriented methods

I. I NTRODUCTION

Systems that need to be designed are becoming more an more
complex. They are often real-time concurrent systems, consist-
ing of a large number of components operating together. These
systems need to be designed as fast as possible, containing as
few errors as possible. Formal methods are very helpful to auto-
mate parts of the design process and to design with fewer errors.
Systems, designed using formal methods have a well-defined
behaviour, which allows the use of automated tools. Automatic
verification techniques can be used to assess the correctness of
the design. Such techniques include simulations and formal ex-
haustive verification techniques. Simulations are easy to use,
easy to understand and provide much insight in the behaviour of
the system. Their capability of finding errors however is limited.
Exhaustive verification methods on the other hand are better at
finding certain types of errors. They are however still hard to use
and suffer from the state space explosion problem. This makes
that they can only be applied to either very small or very ab-
stract systems. In the latter case, it might be possible that the
abstract model does no longer exhibit all errors present in the
actual design. Both methods should therefore be used, simula-
tion in early stages and on global design, exhaustive methods
later on and concentrating on specific problem areas. This paper
describes the possibility to verify certain temporal logic require-
ments during simulation of concurrent distributed system mod-
els. SectionII describes an example in the language POOSL
and the transition systems that are generated by POOSL models.
Then, temporal logic is discussed as a way to formalise system
requirements. A known method to build transition systems from

Section of Information and Communication Systems, Faculty of Electrical En-
gineering, Eindhoven University of Technology, P.O.Box 513, 5600 MB Eind-
hoven, The Netherlands. E-mail: geilen@ics.ele.tue.nl

temporal logic formulas, called tableau construction [3], [4] is
shown. SectionVI shows how these transition systems can be
used during simulation, to verify if a run of the system satisfies
its requirements.

II. POOSLMODELS

As an example of system-level formal models, we will look at
models in the language POOSL (Parallel Object-Oriented Spec-
ification Language.) This language is part of a specification and
design methodology for hardware/software systems, SHE (Soft-
ware/Hardware Engineering, [2].) A POOSL model describes
a system as a set of asynchronous concurrent processes, con-
nected by channels. Figure1 shows an example of a POOSL
model of a datalink protocol. The inserted text box shows a part
of the description of the behaviour of one of the processes, the
datalink sender (DLS.)

Fig. 1

A POOSLMODEL

The language POOSL has a formal semantics, which defines
a discrete transition system, based on the POOSL model. This
transition system can be finite or infinite. Figure2 shows such a
transition system for the Datalink Sender object of the POOSL
specification. Transitions represent either internal transitions of
the system or communications with other systems. Concurrency
is modelled as interleaving of discrete transitions of the indi-
vidual components. A transition in the global transition graph
represents a local internal transition or, in case of a synchronous
communication, a simultaneous transition of the communicating
processes.

A tool has been implemented, which simulates the behaviour
of POOSL models by traversing this transition system. Valida-
tion is currently done by manually observing this simulation.

?packet(p) !frame(f)

?a
ck

timeout

Fig. 2

TRANSITION SYSTEM DEFINED BYPOOSLSEMANTICS

III. T EMPORAL LOGIC

A popular formalism to express properties of state-transition
based concurrent systems is temporal logic. There exist several
varieties of temporal logics. Linear temporal logic (LTL) ex-
presses features of one individual (possibly infinitely long) exe-
cution of a system. An LTL formula is then supposed to hold for
all possible executions that the system might produce. So-called
branching time logics can in addition express features of choice
points during system execution. In this paper we will consider
LTL, because we want to verify an individual run that occurs
during a simulation of the system. The execution of a system
can be observed as an (infinite) discrete sequence of boolean
values that can be evaluated in every state of the system. Such
values can for example correspond to the fact that a message
has just been received, or that a buffer is full. Without specify-
ing how these observable features are defined, we will call them
atomic propositions and denote them with the lettersp, q, etc.
We can now define a trace as the observation of the execution of
a system. For simplicity, we will consider only infinite traces.

Definition 1: (trace)
A trace s = σ0σ1σ2 . . . is an infinite sequence of sets of

atomic propositions.
p ∈ σn, precisely if the atomic propositionp is observed to be

true in staten of the execution. IfS is a system, we use[S] to de-
note the set of traces thatS can produce. Ifs = σ0σ1σ2 . . . then
sn = σnσn+1σn+2 . . . , the remainder of the execution from the
nth state onwards.

We will now give the syntax and the meaning of LTL formulas
ϕ, by defining which traces satisfy them. The syntax of LTL is
given by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1Uϕ2

The meaning of LTL formulas is:
• true holds for any trace;
• the formulap refers to the atomic propositionp, and asserts
that it is true in the first state of the trace;
• ¬ϕ holds for a trace if the formulaϕ does not hold;
• ϕ1 ∨ϕ2 expresses that either formulaϕ1 or formulaϕ2 holds
for the trace;

• ©ϕ (pronounced as “nextϕ”) states that the formulaϕ should
hold for the remainder of the execution without the first state;
• ϕ1Uϕ2 (“ϕ1 until ϕ2”) is the most complex operator. It holds
for a traces, if there is some stateσn, such that for the trace
from thenth state onwards (sn) propertyϕ2 holds and for all
k < n, sk satisfies propertyϕ1.

The fact that a traces satisfies a formulaϕ, will be denoted
ass |= ϕ.

Other operators can be defined in terms of these operators:

false ≡ ¬true
ϕ1 ∧ ϕ2 ≡ ¬ (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2

♦ϕ ≡ trueUϕ
¤ϕ ≡ ¬♦¬ϕ

The meaning of the formulasfalse, ϕ1 ∧ ϕ2 andϕ1 ⇒ ϕ2

are obvious.♦ϕ holds for a traces if ϕ will ‘eventually’ hold
for somesn. ¤ϕ holds fors if ϕ ‘always’ holds, i.e. for every
sn.

A formula implicitly defines a set of traces, that satisfy it. We
will denote this set by[ϕ]. If ϕ is a requirement for systemS,
one would like to check if[S] ⊆ [ϕ], i.e. if every trace generated
by systemS satisfies the propertyϕ.

For example, suppose we have a system with the following
observable properties:msgArrived (true if a new message has
just arrived) andbufferFull (true if the buffer in which in-
coming messages will be stored is full). One could now express
the requirement that a new message will never arrive when the
message buffer is full, as follows

ϕ = ¤ (msgArrived ⇒ ¬bufferFull) .

This can be pronounced as, “it will always (¤) be the case that if
a message has just arrived (msgArrived), then (⇒) the buffer
will not be full (¬bufferFull.)”

IV. M ODEL CHECKING

When we have a formal model of the system and have ex-
pressed (some of) its requirements in LTL formulas, we would
like to show that this system does indeed satisfy these require-
ments. A popular technique for automatically showing that this
is the case, is model checking.

A. Model checking techniques

Suppose we have a description of all possible behaviours of
the system as a finite stateω-automatonAS (finite state au-
tomata accepting infinite words rather than finite words, see
sectionV.) We now want to check whether every possible be-
haviour ofAS , is a model of the desired propertyϕ (i.e. satisfies
the desired propertyϕ), hence the name: model-checking. The
automaton-based approach constructs for the propertyϕ, anω-
automatonAϕ that accepts precisely the traces that satisfyϕ.
This automaton is called a tableau-automaton.

The model checking problem can be solved by solving the
language inclusion problem.S satisfiesϕ if L(AS) ⊆ L(Aϕ).
This can be done in a time proportional to the product of the
number of states ofAS andAϕ (by constructing the automaton
for ¬ϕ rather thanϕ, and checking the product automaton for

emptiness.) The number of states of the automatonAS how-
ever, is generally exponential in the size of the description of
the system. The size ofAϕ is exponential in the length of the
formula. For complex systems, this check is often too hard to
perform in reasonable amounts of memory and time.

Some techniques have been developed to reduce the complex-
ity of the model-checking problem:
• Abstraction. The model can sometimes be made more abstract
by removing processes or data that do not influence the property
to be checked [5]. This is done preferably in such a way that the
result can be proven to hold also in the original system, but is
often based on the judgement of the designer.
• Symbolic model checking. This is a technique in which the
state space is not explored explicitly. Sets of states, rather than
individual states are represented symbolically, for example by
BDDs as used in SMV[6] . If the state space contains much
regularity, this representation can be compact.
• Partial order reduction. Sometimes the specific order of
events in the system is unimportant. It is then not necessary to
explore all possible orders. This is especially the case if the tran-
sition system originates from interleaving relatively independent
concurrent processes. This is used for example in Spin [1].

Another technique to reduce the problem is non-exhaustive
verification. The above-mentioned techniques reduce the verifi-
cation problem while achieving the same result, deciding if the
system satisfies the formula. But when even these techniques do
not reduce the problem enough to be able to perform the check
in a reasonable amount of time, one has to settle for a search
through a part of the state space that is as large as possible. This
is done for example in SPIN’s supertrace algorithm[1]. If a trace
is found, that does not satisfyϕ, one knows thatϕ does not hold
for the system. If such a trace is not found however, one cannot
be sure that it does.

B. Model checking techniques and simulations

Certain model checking techniques can also be applied to
simulation. Simulation is a popular technique for validation of
a design. We will define simulation as a state space exploration
that does not store the states that have been visited neither ex-
plicitly, nor implicitly. We will now compare some characteris-
tics of exhaustive verification / model checking and simulation
techniques.

B.1 Exhaustive verification

The following aspects apply to exhaustive verification meth-
ods.
• State space explosion.The number of states of a system grows
exponentially with the size of the system. This makes that ex-
haustive exploration of the entire state-space (even symbolically
or using other reduction techniques) is only feasible for rela-
tively small systems.
• Abstract models have to be used.As a consequence of the first
characteristic, very abstract models of the system under verifi-
cation have to be used. This leads to the danger that this model
might not capture all behaviour of the actual system and might
not exhibit all errors contained in the concrete system.
• Hard to use and understand.It requires a substantial amount
of expertise to use formal verification methods. This expertise is

necessary for example to model a system in such a way that its
state space remains within reasonable bounds. Moreover, some
expertise is required to express the desired properties in some
form of formal logic and to select and apply specialised tech-
niques for state space reduction.
• Guaranteed to find errors.Since an exhaustive verification
will search the entire state-space for errors, it is guaranteed to
find all errors in the model. This is however not necessarily true
for the real-world system that is being verified. Since the model
is an abstraction of the system, the system might show errors
that the model does not (and possibly vice versa), or worse, the
model might not adequately capture the real behaviour of the
system. Furthermore, only those requirements are verified, that
are captured by the specified formal requirements. It is often
difficult to completely specify, which behaviour is correct or in-
correct. Some requirements cannot be expressed by the formal
logic at all. Finally, this guarantee is only useful if the verifica-
tion algorithm terminates within a reasonable amount of time.

B.2 Simulation Techniques

To compare exhaustive verification techniques with simula-
tions, we will now discuss some properties of simulations.
• Non-exhaustive. Simulations typically start exploring the
state space from the initial state, without remembering which
states have been visited before. It is therefore impossible to
know when all states have been visited. It will rely on proba-
bility to explore new states instead of ones it has seen before.
Therefore it will in general not be able to explore the entire state
space.
• Poor coverage.The chance of finding an error by simulation
depends heavily on the type of error [7]. Some errors occur in
a large fraction of the entire state-space and can easily be found
in a simulation. Other errors may depend on a specific order
of events and manifest themselves only in small corners of the
large state space. For certain errors, this may lead to poor cover-
age. Moreover, for some kinds of errors the chances of finding
them by simulation are extremely small. It is furthermore hard
to assess the coverage that has been achieved by the simulation.
• Easy to use.Since the size of the state space is not that im-
portant, systems are often modelled more straightforward than
models intended for verification.
• No storage of states.Since visited states are not stored, it is
possible to use larger or more detailed models. This makes that
more adequate models can be used, better approximating the
real-world behaviour of the system.
• Explores only a single trace.A single system simulation gen-
erates just one of the possibly infinite number of executions of
the system. However, within one such infinite trace the same
piece of behaviour often occurs more than once. This way in
effect multiple execution paths are verified, instead of just one.

Simulations are helpful during the entire design phase. In the
early phases, when there are still a lot of errors in the design,
these errors are found with less effort than using exhaustive ver-
ification methods. Later on, it is helpful to study detailed sys-
tem models by simulation and gain insights in the system to be
designed. Exhaustive verification methods can then be used to
tackle the hard problems, building dedicated abstract models fo-
cussing on these problems.

V. TABLEAU CONSTRUCTION

In this section we will describe the basic ideas behind the con-
struction of theω-automaton from an LTL formulaϕ [3], [4].
The formula specifies a requirement on the entire (infinite) trace
of the system. After inspection of some finite prefix of thisω-
trace, the state of the automaton represents the requirements that
the remaining part of the trace must satisfy. The automaton will
do this by splitting the formula in a requirement on the current
system state and a requirement on the system’s trace from the
next state onwards. For example if a formula states that the sys-
tem must never reach some control locationl, this requirement
can be split into the requirements that the system must not be
in locationl at the current state and it must never reachl in the
future.

A. ω-automata

ω-automata are finite state automata, with the exception that
they do not accept finite words, but infinite words ([?]). In or-
der to achieve this, the acceptance conditions need to be defined
differently. Traditional finite state automata have final states and
accept a finite word, if the automaton resides in such a final state
after consuming the input word. Anω-automaton will never fin-
ish consuming an infinite word. Therefore the acceptance condi-
tion requires that the automaton moves through some accepting
state infinitely often.

We will not consider acceptance conditions in this paper. As
we will see later, they will play no role when applied to sim-
ulations. ω-automata without acceptance conditions are some-
times called ‘safety automata’. A safety automaton accepts any
infinite word, for which it can always consume the next input
symbol.

A (non-deterministic)ω-automatonA is a tuple(Q,Q0,Σ,∆).
It consists of a finite set of statesQ, a set of initial states
Q0 ⊆ Q, an alphabetΣ and a labelled transition relation∆.
The automaton accepts a wordw = σ0σ1σ2 . . . (σi ∈ Σ) if
there is a pathq0q1q2 . . . through the automaton (qi ∈ Q), start-
ing from an initial state (q0 ∈ Q0) and such that there is always
an edge from a state to the next(qi, σi, qi+1) ∈ ∆.

Figure3 shows an example of anω-automaton, accepting all
infinite words consisting of the symbolsa andb, such that there
are never twob’s next to each other. In the figure, circles rep-
resent the states ofQ. The initial states (in this case only one)
have a small arrowhead. The transition relation is represented by
arrows from one state to the next, labelled with a symbol from
the alphabet.

a

s1
a s2

b

Fig. 3

AN ω-AUTOMATON

B. Construction ofAϕ

We want to construct anω-automaton that accepts precisely
all traces that satisfy a given formulaϕ. The alphabet of this
automaton will consist of propositional formulas, expressing
constraints upon the observable features of the system’s current
state.

The basic concept behind this construction is that the LTL for-
mula can be rewritten in a normal form, which separates require-
ments on the current states and requirements on the remainder
of the trace. Every formulaϕ can be written in the following
form:

ϕ = p1,1 ∧ . . . ∧ p1,n1 ∧© (ϕ1,1 ∧ . . . ∧ ϕ1,m1)∨

p2,1 ∧ . . . ∧ p2,n2 ∧© (ϕ2,1 ∧ . . . ∧ ϕ2,m2) ∨ . . .∨
pk,1 ∧ . . . ∧ pk,nk

∧© (ϕk,1 ∧ . . . ∧ ϕk,mk
)

where allpi,j are atomic propositions andϕi,j are subexpres-
sions of the formulaϕ.

This means that a trace can satisfy propertyϕ in one of
k different ways, namely by satisfyingpi,1 ∧ . . . ∧ pi,ni

∧
© (ϕi,1 ∧ . . . ∧ ϕi,mi

) for some1 ≤ i ≤ k. This is pos-
sible if the current state of the system satisfies the constraint
pi,1 ∧ . . . ∧ pi,ni and the remainder of the execution will satisfy
ϕi,1∧. . .∧ϕi,mi . There will be edges in the automaton from the
state representing the executions satisfyingϕ, to the state repre-
senting the executions that satisfyϕi,1 ∧ . . .∧ϕi,mi . There will
be such an edge for every observation that is consistent with the
constraint on the current statepi,1 ∧ . . . ∧ pi,ni .

A formula can be converted to normal form, by using the fol-
lowing rewriting rules:

¬ (ϕ1 ∨ ϕ2) → ¬ϕ1 ∧ ¬ϕ2

¬ (ϕ1 ∧ ϕ2) → ¬ϕ1 ∨ ¬ϕ2

¬© ϕ → ©¬ϕ
ϕ1 ∧ (ϕ2 ∨ ϕ3) → (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)
(ϕ1 ∨ ϕ2) ∧ ϕ3 → (ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3)
© (ϕ1 ∨ ϕ2) → ©ϕ1 ∨©ϕ2

©ϕ1 ∧©ϕ2 → © (ϕ1 ∧ ϕ2)
ϕ1Uϕ2 → ϕ2 ∨ (ϕ1 ∧© (ϕ1Uϕ2))

¬ (ϕ1Uϕ2) → ¬ϕ2 ∧ (¬ϕ1 ∨©¬ (ϕ1Uϕ2))

For all states that are thus reachable fromϕ, the same pro-
cedure can be followed. The constraint they represent can be
written in normal form, leading to new edges to new or existing
states. One can show that the number of states that will be cre-
ated this way is limited, and consequently that this construction
will terminate.

One can show that the automaton obtained by this procedure
accepts a trace precisely if it satisfies all safety aspects of the for-
mula it was constructed for. This means that a traces is accepted
by Aϕ iff every prefix ofs can be extended to a fullω-trace that
satisfiesϕ.

C. Example

As an example we will now show the construction of the
tableau automaton for the following formula:

¤ (p ⇒ (pUq))

it expresses that “as soon as some propertyp is true, it must
remain true untilq becomes true”.

Using the abbreviationsϕ = ¤ (p ⇒ (pUq)) andψ = pUq,
this formula can be written in normal form:

ϕ ≡ ¬p ∧©ϕ ∨ q ∧©ϕ ∨ p ∧© (ϕ ∧ ψ) .

This leads to two edges from the initial state representing the
requirementϕ to itself and one edge leading to the requirement
ϕ ∧ ψ. To complete the automaton,ϕ ∧ ψ is again written in
normal form

ϕ ∧ ψ ≡ q ∧©ϕ ∨ p ∧© (ϕ ∧ ψ) .

Figure4 shows the corresponding automaton. Note that the
property is not entirely a safety property, it also states that after
p has become true,q should also eventually become true. This
aspect of the formula is not covered by the safety automaton,
since the automaton can remain in the stateϕ ∧ ψ forever.

q

ϕ pϕ ψ

p

ϕ=
�

(p⇒(pUq))

ψ=pUq

(p) q

Fig. 4

A TABLEAU AUTOMATON OF � (p ⇒ (pUq))

VI. U SING THE TABLEAU IN SIMULATIONS

One will never finish the inspection of an infinite trace, since
the system is potentially infinite-state and visited states are not
stored. At any given time during a simulation, one has wit-
nessed afiniteprefix of aninfiniteexecution of the system. This
has some consequences for the types of properties that one can
check. Violation of liveness properties can never be detected. A
liveness property is a property that asserts that “something good
will eventually happen.” It cannot be detected because at any
moment, the “good thing” may still happen in the future. Safety
properties can never be established with certainty, but it can be
detected when they are violated. A safety property is a property
which states that “something bad will never happen.” Since the
verification is usually aimed at finding errors ([8]), the method is
most useful for checking safety properties. Properties can have
both safety and liveness aspects at the same time.pUq for ex-
ample has the safety aspect, that it will never be the case thatp
no longer holds beforeq holds. On the other hand it expresses
the liveness aspect, thatq will eventually hold.

Summarising, by inspection of a finite prefix of a trace one
can never detect that a liveness aspect is false and one can never
detect that a safety aspect is true. One can however sometimes
detect that a liveness aspect is true (for that particular trace
only). And most importantly, one can detect that a safety prop-
erty is violated (for that particulat trace, and thus the property
does not hold for the system itself.) So simulation is mostly

used to find unexpected unwanted behaviours, even though it
will never prove that such behaviour cannot occur.

Using satisfiability analysis on the automaton before using it
during simulation, states having a unsatisfiable constraint can
be removed. This way, one can guarantee that as soon as the
simulation has witnessed a prefix of the trace that can no longer
lead to satisfaction of the constraint, this can be detected. It is
done by maintaining during simulation, a set of states, that the
tableau automaton can be in after acceptance of the prefix. This
set will be empty as soon as the prefix can no longer satisfy the
requirement.

VII. R ELATED WORK

The first construction of anω-automaton from an LTL for-
mula was done by Wolper, Vardi and Sistla [3]. It was done by
constructing two automata, one to check state to state consis-
tency (safety) and one to check that all eventualities (liveness
requirements) are satisfied. The tableau automaton was then
created by taking the product of these two automata. A more
efficient on-the-fly construction is presented in [4].

The verification of temporal logic requirements in simulations
is also addressed in [9]. In this paper a three valued logic is
presented interpreted over finite traces, if the evaluation of the
formula is not determined by the prefix, the outcome is defined
as ‘unknown.’ Although the same separation of requirements on
the current system state and the future execution is used, formu-
las are manipulated directly during simulation, rather than using
tableau-automata.

There are also some connections to checking temporal pre-
conditions in object-oriented databases, as in [10]. Here, a pre-
condition for a database transaction can be expressed as a past-
time temporal logic expression. It is similar to simulation be-
cause it is evaluated in a single forward run of the system. The
difference is, that it only deals with finite traces, since the pre-
conditions are about the past and the database was started at
some point in history.

VIII. F UTURE WORK

Future work on his topic will include a definition of a full
language, adapted to the object-oriented paradigm of POOSL
and including a way to specify the atomic propositions. The
method must be implemented in the existing simulation tools
for the language POOSL. We will furthermore investigate the
possibilities to verify quantitative timing requirements, using a
similar construction in which some real-time logic based on LTL
is translated to a timedω-automaton.

IX. CONCLUSIONS

Model-checking techniques can be used to evaluate certain re-
quirements expressed in LTL, during a system simulation. It is a
kind of non-exhaustive verification, exploring a single execution
path instead of all possible execution paths. LTL requirements
are translated toω-automata. These automata run together (‘in
lock-step’) with the simulation and can detect when the execu-
tion can no longer satisfy the requirement that it represents.

Because the simulation does not search through the entire
state space and does not have to store any states, it does not
directly suffer from the state space explosion. Drawbacks are

that it will not find all errors, it gives little information about
coverage and the actual coverage figures are influenced by state
space explosion. The method is easy to use and applicable to
relatively large models. It can be used in all stages of the design
and it can provide a path to exhaustive verification of the really
hard problems.

REFERENCES

[1] G. Holzmann, Design and Validation of Computer Protocols, Prentice-
Hall, Englewood Cliffs, New Jersey, 1991.

[2] P.H.A. V.D. Putten and J.P.M. Voeten,Specification of Reactive Hardware
/ Software Systems, Ph.D. thesis, Eindhoven University of Technology,
Department of Electrical Engineering, 1997.

[3] P. Wolper, M.Y. Vardi, and A.P. Sistla, “Reasoning about infinite compu-
tation paths,” inProceedings of 24th IEEE Symposium on Foundation of
Computer Science, Tuscan, 1983, pp. 185–194.

[4] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper, “Simple on-the-Fly auto-
matic verification of linear temporal logic,” inProc. IFIP/WG6.1 Symp.
Protocol Specification Testing and Verification (PSTV95), Warsaw Poland.
June 1995, pp. 3–18, Chapman & Hall.

[5] D. R. Dams,Abstract Interpretation and Partition Refinement for Model
Checking, Ph.D. thesis, Eindhoven University of Technology, P.O. Box
513, 5600MB Eindhoven, The Netherlands, july 1996.

[6] K.L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
Norwell, 1993.

[7] Colin H. West, “Protocol validation in complex systems,”Computer Com-
munication Review, vol. 19, no. 4, pp. 303–312, 1989.

[8] Thomas A. Henzinger, “Some myths about formal verification,”ACM
Computing Surveys, vol. 28, no. 4, pp. 119, December 1996.

[9] W. Canfield, E.A. Emerson, and A. Saha, “Checking formal specifications
under simulation,” inProceedings International Conference on Computer
Design. VLSI in Computers and Processors, Los Alamitos, CA, USA,
1997, pp. 455–460, IEEE Computer Society Press.

[10] S. Schwiderski, T. Hartmann, and G. Saake, “Monitoring temporal pre-
conditions in a behaviour oriented object model,” Tech. Rep. Informatik
Berichte 93-07, Technische Universitaet Braunschweig, November 1993.

	Introduction
	POOSL models
	Temporal Logic
	Model Checking
	Model checking techniques
	Model checking techniques and simulations
	Exhaustive verification
	Simulation Techniques

	Tableau Construction
	-automata
	Construction of A
	Example

	Using the Tableau in Simulations
	Related Work
	Future Work
	Conclusions

