
• It is possible to construct for any LTL formula, an ω-automaton, which accepts precisely all
traces that satisfy this property [WVS83]

• Every state of the automaton corresponds to a formula, that all traces starting from that state
will satisfy.

• The automaton is generated, by repeatedly separating constraints on the current state of the
system and constraints on the rest of the trace, by rewriting the formula into disjunctive
normal form:

• In the SHE methodology [PV97], models are
specified in the language POOSL

• The language POOSL has a formal semantics,
which gives the meaning of a POOSL model in terms
of a labelled transition system

Abstract - In order to handle the increasing complexity of
hardware / software designs, system level design methods are
being used. These methods are directed to produce operational
system models at a high level of abstraction. They can be used
to assess early in the design phase if specific functional or
performance requirements can be met. It is not always easy to
check whether a model indeed satisfies the desired
requirements. If the specification model has a well-defined
semantics, and the requirements can be expressed exactly, it is
possible to automate some of these checks. Several techniques
exist to verify if a given model satisfies certain formally defined
properties. A popular approach is model-checking, in which the
verification problem is reduced to standard checks on finite state
automata, as used in the tool Spin [Hol91] for example. We
investigate the use of such automata based verification
techniques in simulation of high-level system specifications in
POOSL [PV97]. We show how certain properties expressed in
the formalism Linear Temporal Logic (LTL), can be
automatically monitored during simulations of complex
distributed systems.

Applying Verification Methods to Non-
Exhaustive Verification of Software/Hardware Systems

M.C.W. Geilen, D.R. Dams and J.P.M. Voeten
Information and Communication Systems Group

Eindhoven University of Technology, The Netherlands

POOSL Models

Temporal Logic Model Checking

Simulations

?pa cke t(p) ! fram e(f)

?a
ck

timeout

q

ϕ pϕ ψ

p

(p) q

• Simulation involves systems with a potentially infinite state space and states are not stored. Therefore, infinite sequences are
not dealt with explicitly, only finite prefixes of such sequences are inspected

• Properties of such systems can have liveness aspects, which informally state that: “something good will eventually happen”
and safety aspects, stating that “something bad will never happen”

• Only safety aspects of LTL properties can be monitored during simulation, since for liveness properties, the “good thing” may
always still happen in the future

• As soon as the automaton has witnessed a prefix of the execution of the system that can no longer lead to satisfaction of the
property, it will detect this since it will have no more possible transitions

☛ A POOSL model defines a (possibly infinite) labelled
transition system

☛ One would like to check (automatically) if this labelled
transition system has all the required properties

• A system specification defines by means of its labelled transition system, a set of traces that
represent its possible behaviours. Temporal Logic Verification then boils down to checking if
L(S) is included in L(ϕ)

ϕ1 ϕ2U ϕ2 ϕ1 ϕ1 ϕ2
U()

ϕ1 ϕ2U() ϕ2 ϕ2ϕ1 ϕ1 ϕ2U

Tableau Construction

Future Work

p 1,1 p1,2 p1,n1... ϕ1,1 ϕ1,2 ϕ1,m 1...()

p 2,1 p2,2 p2,n2... ϕ2,1 ϕ2,2 ϕ2,m 2...() ...

p k,1 p k,2 p k,nk... ϕk,1 ϕk,2 ϕk,m k...()

Satisfying the ‘until’ formula can, for example, be done by satisfying in the current
state, or by satisfying now and later:

☛ For a property ϕ, an ω-automaton can be constructed that
accepts precisely all executions, that satisfy this property

☛ These automata can be used during simulations to
automatically verify if the execution can still satisfy all
desired properties

☛ In contrast with exhaustive verification techniques, this
technique can be applied to much larger / more adequate
models, however at the cost of providing less coverage

☛ The technique can help in identifying the hard problems that
require the extra effort of building adequate abstract models,
especially for exhaustive formal verification

Example Conclusions

• Creating a language in which to express LTL properties in
terms of the language concept of POOSL, such as data
objects, hierarchy, object-orientation etc.

• Implementation of the verification techniques in existing
simulation tools for POOSL

• Extension of the techniques to timing properties

• As a system executes by making discrete steps, a number of boolean properties can be
observed in every state. Such a sequence of observations is called a trace s=σ0σ1σ2...
A non deterministic system S, has a set of possible traces it can produce during execution
(L(S))

• As an example, an ω-automaton is constructed, accepting precisely all traces that satisfy the formula:

• Determine the normal forms using the abbreviations: ,

• Leading to an automaton with two states. Note that the automaton will not verify the liveness property that every occurrence
of a p-observation will eventually be followed by an occurrence of a q-observation, as explained below

• For every conjunction in the normal form, an edge is added to the automaton, which is
labelled with the constraints on the current state, and leading to a new state, representing the
constraints behind the -operator

[Hol91] G. Holzman, Design and Validation of Computer Protocols, Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.

[PV97] P.H.A.v.d. Putten and J.P.M. Voeten, Specification of Reactive
Hardware / Software Systems, Ph.D. thesis, Eindhoven University of
Technology, Departement of Electrical Engineering, 1997.

p U qψ =p(p U q)ϕ =

p(p U q)

ϕ p ϕ q ϕ p ϕ ψ)(q ϕ p)(ϕ ψϕ ψ

[WVS83] P. Wolper, M.Y. Vardi and A.P. Sistla, Reasoning about Infinite Computation Paths, Proc. 24th IEEE Symp. Foundations
of Computer Science, Tuscan, 1983, pp. 185-194

Syntax of LTL (Linear Temporal Logic)

ptrue ϕ1 ϕ2ϕ ϕ1 ϕ2
Uϕ

• holds if property holds from the second
state onwards

• holds if holds from some state number
n onwards, and for all k<n, property holds
from state number k onwards.

ϕ ϕ

ϕ1 ϕ2
U

ϕ1

ϕ2

Semantics of LTL

• true holds for any trace

• p holds for a trace if p holds in its first state

• holds if property does not hold

• holds if either or holds

ϕ

ϕ1 ϕ2 ϕ1
ϕ2

ϕ

L(S)ϕL() L (S)ϕL()

ϕ1 ϕ2U
ϕ1

ϕ2

ϕ1 ϕ2U

Temporal Logic allows one to express properties of such traces. A property ϕ implicitly
defines a set (L(ϕ)) of all traces, that satisfy the property

•

