
• It is possible to construct for any LTL formula, an ω-automaton, which accepts precisely all
traces that satisfy this property [WVS83]

• Every state of the automaton corresponds to a formula, that all traces starting from that state
will satisfy.

• The automaton is generated, by repeatedly separating constraints on the current state of the
system and constraints on the rest of the trace, by rewriting the formula into disjunctive
normal form:

• In the SHE methodology [PV97], models are
specified in the language POOSL

• The language POOSL has a formal semantics,
which gives the meaning of a POOSL model in terms
of a labelled transition system
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• Simulation involves systems with a potentially infinite state space and states are not stored. Therefore, infinite sequences are
not dealt with explicitly, only finite prefixes of such sequences are inspected

• Properties of such systems can have liveness aspects, which informally state that: “something good will eventually happen”
and safety aspects, stating that “something bad will never happen”

• Only safety aspects of LTL properties can be monitored during simulation, since for liveness properties, the “good thing” may
always still happen in the future

• As soon as the automaton has witnessed a prefix of the execution of the system that can no longer lead to satisfaction of the
property, it will detect this since it will have no more possible transitions

☛ A POOSL model defines a (possibly infinite) labelled
transition system

☛ One would like to check (automatically) if this labelled
transition system has all the required properties

• A system specification defines by means of its labelled transition system, a set of traces that
represent its possible behaviours. Temporal Logic Verification then boils down to checking if
L(S) is included in L(ϕ)
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Satisfying the ‘until’ formula             can, for example, be done by satisfying      in the current
state, or by satisfying      now and             later:

☛ For a property ϕ, an ω-automaton can be constructed that
accepts precisely all executions, that satisfy this property

☛ These automata can be used during simulations to
automatically verify if the execution can still satisfy all
desired properties

☛ In contrast with exhaustive verification techniques, this
technique can be applied to much larger / more adequate
models, however at the cost of providing less coverage

☛ The technique can help in identifying the hard problems that
require the extra effort of building adequate abstract models,
especially for exhaustive formal verification

Example Conclusions

• Creating a language in which to express LTL properties in
terms of the language concept of POOSL, such as data
objects, hierarchy, object-orientation etc.

• Implementation of the verification techniques in existing
simulation tools for POOSL

• Extension of the techniques to timing properties

• As a system executes by making discrete steps, a number of boolean properties can be
observed in every state. Such a sequence of observations is called a trace s=σ0σ1σ2...
A non deterministic system S, has a set of possible traces it can produce during execution
(L(S))

• As an example, an ω-automaton is constructed, accepting precisely all traces that satisfy the formula:

• Determine the normal forms using the abbreviations:                                ,

• Leading to an automaton with two states. Note that the automaton will not verify the liveness property that every occurrence
of a p-observation will eventually be followed by  an occurrence of a q-observation, as explained below

• For every conjunction in the normal form, an edge is added to the automaton, which is
labelled with the constraints on the current state, and leading to a new state, representing the
constraints behind the       -operator
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Syntax of LTL (Linear Temporal Logic)
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•          holds if property    holds from the second
state onwards

•            holds if      holds from some state number
n onwards, and for all k<n, property     holds
from state number k onwards.
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Semantics of LTL

• true holds for any trace

• p holds for a trace if p holds in its first state

•       holds if property    does not hold

•            holds if either     or     holds
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Temporal Logic allows one to express properties of such traces. A property ϕ implicitly
defines a set (L(ϕ)) of all traces, that satisfy the property

•


