
Orion: High-Precision Methods for Static Error

Analysis of C and C++ Programs

Dennis R. Dams and Kedar S. Namjoshi

Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974,
{dennis,kedar}@research.bell-labs.com

Abstract. We describe the algorithmic and implementation ideas be-
hind a tool, Orion, for finding common programming errors in C and
C++ programs using static code analysis. We aim to explore the fun-
damental trade-off between the cost and the precision of such analyses.
Analysis methods that use simple dataflow domains run the risk of pro-
ducing a high number of false error reports. On the other hand, the use
of complex domains reduces the number of false errors, but limits the
size of code that can be analyzed.
Orion employs a two-level approach: potential errors are identified by an
efficient search based on a simple domain; each discovered error path is
then scrutinized by a high-precision feasibility analysis aimed at filtering
out as many false errors as possible.
We describe the algorithms used and their implementation in a GCC-
based tool. Experimental results on a number of software programs bear
out the expectation that this approach results in a high signal-to-noise
ratio of reported errors, at an acceptable cost.

1 Introduction

We consider the use of data-flow analysis (DFA) as a debugging aid, as im-
plemented in tools like Flexelint [1], Coverity [2], Fortify [3] and Uno [4]. The
inherent approximate nature of DFA leads in this context to false alarms: bogus
error messages, which often are far more numerous than genuine ones. Such poor
signal-to-noise ratios may be the reason why DFA-based debugging aids are not
routinely used. If this problem can be overcome, static error checks can become a
standard element of the regular build process, much like the type checking that
is already performed by compilers. A prerequisite is that the additional time
taken by the analysis remains acceptable.

The standard answer of DFA to the false-alarm problem is to track more
dataflow facts, or, in terms of Abstract Interpretation, to use more precise ab-

stract domains. For example, by tracking known and inferred ranges for boolean
and other variables, many false alarms can be avoided. However, the added pre-
cision may render the analysis forbiddingly expensive. A new generation of tools,
including SLAM [5] and BANDERA [6], take an incremental approach in that
they add additional precision only as needed, as identified by e.g. “Counter-
Example Guided Abstraction Refinement” (CEGAR, [7]). The BLAST [8] tool

takes this even further by increasing the precision only for certain regions of the
analyzed code. Still, these tools are limited in terms of the size of code that can
be handled in a reasonable amount of time: usually, to about 10-20KLoC (1000s
of lines of source code). The reason is that these are software verifiers, targeted
towards producing a yes/no answer for a particular query. This forces them to
apply sound abstractions, and to make a substantial effort, in terms of using
complex abstract domains, in order to prove correctness.

The aim of static error checkers, on the other hand, is to find errors with
a high degree of accuracy within a reasonable amount of time and memory
resources. Specifically, it is acceptable to sacrifice soundness, and miss a few
errors, to the benefit of the signal-to-noise ratio and analysis time. We aim at
a ratio of 3:1 or higher — meaning at least 3 out of every 4 reported errors
have to be real ones. This number has been suggested by software developers
as being acceptable. Furthermore, analysis time should be in the same order of
magnitude as build time.

1.1 Path-oriented, Two-level Analysis

Orion is a static error checker that achieves an excellent signal-to-noise ratio
within a favorable analysis time. It reconciles these conflicting aims by using two
precision levels for its analysis, as follows. It performs a DFA with light-weight

abstract domains (level 1). The search for errors is path-oriented, meaning that
it readily produces execution paths corresponding to potential errors. To bring
down the high ratio of false error paths that would result, each of the potential-
error paths found is then submitted to a separate, more precise analysis (level 2).
Scrutinizing a single path acts as a feasibility check. If the path is infeasible, it
is suppressed; otherwise it is reported as a potential error. The scope of this
additional precision remains limited to the individual path, however, and does
not get communicated back to any part of the level-1 analysis, as would be the
case with the software verifiers mentioned above.

We note two consequences of this scheme. First, reasoning about a single
(“straight-line”) path is much easier than about code fragments that may contain
branch/merge points and loops. As a result, we can afford to use very precise
domains for level 2. Second, the overall two-level approach exploits the fact that
we accept unsoundness of the analysis. This point will be discussed in Section 3.2.

Level 1: Path-Oriented, Light-Weight DFA The level-1 data-flow analysis per-
forms a depth-first search on the product of the control-flow graph and an
observer automaton based on a light-weight abstract domain. This observer
automaton, in turn, is represented by a product of automata, each represent-
ing a particular, usually simple, data-flow fact being tracked. The depth-first
search scheme allows error paths to be produced instantly. The abstract domain
keeps track of any information that is necessary for Orion’s defect detection.
For example, in order to identify uses of uninitialized variables (use-before-def
analysis), it needs to be known which variables have not been assigned a value
along each path being explored. We sometimes refer to the automaton that

Parser:
GCC front−end

DFA:
automata−based

Solver:
Simplify/CVC

C, C++
program

parse−tree
dump

high−precision
error report

potential
error
path

feasible
yes/no

Fig. 1. Orion tool architecture

tracks this information as the error automaton. In addition, by tracking a small
amount of additional information, e.g. known and inferred ranges for boolean
and other variables, many infeasible paths can be weeded out without reliance on
level 2 checks. Such additional automata are called information automata. The
automata, including the control-flow graph, typically depend on each other. For
example, an error automaton that flags out-of-bounds array accesses depends on
an information automaton that tracks variable ranges.

While the path exploration is based on a depth-first search, we have developed
a number of optimizations to it. Our algorithm utilizes the notion of covering,
known from the area of Petri Nets [9], to shortcut the search. In addition, we
propose a novel idea called differencing to further optimize the algorithm.

Level 2: Tunable Feasibility Checking The feasibility check that determines whether
a path can actually occur under some run-time valuation of data variables makes
use of theorem-provers. Theorem-provers are powerful but require human inter-
action and patience. However, Orion uses them in an “incomplete” way, resulting
in an approach that is fully automatic and fast. Namely, the prover is allowed
a predetermined amount of time; only if it finds within this time that the path
is infeasible, that path is ignored. This crude, but effective, approach provides
a simple way to tune Orion’s precision by trading the signal-to-noise ratio for
analysis time. In addition, the architecture of Orion allows one to plug in dif-
ferent provers so as to experiment with alternatives and profit from advances in
the field.

1.2 Tool architecture

There are three main parts to Orion: the parser, the data-flow analyzer (for
level 1), and the solvers (for level 2), see Figure 1. The parser being used is the
front-end of GCC, the Gnu Compiler Collection. Relying on this open source
compiler has several advantages: it supports multiple languages, is widely used,
and is being actively developed. The GCC version used is 3.5-tree-ssa, a
development branch that offers a uniform, simplified parse tree for C and C++,
and is intended to be the basis for future code transformations and static analyses
to be built by GCC developers [10].

GCC can dump the parse tree to a text file, which then forms the starting
point for the analysis. The data-flow analyzer, together with several utilities,
forms the core of Orion. This is written mostly in Objective Caml, about 18K
lines of code altogether. The GCC dump is parsed into an OCaml data structure,
from which a control-flow graph is constructed that is the main object of the
path exploration. At every step of this search, each of a collection of automata
is updated. Every automaton can be viewed as an observer of the sequences of
statements being traversed in the path exploration, keeping track of the data-
flow facts of a particular kind that hold at each control location that is reached.
This modular set-up allows for an easy selection and combination of abstract
domains in effect during the data-flow analysis.

Error paths, as flagged by one of the observer automata, are sent off to a
solver during the path exploration. These solvers are theorem provers based
mainly on decision procedures, aimed at providing automatic proofs for most
questions submitted. Currently, two such provers have been interfaced to Orion:
Simplify [11] and CVC [12].

1.3 Paper Outline

Section 2 gives details of the model-checking based abstract state space explo-
ration of level 1. In particular, it gives general formulations of the covering and
differencing algorithms together with several theoretical results, and discusses
their relation to standard data-flow algorithms. These algorithms are then spe-
cialized to the setting of automata-based analysis of control-flow graphs, and an-
other optimization, state aggregation, is briefly discussed. Section 3 is concerned
with the level 2 feasibility checking. It also explains how the interaction between
depth-first search and feasibility may affect completeness of the approach. The
experimental results on several programs are presented in Section 4. Section 5
discusses the contributions in the perspective of related work, and Section 6
concludes.

2 Path Exploration, Covering, and Differencing

The approach to DFA sketched above, namely an exploration of a graph in
search for error states, is an instance of the view of DFA as model checking of

an abstract interpretation [13]. In this view, the error automaton represents the
(negation of the) property being checked, while the product of the flow graph and
the information automata represents the abstract interpretation over which the
property is checked. That is, each state of this abstract interpretation represents
an overapproximation of the set of all run-time states that may be reached at the
corresponding flow graph location. Traversing the overall product (of abstract
interpretation and error automaton) state by state, in search for reachable error
states (product states in which the error-automaton component is an error state),
amounts to performing an explicit-state model check of a safety property.

1

2

5

int x,y;

3

z==0

4

z!=0

x=3

f(y)

Decl(x)

Def(x) Use(x)
x

x �

DFS:

1

2 {x,y}

3 {x,y}

4 {x,y}

5 {x,y}

3 {y}

4 {y}

(a) (b) (c) (d)

1

2

5

Decl(x)
Decl(y)

3

4

Use(z)

Def(x)

Use(y)

Use(z)

Fig. 2. Use-before-def checking

While this view is conceptually appealing, applying it naively may lead to
algorithms that are inferior to the traditional approach to DFA, in which a
solution to a set of flow equations is computed iteratively. We illustrate this point
by an example. Figure 2, part (a), shows a small C program as a control-flow
graph whose edges are labeled with the program statements. Part (c) shows an
error automaton that checks for use-before-def errors of the variable x (unmarked
edges are taken when no other transitions are enabled). A similar automaton, not
shown, is assumed that checks y. We think of these as a single error automaton
defined by their product, whose states are thus subsets of {x, y}; e.g., the state
{x} represents all run-time states in which x has been declared but not yet
defined. Thus, if a variable v is an element of some state automaton s, the
automaton moves to an error state if a transition is taken that is labeled with
Use(v). As its transitions depend on information about whether variables are
declared, defined, and used in the program, we need the abstract interpretation
of the program that is shown in part (b). The overall product graph to be
explored has states (n, s) where n is the location in the graph of part (b) and s
is the state of the product error automata.

Part (d) shows a sequence of states that is visited in a typical depth-first
traversal; the error states are underlined. The point to note is that the use-
before-def error of y (in the statement f(y)) is found twice along this sequence:
once from state (3, {x, y}), where both x and y are tracked as being declared but
not yet defined, and another time when only y is tracked, from state (3, {y}).
This is an inefficiency: clearly, after having checked for use-before-def errors,
“below” location 3, of any variable in {x, y}, when the search hits location 3
again with a subset of these variables, it could have backtracked safely, without
missing any errors. In Figure 2 this is indicated by a dashed line, showing that
state (4, {y}) does not need to be visited. In general, the savings from such early
backtracking may be much more significant than in this example.

In an equation-solving approach this effect would not occur due to the fact
that the first data-flow set to be associated with location 3 is {x, y}; when the

set {y} is then merged with it, it does not change ({x, y} ∪ {y} = {x, y}), so
no further propagation is needed [14]. In this section, we fix this shortcoming
of the model-checking based approach to DFA by combining it with a notion
of covering. In the example above, the search can backtrack from state (3, {y})
because, intuitively, it is “covered” by the already-visited state (3, {x, y}). While
the addition of covering restores the efficiency of the algorithm in comparison to
the equation-solving approach, we present a second optimization, called differ-

encing, that may result in an additional performance improvement, and which
has not been proposed in the context of the equation-solving approach, to the
best of our knowledge. Both notions are formalized as extensions of a highly
non-deterministic White-Grey-Black coloring search [15]. Depth-first search, as
well as other strategies, can be obtained by restricting the non-determinism in
this algorithm.

2.1 General Search with Covering and Differencing

The goal is to search a finite graph for the presence of a reachable error state.
Throughout, let G = (S, I,R) be the graph being searched, where S is a finite
set of states, I ⊆ S is a set of initial states, and R ⊆ S × S is a transition
relation. Let E ⊆ S be a set of error states. We say that a state t is reachable
in G from a state s, and denote it by s

∗
−→ t, iff either s = t, or there is a

finite sequence (a path) s0, s1, . . . , sn with n > 0, where s0 = s, sn = t, and
(si, si+1) ∈ R for all i, 0 ≤ i < n. The set of reachable states, Reach, is given by

{t | (∃s : I(s) ∧ s
∗

−→ t)}.

Algorithm I: Basic White-Grey-Black Search We first describe the very general
search strategy, attributable to Dijkstra, which starts with all states colored
white, and re-colors states as grey or black during execution. The intuition is
that white states are unexplored, grey states are the “frontier” of partially ex-
plored states, and black states are fully explored. The program is given below.
The color of a state is given by its entry in the array “color”. We abbreviate
(color [s] = W) by white(s), and similarly for grey(s) and black (s). We use up-
per case symbols, e.g., Grey ,Black , to indicate the set of states with that color.
Actions are non-deterministically chosen (indicated by []) guarded commands,
where each guarded command has the form guard −→ assignment . The notation
([]s, t : . . .) indicates a set of actions indexed by variables s, t of the appropriate
types.

var color: array [S] of (W,G,B)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)

The key properties are: (a) invariantly, Grey ∪ Black is a subset of Reach,
and (b) if Grey cannot increase, then (Grey ∪ Black) is the set of reachable

states, and the size of Grey must decrease through the last action. Hence, we
obtain the well-known theorem below.

Theorem 1 Algorithm I terminates with Black = Reach.

Algorithm II: Covering-based Search The basic WGB search terminates with
Black = Reach, so to determine whether there is a reachable error state, one can
check if Black ∩ E is non-empty. (Of course, this check could be made during
the execution of the algorithm, but in the worst-case, the algorithm may have
to explore all reachable states.) The goal of a covering-based search is to explore
fewer than all reachable states, while still determining the exact answer. This is
done by exploiting a “covering” relation between states where, informally, if a
state s covers state t, then any path to an error state from t has a “matching”
path to an error from s. Thus, there is no harm in stopping the exploration from
t if it is covered by an already explored state.

Formally, a subset-covering relation (usually a pre-order), ⊒ ⊆ 2S × 2S , is
required to have the following property: for all subsets X,Y of S, if X ⊒ Y

(read as X covers Y), then: for every k > 0, and every y in Y that has a path
of length k to an error state, there is x in X that has a path of length at most k

to an error state. We also introduce an additional color, Red (R), to label states
that have been covered. The new algorithm is given below – it extends the WGB
algorithm with the final indexed action.

var color: array [S] of (W,G,B,R)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)
[] ([]s : grey(s) ∧ ((Grey \ {s}) ∪ Black) ⊒ {s} −→ color [s] := R)

The new action colors s red if it is covered by the other explored, but un-

covered (i.e., non-red), set of states. Once a state is colored red, exploration is
stopped from that state, as if it is colored black, but with the difference that
red states cannot be used as part of a covering set. Both path matching and the
distinction between red and black states are important: there are simple exam-
ples showing that dropping either one leads to an unsound or incomplete search
method. As the algorithm proceeds, all white initial states are examined and
turn grey, and grey states turn red or black. Thus, the final result is given by
the following theorem. Note that (Black ∪ Red) is generally a strict subset of
the reachable states, yet it suffices to detect errors.

Theorem 2 Algorithm II terminates, and there is a reachable error state iff one

of the states in (Black ∪ Red) is an error state.

Algorithm III: Adding Differencing Mechanisms In the previous algorithm, a
state s is covered, intuitively, because all error paths from s have matching paths
from the set of states that covers {s}. It may, however, be the case that for some
states s′ that remain uncovered, most, but not all, of the error paths from s′ are
matched by already explored states, while the remainder can be matched from a
small set of as yet unexplored states. These new states represent, in a sense, the
small “difference” of the error behavior of s′ and that of the already explored
states. One may then choose to stop exploring s′, and explore the difference
states instead. We modify the last action of the previous program to enable this
choice, with Diff being the choice of the difference set. (The previous action can
be recovered by setting Diff to the empty set; note that T ⊒ ∅ is true for all T .)

([]s,Diff : grey(s) ∧ (Diff ⊆ White) ∧
((Grey \ {s}) ∪ Black ∪ Diff) ⊒ {s} ∧ {s} ⊒ Diff

−→ color [s] := R; (foreach t : t ∈ Diff : color [t] := G))

The new action chooses a difference set Diff for some grey node s, and uses it
to provide a covering. Then s is colored red, and all the states in Diff are colored
grey. The choice of a difference set cannot, however, be completely arbitrary: it
includes only white states, and {s} must cover Diff . This last constraint ensures
that, even though Diff may contain unreachable states, any errors found from
Diff states are also errors from {s} and, inductively, from a reachable state.
The full proof of correctness takes this into account, and otherwise is essentially
identical to the proof for the covering only search.

Theorem 3 Algorithm III terminates, and there is a reachable error state iff

one of the states in (Black ∪ Red) is an error state.

2.2 Application to Control-Flow Graphs

In Orion, the differencing-based algorithm is applied in the level-1 analysis to
control flow graphs of individual functions. Formally, a control flow graph (CFG)
is a tuple (V, V0, Σ,E), where V is a finite set of control locations, V0 ⊆ V is a
set of entry locations, Σ is a set of program statements, and E ⊆ V ×Σ×V is a
finite set of program transitions, where a transition (n, a, n′) can be viewed as a
control flow transition from n to n′, labeled with statement a. Orion adopts the
model checking approach to analysis: thus, analysis properties are represented by
finite state automata, which operate on Σ, and reject if an erroneous execution is
found. An analysis automaton is a tuple (S, I,Σ,∆, F), where S is a finite set of
states, I ⊆ S is a set of initial states,Σ, as above, is the alphabet, ∆ ⊆ S×Σ×S, is
the transition relation, and F ⊆ S is the set of rejecting states. The (synchronous)
composition of K such automata, A1, . . . , AK , with a CFG (V, V0, Σ,E) can
be viewed as the single automaton with: V × S1 × . . . × SK as the state set,
V0 × I1 × . . . × IK as the initial states, Σ as the alphabet, with a transition
relation ∆ defined by ((n, s1, . . . , sK), a, (n′, s′1, . . . , s

′
K

)) ∈ ∆ iff (n, a, n′) ∈ E,
and (si, a, s

′
i) ∈ ∆i for all i in [1,K], and (n, s1, . . . , sK) being a rejecting state

iff for some i in [1,K], si is in Fi.

The model checking problem is to determine whether there is a path in this
product to a rejecting state (recall that rejecting automaton states signal pro-
gram errors). Note that we focus on safety properties, which can be analyzed
by checking reachability. In order to use covering and differencing during the
search, we need a general mechanism by which covering and differencing oper-
ations for individual automata are combined to provide such operations for a
tuple of automata. We show how this can be done below.

We assume the existence of individual covering relations, ⊒i, for each au-
tomaton, and construct the point-wise global covering relation: (n, s1, . . . , sK) ⊒
(n′, s′1, . . . , s

′
K

) if and only if n = n′ and si ⊒i s
′
i
for all i in [1,K]. For example,

one automaton could keep track of the current set of uninitialized variables, U ,
in its internal state. This can be done by letting each state of the automaton be
one such set, and including a transition from a state U to a state U ′ on program
action a, if U ′ results from U by removing variables defined in a and adding
variables newly declared in a (e.g., local scope declarations). Another automa-
ton could, similarly, keep track of an estimate, B, of upper and lower bounds
for each defined variable. For the first automaton, U ⊒1 U

′ may be defined as
U ⊇ U ′. If there is a sequence of program actions that results in a use-before-def
error because a variable, say x, in U ′ is accessed by the last action without being
defined along the sequence, then the same sequence causes an error from U , as x
is included in U (note that the same sequence is possible because n = n′). Simi-
larly, B ⊒2 B

′ iff the bounds information in B′ denotes a subset of the run-time
states denoted by the information in B. Any error path from B′ can be enabled
from B, as the information in B is more approximate than that in B′. E.g., the
joint covering relation ensures that ({a, b}, (c > 0)) covers ({a}, (c > 1)), since
{a} is a subset of {a, b}, and (c > 1) implies (c > 0).

Similarly, given functions diff i that choose an appropriate difference set for
each automaton, we can define a point-wise global differencing function as fol-
lows: diff ((n, s1, . . . , sK), (n′, s′1, . . . , s

′
K

)) is defined only if n = n′ (i.e., same
control location), and is given by the set {(n, s) | (∃i, d : d ∈ diff i(si, s

′
i
) ∧ s =

(s1, . . . , si−1, d, si+1, . . . , sK))}. I.e., for the common control location, the differ-
ence set is obtained by taking, in turn, the difference of one of the component
automaton states, while keeping the others the same. For the example above,
the difference function for uninitialized variable sets is just set difference, while
that for bounds information is bounds difference. Thus, the global difference of
({a, b}, (c > 0)) relative to ({a, d}, (c > 10)) at control location n is given by the
set {(n, {b}, (c > 0)), (n, {a, b}, (c > 0 ∧ c ≤ 10))}.

Aggregating States An optimization made in Orion to enable fast covering and
differencing calculations is to merge the set of currently reached automata states
for each control location in an approximate, but conservative manner. This is
done by defining merge functions per automaton domain, and applying them
point-wise to states with the same control location. Thus, if mergei is the
merge function for automaton i, then the point-wise global merge is defined as
merge((n, s1, . . . , sK), (n, s′1, . . . , s

′
K

)) = (n,merge1(s1, s
′
1), . . . ,mergei(sK , s

′
K

)).
In our example, the merge of uninitialized variable sets is done through set

union, and that of bounds by widening bounds. Thus, merge((n, {a, b}, (c >
0)), (n, {a, d}, (c > 10))) gives (n, {a, b, d}, (c > 0)). While the merge operator
can be quite approximate, we have not observed it to lead to many false error
reports, and furthermore, it does indeed considerably speed up the covering and
differencing operations.

3 Feasibility Checking

As explained in the introduction, a potential finite error path detected at level 1
is subjected to further analysis by a feasibility check, which determines whether
it can correspond to a real execution. By integrating bounds information in the
abstract state at level 1 some error paths can already be ruled out at an early
stage. The level-2 feasibility check described here is applied to other error paths
that are generated at level 1. In this section we describe the manner in which this
check is performed, optimizations, and some consequences for the completeness
of the error detection strategy.

3.1 Checking for Feasibility with Weakest Preconditions

Any finite path through a control flow graph of a function is a sequence formed
from assignment statements, function calls, and boolean tests. For example,
read(&x); (x < 0); y = x; (y > 3); z = f(x, y) could be such a path, where x, y, z
are integer valued variables, and f is a function. This path is infeasible: from
the first three actions, one may infer that the value of y is negative; hence, the
subsequent test (y > 3) fails. Such inference can be formalized in many equiv-
alent ways; we do so primarily through the use of weakest liberal preconditions

for statements, as introduced by Dijkstra in [16].
The weakest liberal precondition for statement S to establish property φ

after execution, denoted by wlp(S, φ), is that set of states from which every
terminating execution of S makes the program enter a state satisfying φ. Letting

s
S

−→ t denote the fact that execution of statement S from state s can result in
state t, this set is formally defined as wlp(S, φ) = {s | (∀t : s

S
−→ t ⇒ φ(t))}. The

weakest precondition can be calculated by substitution for simple assignments
(wlp(x = e, φ(x)) = φ(e)), and by implication for tests (wlp(g, φ) = (g ⇒ φ)),
and inductively for sequences of actions (wlp((S1;S2), φ) = wlp(S1,wlp(S2, φ))).
Its relationship to feasibility checking is given by the following theorem.

Theorem 4 A finite path π is feasible if and only if wlp(π, false) is not valid.

Proof. From the inductive definition of wlp for paths, one obtains the following
set-based characterization of wlp(π, φ): it is the set {s | (∀t : s

π
−→ t ⇒ φ(t))}.

A path π is feasible iff (by definition) there are program states s, t such that

s
π

−→ t holds. By the prior characterization of wlp, this is equivalent to saying
that wlp(π, false) is not universally true.

For the example above, the wlp calculation proceeds as follows: wlp(z =
f(x, y), false) = false; wlp((y > 3), false) = ((y > 3) ⇒ false) = (y ≤ 3);
wlp(y = x, (y ≤ 3)) = (x ≤ 3); wlp((x < 0), (x ≤ 3)) = ((x < 0) ⇒ (x ≤ 3)) =
true; and wlp(read(&x), true) = true. But true is trivially valid: hence, by the
theorem above, this path is infeasible. Notice that as wlp(π, true) = true holds
for all π, infeasibility can be detected early, and the read statement does not
really need to be examined. The weakest precondition calculates backwards; its
dual is the strongest postcondition, sp, which calculates forwards, and is defined

as follows: sp(S, φ) = {t | (∃s : φ(s) ∧ s
S

−→ t)}. Their duality leads to the
following theorem.

Theorem 5 A finite path π is feasible if and only if sp(π, true) is satisfiable.

Proof. It is well known that wlp and sp are near-inverses (formally, adjoints in
a Galois connection). Thus, (ψ ⇒ wlp(π, φ)) is valid iff (sp(π, ψ) ⇒ φ) is
valid. Substituting ψ = true, φ = false , we obtain that wlp(π, false) is valid iff
¬(sp(π, true)) is valid; thus, wlp(π, false) is not valid iff sp(π, true) is satisfiable.

We thus have two equivalent ways of calculating feasibility: either perform a
forwards, symbolic calculation of sp(π, true) and apply a satisfiability solver, or
perform a backwards, substitution-based calculation for wlp(π, false) and apply
a validity checker. The approach we have implemented in Orion is somewhat of
a hybrid: we calculate aliasing and points-to information along π in the forward
direction, and use it to reduce the intermediate results of the wlp calculation. A
key point is that aliasing information is quite accurate along a single path, more
so than when it is calculated for a control flow graph, where accuracy is lost
when merging information for incoming edges at a CFG node. The need for such
points-to information is due to the fact that wlp, when applied to assignments
through pointer variables, results in a case explosion. For instance, computing
wlp(∗p = e, φ(x, y)) requires a case split on whether p points to x, to y, or to
neither. Formally, it is given by the expression below, where pt(p, x) is a predicate
that is true iff p holds the address of x.

if pt(p, x) then (if pt(p, y) then φ(e, e) else φ(e, y))

else (if pt(p, y) then φ(x, e) else φ(x, y))

Without points-to information to contain this case splitting, the wlp expres-
sions at intermediate points on the path can grow exponentially, resulting in a
slowdown. Orion can also use bounds information gathered for this path during
the first phase analysis of the control flow graph to similarly reduce arithmetic
expressions early in the wlp calculation.

Orion sends the expressions that represent wlp’s of paths to a validity checker
— we currently use either Simplify [11] or CVC [12] as the checkers. An inter-
esting observation is that the use of wlp automatically provides a slicing [17]
of the path relative to the feasibility check, since an assignment that does not
affect variables in the current post-condition is treated as a no-op by the wlp

substitution mechanism (e.g., wlp(z = e, φ(x)) = φ(x)).

An example of the effect of Orion’s feasibility check is shown in Figure 3.
When run on the source code shown on the left, without feasibility check the
error path on the right is produced. With feasibility checking enabled, no errors
are reported. The example is somewhat contrived to demonstrate several aspects
of Orion’s reasoning power on a few lines of code.

int f(int i) // line 1

{ // 2

int r, a, *p = &a; // 3

int m = 1; // 4

// 5

if (i<2) // 6

r = m*i; // 7

else // 8

m++; // 9

a = m*(i+1); // 10

if (*p>=6) // 11

r = m*6; // 12

return r; // 13

}

example.c:13 (function f) ::

use of un-initialized

variable(s): r

Possibly feasible error path:

example.c:3: p=(&a)

example.c:4: m=1

example.c:6: !((i<=1))

example.c:9: m=(m+1)

example.c:10: a=(m*(i+1))

example.c:11: !(((*p)>5))

example.c:11: ((void)0)

example.c:13: return_value=r

Fig. 3. With feasibility checking, the error path (on the right) is suppressed.

3.2 Implications for Completeness

Orion is focussed on finding errors. Two important correctness (i.e., non-performance)
aspects in this context1 are (i) soundness : is every reported error feasible? and
(ii) completeness : does the procedure find all real errors?

Although Orion uses feasibility checking, as described above, to filter out
false error reports, soundness is weakened due to fundamental limitations in
decision procedures. These include the exponential complexity of some decision
procedures and, indeed, the non-computability of validity for certain logics (e.g.,
arithmetic with multiplication). To achieve a reasonable analysis time, Orion
limits the time allowed for the solvers, inevitably permitting in some false error
paths to be reported. Orion aims to achieve a high degree of – but not perfect –
precision in its error reports, obtaining a kind of high-probability soundness.

An analysis algorithm can obtain perfect completeness by reporting all po-
tential errors: all real errors are contained in this report. However, this comes at
the expense of soundness. Thus, there appears to be a balance between the two
aspects: it may be necessary to sacrifice some completeness in order to achieve
a high degree of soundness. In what follows, we point out two such tradeoffs in
Orion.

1 Note that the notions of soundness and completeness are defined opposite from those
in the context of program verification.

State-based vs. Path-based Search In the previous section, we argued that path-
based search was impractical, and presented three state-based search algorithms.
While these are indeed more efficient, they may compromise completeness, when
combined with feasibility checking. Consider, for instance, the program below.

int foo(int x)

{

int u,v;

L1: if (x > 0) v=x; else v=x+1;

L2: if (x < 0)

L3: return u;

L4: else return x;

}

The return statement at L3 is a candidate for an uninitialized variable error,
and there are two possible paths to L3: P1 :: (x > 0); v = x; (x < 0); return u,
and P2 :: (x ≤ 0); v = x + 1; (x < 0); return u. A search that tries all paths
will consider both, and point out P2 as a feasible error path. But now consider
a depth-first search that only keeps track of the current set of uninitialized
variables. If the search tries path P1 first, it will find the potential error, but a
feasibility check will reject the path as being infeasible. Backtracking to L1, the
search tries the else-branch at L1. However, it enters L2 with the same set of
uninitialized variables, {u}, as before, and must backtrack without exploring P2

in full. Hence, the real error goes unreported, a failure of completeness!
Notice that the failure is due to the feasibility check: dropping the check

will cause an error report to be generated, with a path that is infeasible —
but, of course, at the cost of soundness. The fundamental problem is that any

state-based search that uses a finite abstract domain can be “fooled” into not
distinguishing between some of the possibly infinitely many different paths that
reach a control point. Orion actually avoids the problem for this example, since
it also keeps track of variable bounds information that serves to distinguish the
prefixes of P1 and P2 at L2. However, it may be possible for a complex enough
program to fool the bounds tracking procedure into considering distinct prefixes
as indistinguishable from one another: [18] has a discussion of this phenomenon
in the more general context of abstraction methods.

Covering vs. Depth-first Search As described in the previous section, a covering-
based search is far more efficient than pure depth-first search. However, this
too, may come with a completeness cost. The covering property preserves the
existence of error paths, but not specific errors: i.e., if state t covers state s, and
there is a path to an error from s, there must be a matching path from t, but
not necessarily to the same error location. This general problem does not hold
for the case of control-flow graphs, since covering states share a common con-
trol location. However, we have observed that a covering based search can miss
reporting some errors in our tests of Orion. In this case, it is due to a different,
but related phenomenon: the potentially over-approximate aggregation. Such an
over-approximation enables some states to be covered, while this would not have

been the case with an exact aggregation — such false covering, if it occurs, leaves
some paths unexplored. However, in our tests, the number of missed errors is
small (usually one or two) and, in all the cases we encountered, the missed error
paths are infeasible. There is a tradeoff here that can be exploited. For instance,
one can try Orion with the fast covering-based search for initial testing, but
once all reported real errors have been fixed, one may try Orion with the more
comprehensive, but slower depth-first search to expose any missed errors.

4 Experimental Evaluation

Covering and Differencing Experiments with the covering and differencing al-
gorithms show a clear advantage in execution times relative to pure depth-
first search: at least 3-fold, usually more. The intuition behind the differenc-
ing method is that it can speed up the search by: (i) potentially covering more
states, thus exploring fewer states overall, and (ii) faster computations, as differ-
ence states are generally smaller than the original (e.g., a subset). Experiments
so far show, however, that for the properties we check for with Orion, the speedup
obtained with smaller representations is nearly matched by the cost of the differ-
encing operation. The benefit in run times is marginal, with a maximum speedup
of about 10%. We continue to explore this issue, however, and to look for more
efficient differencing implementations.

Feasibility The table in Figure 4 summarizes the result of running Orion on var-
ious publicly available software packages. The experiments were run on an AMD
Opteron 2.6GHz dual core, 8GB, under Linux, except for the first (emacs-21.3),
which had to be run on a considerably slower machine due to OS incompati-
bility issues. In any case, the measurements are not directly comparable over
the different entries, as they were collected in multi-user mode. The errors being
checked are use-before-def of variables variables, null-pointer dereferencing, and
out-of-bounds indexing of arrays. The first three columns in the table show the
name and version of the program analyzed, the number (in 1000s) of lines of
code that were analyzed (this need not be the total amount of C code in the
package, due to configuration options), and the compilation time, in seconds,
when Orion is not used. The next three columns give the results of compilation
with the Orion checks enabled. The column “errs.” lists the number of errors
as reported by Orion, i.e., the number of error paths (as identified at level 1)
that are determined to be feasible by Orion’s feasibility check (at level 2). The
column “infeas.” lists the number of paths that show up as potential errors at
level 1, but that are determined to be infeasible at level 2, and are thus not
reported. The last column lists the number of real errors, among those reported
by Orion, as determined by a manual inspection, see below. The analyses are
run with precision 2, meaning that the time allotted for every feasibility check
is 2 seconds. Increasing this time-out value does not show a significant decrease
in the number of errors reported for these examples, while with precision 1 and
lower, Orion does not invoke external validity checkers for feasibility checking,

compile compile + analyze real
Source KLoC time (s) time (s) errs. infeas. errs.

emacs-21.3 25.9 199 412 3 5 3
jpeg-6b 28.8 7 35 0 25 0

libxslt-1.1.12 31.2 27 103 2 1 0
sendmail-8.11.6 76.2 9 82 5 16 2
libxml-2.6.16 200.1 97 295 3 12 2

Fig. 4. Results on some open source packages

which leads to significantly more false alarms. For sendmail, jpeg, and emacs,
a few additional customized options were given to indicate that certain func-
tions should be considered as “exit functions” that do not return. This helped
suppress a couple of false alarms.

The numbers of errors that are reported versus infeasible paths that are
suppressed witness the effectiveness of the feasibility checking. An indication
of the signal-to-noise ratio that is achieved may be derived by comparing the
number of reported errors (column “errs.”) to the number of those that are
deemed real (column “real errs.”). For the manual checks, we considered an
error to be real if it was feasible locally within a procedure. It may be that some
of these “real” errors are infeasible when considered in their interprocedural
context. Still, arguably such cases indicate a lack of defensive coding (in no case
did we find comments or assertions in the code that indicated the assumptions
made).

5 Related Work

Run-time Checking and Dynamic Analysis An alternative way to detect pro-
gramming errors is to monitor the code during execution. Tools such as Purify
(from Rational/IBM) and CCured [19] insert checks into the code to this ef-
fect, that get compiled and executed along with the program. VeriSoft [20],
DART [36], and JPF [21] on the other hand do not insert checking code, but can
be seen as advanced schedulers that perform various checks on the underlying
code. Since they have full control over the scheduling, several different execu-
tions can be tested, i.e. they can be viewed as bounded model checkers. What
run-time checkers and dynamic analyzers have in common is that they explore
an under-approximation of a program’s run-time state space. In this sense they
are orthogonal to the DFA approach.

Static Analyzers Tools that approach Orion most closely in terms of usage, pur-
pose, and underlying techniques are Uno [4], MC/Coverity [22], PolySpace [23],
klocwork [24], ESP [25], FlexeLint [1], and BEAM [26]. The distinguishing fea-
tures of Orion are:

– Its 2-level, tunable approach, which results in excellent signal-to-noise ratios
without serious time penalties. At the same time it gives the user control over

the desired precision: High precision can be achieved by allowing the solvers
more time to perform a deep semantic analysis of the error paths returned
at the first, more superficial level. The experimental results reported show
that this reduces the amount of false alarms in a significant way, without
excessively burdening the analysis time.

– The application of the covering and differencing optimizations uniformly for
all abstract domains. MC/Coverity uses similar techniques to handle aggre-
gate state machines produced by the per-variable check paradigm adopted
in that tool (cf. the handling of block summaries by the tool). Uno imple-
ments a form of covering and differencing as well. Our general treatment
allows us to prove the correctness of covering and differencing independently
of the search scheme and the covering relation used. The current implemen-
tation of Orion uses a covering relation over a combined domain for tracking
uninitialized variables and bounds information, as explained in Section 2.2.
We are considering adding points-to information as well; such extensions are
easy to add thanks to the generality of the implementation.

The roots of the covering algorithm go back at least to work by Karp and Miller
[9], but it has been reformulated several times in connection with various abstract
domains (cf. [27, 28, 8]).

While the high degree of automation offered by all these tools increases their
acceptance by software developers, there will always be errors that escape such
static analyses — this is due to the undecidability of the problem of showing the
absence of errors. If correctness is a serious concern, like in case of safety-critical
applications, tools that require annotations can offer more certainty. ESC [29]
and LClint [30] are examples of such tools. Orion also allows insertion of a limited
form of user-annotations, but this feature has not been used in the experiments.

Several alternative approaches exist to ameliorate the signal-to-noise ratio.
One is to rank the errors reported, based on heuristic rules and history informa-
tion, such that errors with a high probability of being real occur first. This idea is
e.g. implemented in Microsoft’s PREfix and PREfast defect detection tools [31],
and also in MC/Coverity [22]. The drawback is that in order to be effective, such
rules must be partly specific to the area of application, and consequently it may
take a domain expert to devise effective heuristics. Another technique used in
the above-mentioned tools is to suppress certain errors based on similarity to
previously reported ones. Orion’s distinguishing features are orthogonal to these
techniques, and can be combined to get the best of worlds.

Software Verification Tools The introduction already discussed the relation of
Orion to software verification tools based on symbolic processing, such as SLAM
[5], BLAST [8], and BANDERA [6], stressing the difference between error check-

ing and verification. Orion can be seen as an effort to apply techniques from the
model checking and verification field to the problem of improving the precision
of static error analysis to acceptable levels. Our experimental results appear to
bear out the hypothesis that the 2-level analysis procedure discussed in this
paper is effective at performing high-precision static error analysis. Some of the

technical details of Orion’s implementation differ from, or extend, the algorithms
used in the verification tools mentioned above. The covering search algorithm
presented here is more general than the one used in BLAST, and the addition
of differencing is novel. Orion analyzes paths using weakest preconditions, as in
BLAST, but with a forward, path-specific, points-to analysis (SLAM uses sym-
bolic processing—i.e., strongest postconditions—to analyze for feasibility). On
the other hand, these verifiers include methods for automatic refinement of the
initial abstraction, based on hints obtained from the infeasibility proofs for false
error paths; such refinement is necessary to show correctness. So far, we have
not found a need to add such abstraction refinement: the feasibility checking
mechanism appears to do a good enough job of filtering out false errors.

6 Conclusions and Ongoing Work

We have presented the static error checker Orion, which is aimed at producing er-
ror reports with a low false-alarm rate in reasonable analysis time. The approach
that enables this is an automaton-based, path-oriented, two-level data-flow anal-
ysis, that uses powerful external solvers in a tunable fashion, and is optimized
by the use of covering, differencing, and state aggregation schemes.

Depth-first search can be seen as a particular scheduling of the general chaotic
iteration scheme for data flow analyses. However, our covering and differencing
algorithms presented earlier are more general than DFA, since they do not require
a control flow graph skeleton on which to execute the algorithm.

Experiments on several programs shows that in most cases the targeted
signal-to-noise ratio of 3:1 is achieved. A detailed inspection of the reasons that
some infeasible paths are still reported as errors suggest two priorities for further
work.

First, it turns out that the computation of expressions that represent weak-
est preconditions, tends to run out of the allocated resources in cases where
the paths are very long (hundreds of statements). Orion can perform an inter-
procedural analysis for uses of uninitialized global pointer variables2, and since
interprocedural paths tend to be very long, no feasibility checks are performed
in this case. We are currently investigating alternative solvers such as CVC-Lite
[34], and also looking into other approaches to feasibility checking such as the use
of a SAT-based symbolic model checker (CBMC, see [35]) and of a testing-based
tool (DART, see [36]).

Another source of false alarms is the out-of-bounds array check. We are cur-
rently working on an improved and generalized buffer-overflow checking module
for Orion.

It has been pointed out that Orion is not a complete method for error detec-
tion. The interaction between the level-1 and level-2 checks may cause errrors
to be missed as explained in Section 3. Furthermore, when encountering certain

2 The implementation is based on standard techniques for model checking of recursive
state machines [32, 33], and thus can deal with recursive functions in C and C++.

language features such as long-jumps and function pointers, Orion favors anal-
ysis speed over completeness. The fact that it still finds a significant amount of
errors in code that may be considered well-tested, confirms that such sacrifices
are justified. Nevertheless, it is our intention to address the various sources of
incompleteness by offering options to run Orion in a stricter mode, or at least
to warn of the occurrence of language constructs that are not treated conserva-
tively. In comparison, note that a static analyzer like Astrée [37], which is aimed
at proving the absence of certain types of errors, comes with rather drastic re-
strictions on the allowed language constructs in order to guarantee its claims.

While the analysis times reported in our experiments are reasonable, in some
cases they are an order of magnitude more than the time required to compile a
program without error analysis by Orion. In addition, when software is analyzed
that less well-tested, the number of errors can be significantly higher, leading
to an increased analysis time due to more numerous feasibility checks. In order
to address this, we have implemented an incremental algorithm in Orion; the
results are reported elsewhere, see [38].

Acknowledgements We would like to thank Gerard Holzmann for sharing insights
into the implementation of Uno. We would also like to thank Glenn Bruns, Nils
Klarlund, and the anonymous referees for suggesting several improvements to
the presentation. This work is supported in part by grant CCR-0341658 from
the National Science Foundation.

References

1. (FlexeLint) http://www.gimpel.com.
2. (Coverity) http://www.coverity.com.
3. (Fortify) http://www.fortifysoftware.com/products/sca.jsp.
4. Holzmann, G.: Static source code checking for user-defined properties. In: Proc.

IDPT 2002, Pasadena, CA, USA (2002) http://www.cs.bell-labs.com/what/

uno/index.html.
5. Ball, T., Rajamani, S.: The SLAM toolkit. In: CAV. Volume 2102 of LNCS. (2001)
6. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Laubach, S., H.Zheng:

Bandera: extracting finite-state models from Java source code. In: ICSE. (2001)
http://www.cis.ksu.edu/santos/bandera.

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5) (2003) 752–794

8. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-safety proofs for systems code. In: CAV. Volume 2404 of LNCS. (2002)

9. Karp, R., Miller, R.: Parallel program schemata. J.CSS 3(2) (1969)
10. Merrill, J.: GENERIC and GIMPLE: A new tree representation for entire func-

tions. In: First GCC Developers Summit. (2003) at www.gcc.gnu.org.
11. (Simplify) http://research.compaq.com/SRC/esc/Simplify.html.
12. Stump, A., Barrett, C., Dill, D.: CVC: a Cooperating Validity Checker. In: 14th

International Conference on Computer-Aided Verification. (2002)
13. Schmidt, D., Steffen, B.: Program analysis as model checking of abstract interpre-

tations. In: SAS. Volume 1503 of LNCS., Springer Verlag (1998)

14. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison–Wesley (1987)

15. Dijkstra, E., Lamport, L., Martin, A., Scholten, C., Steffens, E.: On-the-fly garbage
collection: An excercise in cooperation. C.ACM 21(11) (1978)

16. Dijkstra, E.: Guarded commands, nondeterminacy, and formal derivation of pro-
grams. CACM 18(8) (1975)

17. Tip, F.: A survey of program slicing techniques. Journal of programming languages
3 (1995) 121–189

18. Dams, D.: Comparing abstraction refinement algorithms. In: SoftMC: Workshop
on Software Model Checking. (2003)

19. Necula, G., McPeak, S., Weimer, W.: CCured: type-safe retrofitting of legacy code.
In: POPL. (2002)

20. Godefroid, P.: Model checking for programming languages using Verisoft. In:
POPL. (1997)

21. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: ICSE.
(2000) http://ase.arc.nasa.gov/visser/jpf.

22. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for building
system-specific, static analyses. In: PLDI. (2002)

23. (PolySpace) http://www.polyspace.com.

24. (Klocwork) http://www.klocwork.com.

25. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: PLDI. (2002)

26. Brand, D.: A software falsifier. In: International symposium on Software Reliability
Engineering. (2000) 174–185

27. Finkel, A.: Reduction and covering of infinite reachability trees. Information and
Computation 89(2) (1990)

28. Emerson, E., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: LICS. (1998)

29. Flanagan, C., Leino, K.M., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended
static checking for Java. In: PLDI. (2002)

30. Larochelle, D., Evans, D.: Statically detecting likely buffer overflow vulnerabilities.
In: USENIX Security Symposium. (2001)

31. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic program-
ming errors. Software: Practice and Experience 30(7) (2000) 775–802

32. Benedikt, M., Godefroid, P., Reps, T.: Model checking of unrestricted hierarchical
state machines. icalp 2001: 652-666. In: ICALP. Volume 2076 of LNCS. (2001)

33. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In:
CAV. Volume 2102 of LNCS. (2001)

34. (CVC Lite) http://chicory.stanford.edu/CVCL/.

35. (CBMC) http://www.cs.cmu.edu/~modelcheck/cbmc/.

36. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: Proc. of the ACM SIGPLAN. (2005)

37. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTRÉE Analyser. In Sagiv, M., ed.: Proceedings of the European Sym-
posium on Programming (ESOP’05). Volume 3444 of Lecture Notes in Computer
Science., Edinburgh, Scotland, c© Springer (2005) 21–30

38. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms
for inter-procedural analysis of safety properties. In Etessami, K., Rajamani, S.K.,
eds.: Computer Aided Verification. Number 3576 in LNCS (2005) 449–461

7 Appendix

We present detailed proofs of theorems in this section.

7.1 Algorithm I: White-Grey-Black Search

The algorithm is reproduced below.

var color: array [S] of (W,G,B)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)

Theorem 1 Algorithm I terminates with Black = Reach.

Proof. 1. Termination: to show termination, consider the progress measure ρ =
(|White|, |Grey |) under lexicographic ordering. As the graph is finite, this mea-
sure is finite, and the lexicographic order is well-founded. Notice that the first
two actions, if executed, strictly decrease |White|, while the third action, if ex-
ecuted, keeps |White| constant, but strictly decreases |Grey |. Thus, ρ decreases
strictly for every executed action; hence, the program terminates.

2. Correctness: we show some auxilary invariants first.

2a. (Grey ∪ Black) ⊆ Reach is invariant. (proof) this is true initially as
the sets on the left are empty. The first action turns a white initial state grey,
thus preserving the invariant. The second action turns a white successor of a
grey state (reachable, by induction) grey, thus preserving the invariant. The
third action changes the color of a grey state to black, thus keeping the union
constant. (endproof)

2b. post(Black) ⊆ (Grey ∪ Black) is invariant. (proof) this is true initially
as Black is empty. The first two actions increase only Grey , thus they preserve
the invariant. The last action moves a state from grey to black, but the newly
blackened state satisfies this condition. (endproof)

At termination, all actions are disabled. Thus: (i) from the disabling of the
first action, all initial states are non-white, so I ⊆ (Grey ∪ Black); (ii) from
the disabling of the second action, all grey states have non-white successors, so
post(Grey) ⊆ (Grey ∪ Black); (iii) from the disabling of the third action, all
grey states have at least one white sucessor. The second and third consequences
together imply that Grey = ∅. Hence, from (i), I ⊆ Black , and from (2b),
post(Black) ⊆ Black . Thus, Black is a solution to the fixpoint equation for the
set of reachable states. Since Reach is the least solution, and from (2a) we have
that Black ⊆ Reach, we get that Black = Reach.

7.2 Algorithm II: Covering-based Search

The algorithm is given below.

var color: array [S] of (W,G,B,R)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)
[] ([]s : grey(s) ∧ ((Grey \ {s}) ∪ Black) ⊒ {s} −→ color [s] := R)

Theorem 2 Algorithm II terminates, and there is a reachable error state iff one

of the states in (Black ∪ Red) is an error state.

Proof. 1. Termination: We use the same progress measure, ρ = (|White |, |Grey |),
as before. This decreases strictly for the first three actions, which are identical
to those of the previous algorithm. The fourth action keeps |White| unchanged
while decreasing |Grey |.

2. Correctness:
2a. (Grey ∪ Black ∪ Red) ⊆ Reach is invariant. (proof) this is true initially

as the sets on the left are empty. The first action turns a white initial state
grey, thus preserving the invariant. The second action turns a white successor of
a grey state (reachable, by induction) grey, thus preserving the invariant. The
third action changes the color of a grey state to black, while the last one changes
the color of a grey state to red, thus keeping the union constant. (endproof)

2b. post(Black) ⊆ (Grey ∪ Black ∪ Red) is invariant. (proof) this is true
initially as Black is empty. The first two actions increase only Grey , thus they
preserve the invariant. The third action moves a state from grey to black, but
the newly blackened state satisfies this condition. The fourth action only moves
a state from grey to red. (endproof)

At termination, all actions are disabled. Thus: (i) from the disabling of the
first action, all initial states are non-white, so I ⊆ (Grey ∪ Black ∪ Red); (ii)
from the disabling of the second action, all grey states have non-white successors,
so post(Grey) ⊆ (Grey ∪ Black ∪ Red); (iii) from the disabling of the third
action, all grey states have at least one white sucessor. The second and third
consequences together imply that Grey = ∅. Hence, from (i), I ⊆ (Black ∪ Red),
and from (2b), post(Black) ⊆ (Black ∪ Red).

However, we cannot claim, as in the previous proof, that Black ∪ Red satisfies
the fixpoint equation. Indeed, we hope it does not, since this would mean that
Black ∪ Red = Reach, and we want this set of states to be a strict subset of
the reachable states. At termination, red states can have successors that are any
color except grey, as there are no grey states left. What we would like to claim
is that Reach ∩ E 6= ∅ if, and only if, (Black ∪ Red) ∩ E 6= ∅. To do so, we
prove the stronger invariant below.

3. Invariantly, Reach ∩E 6= ∅ iff (Grey ∪ Black ∪ Red ∪ (I ∩ White))
∗

−→ E.

(proof) [right-to-left] by contrapositive. Suppose that there is no reachable
error state. By (2a), it is not possible to reach an error state from (Grey ∪
Black ∪ Red ∪ (I ∩ White)), which is a subset of the reachable states.

[left-to-right] suppose that there is a reachable error state. We have to show
that the right-hand expression is an invariant. The property is true initially as all
initial states are white. The first transition only moves a state from (I ∩ White)
to Grey , so error reachability is invariant. The second adds a Grey state, hence
reachability to an error state is preserved. The third moves a state from Grey

to Black , while the last moves a state from Grey to Red , so again, reachability
to error states is preserved. (endproof)

At termination, this invariant implies, as Grey is empty, and all initial states
are non-white (condition (i) above), that Reach ∩E 6= ∅ iff (Black ∪ Red)

∗
−→ E.

This is not enough to imply the equivalence of Reach ∩ E 6= ∅ and (Black ∪
Red) ∩ E 6= ∅: though the successors of a black state are colored only red
or black, the error may be in a white successor of a red state, which remains
unexplored on termination. We use the path-length constraint on the covering
relation to show that this situation can occur only if a red/black state is itself
an error state.

4. Invariantly, for any k > 0, if Red
=k
−→ E, then (Grey ∪ Black)

≤k
−→ E.

(proof) This is true initially as there are no red states, so the antecedent is false
for all k. Assuming the claim to be true, we show that it is preserved by every
transition. The first three transitions can only increase the set (Grey ∪ Black),
without affecting red states, thus the property, being monotonic in (Grey ∪
Black), continues to hold. The last transition moves a state s from grey to red.
By the path-length constraint on the covering relation, the implication holds for
the newly red state s after the transition. Consider any other red state t and
any k for which there is a path to error of length k. By the induction hypothesis,
before the transition, there is a path from a grey/black state, t′, of length k′,
where k′ ≤ k, to a state in E. If this path cannot be used as a witness after the
transition, it must be because t′ turns red after the transition; hence, t′ = s. But
then, by the covering property for s, there must be a path of length at most k′

from one of the grey/black states after the transition to a state in E. (endproof)

Now we argue that (Black ∪ Red)
∗

−→ E holds iff (Black ∪ Red) ∩ E 6= ∅.
The direction from right to left is trivial. For the other direction, let k be the
length of the shortest path to an E-node from (Black ∪ Red). If k = 0, we are
done. If k > 0, the start state of the path must be in Red , otherwise there is a
shorter path by (2b) and the assumption that Grey 6= ∅. However, in that case,
by (4) and the assumption that Grey 6= ∅, there is a path of length at most k
from a black node to E; hence, again, there is a shorter path by (2b). Thus, k
must be 0.

7.3 Algorithm III: Adding Differencing Mechanisms

The algorithm is identical to that presented before, but for a modified final
action.

([]s,Diff : grey(s) ∧ (Diff ⊆ White) ∧
((Grey \ {s}) ∪ Black ∪ Diff) ⊒ {s} ∧ {s} ⊒ Diff

−→ color [s] := R; ([]t : t ∈ Diff : color [t] := G))

Theorem 3 Algorithm III terminates, and there is a reachable error state iff

one of the states in (Black ∪ Red) is an error state.

Proof. Surprisingly, the proof of correctness is essentially identical to the one for
the covering-only search.

1. Termination: this holds with reasoning identical to that in the previous
proof.

2. Correctness: The only difference is that since Diff can include unreachable
states, so (2a) no longer holds, so we have to adjust the proof of the right-to-
left direction of (3). We give the new proof below; the rest of the argument is
identical.

3. Invariantly, Reach ∩E 6= ∅ iff (Grey ∪ Black ∪ Red ∪ (I ∩ White))
∗

−→ E.
[right-to-left proof] Suppose that there is no reachable E-state. We have to

show that the r.h.s. is invariantly false. The r.h.s. is false initially as it reduces
to I

∗
−→ E, which is false by assumption.

Suppose that it is false, we show that no action can make it true. The first
action only colors a white initial state grey, so the r.h.s. stays false. Since there
is no path to error from grey states, marking white successors of grey states as
grey (the second action) cannot introduce a path to error. Similarly, the third
action only colors a grey state black, so it does not make the r.h.s. true.

The fourth action, however, turns a grey state red and adds a set of —
perhaps unreachable — states, Diff , to Grey . So the only way in which the
property can be true after the transition is if Diff

∗
−→ E holds. But the constraint

{s} ⊒ Diff in the guard, together with the path-matching constraint on the

covering relation, implies that s
∗

−→ E is true. But this is known to be false, as
s is a grey state before the transition. Hence, the property remains false after
the transition.

