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Abstract. Regular languages have proved useful for the symbolic state
exploration of infinite state systems. They can be used to represent infi-
nite sets of system configurations; the transitional semantics of the sys-
tem consequently can be modeled by finite-state transducers. A standard
problem encountered when doing symbolic state exploration for infinite
state systems is how to explore all states in a finite amount of time. When
representing the one-step transition relation of a system by a finite-state
transducer T , this problem boils down to finding an appropriate finite-
state representation T ∗ for its transitive closure.
In this paper we give a partial algorithm to compute a finite-state trans-
ducer T ∗ for a general class of transducers. The construction builds a
quotient of an underlying infinite-state transducer T <ω, using a novel be-
havioural equivalence that is based past and future bisimulations com-
puted on finite approximations of T <ω. The extrapolation to T <ω of
these finite bisimulations capitalizes on the structure of the states of
T <ω, which are strings of states of T . We show how this extrapola-
tion may be rephrased as a problem of detecting confluence properties
of rewrite systems that represent the bisimulations. Thus, we can draw
upon techniques that have been developed in the area of rewriting.
A prototype implementation has been successfully applied to various
examples.

1 Introduction

Finite-state automata are omnipresent in computer science, providing a powerful
tool for representing and reasoning about certain infinite phenomena. They are
commonly used to capture dynamic behaviours, in which case an automaton’s
nodes model the states, and its edges the possible state transitions of a system.
More recently, finite-state automata have also been applied to reason about
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infinite-state systems, in which case a single automaton is used to represent an
infinite set of system states. In regular model-checking [3, 15, 1, 14], regular sets
of states of the system to be verified are represented by finite-state automata.
For instance, consider a parameterized network of finite-state processes with the
states of the processes modeled by the symbols of a finite alphabet. Then for
every value of the parameter, i.e., for every fixed size of the network, a global
configuration is represented by a word over the alphabet. A set of similar configu-
rations corresponding to different values of the parameter, and hence to different
network sizes, can then be modelled by a regular set. Or, in a system with data
structures like unbounded message buffers, infinitely many buffer contents may
be represented by an automaton. To reason about the dynamic behaviour of such
a system, its transition relation is lifted to operate on such symbolically repre-
sented sets of states. A natural choice to represent the lifted transition relation
are finite-state transducers.

Taking finite-state automata and transducers to describe infinite sets of states
and their operational evolution is, in general, not sufficient when doing state ex-
ploration. To capture all reachable states, one needs to characterize the effect
of applying a transducer T an arbitrary number of times. In other words, one
needs to compute the transitive closure of T . In general, this closure is not
finite-state anymore. Nonetheless, for length-preserving transducers, partial al-
gorithms have been developed that, if they terminate, produce the closure in the
form of a finite-state transducer [3, 14]. These algorithms can be explained in
terms of the, possibly infinite-state, transducer T <ω =

⋃
i∈ω T i, the union of all

finite compositions of T . Conceptually, they attempt to construct a finite quo-
tient of T <ω by identifying states that are equivalent in some way. For example,
in [3, 14], the underlying equivalence relation is induced by determinizing on-the-
fly and then minimizing T <ω. General transducers are not determinizable, but
that paper considers length-preserving transducers, which are essentially stan-
dard automata over pairs of symbols and can be determinized accordingly. The
minimal automation is then approximated using a technique called saturation
to approximate the minimal automaton.

In this paper, we employ a different quotient construction, resulting in an
algorithm whose application is not a-priori limited to length-preserving trans-
ducers. It works by computing successively the approximants T ≤n =

⋃
0≤i≤n T i

for n = 0, 1, 2, . . . , while attempting to accelerate the arrival at a fixpoint by
collapsing states. This quotienting is based on a novel behavioural equivalence
defined in terms of past and future bisimulations. The largest such equivalence,
being a relation over the infinite-state transducer T <ω, may not be effectively
computable. To solve this problem, we first identify sufficient conditions on an
approximant T ≤n for its states (which are also states of T <ω) to be equivalent as
states of T <ω. Then we show that the equivalence of two states of T ≤n induces
the equivalence of infinitely many states of T <ω.

We illustrate the underlying intuition on a small example in which sets of
unbounded natural numbers are represented as automata over the symbols 0 and
succ. The transitions we consider are given by the function α, defined inductively
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by α(0) = even and α(succ(x)) = ¬(α(x)). It computes the parity even or odd of
a number; ¬ is a function that toggles parities. Consider the transition relation

// that corresponds to a single step in the evaluation of this recursive definition.
Fig. 1(a) gives a transducer, Tα, that represents this transition relation. The slash
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Fig. 1. Left (a): The transducer Tα. Right (b): Its product T 2

α .

(/) is used to separate the input symbol from the output symbols. Note that by
the self-loop on state 0, the transducer leaves any leading occurrences of the
symbol ¬ unchanged, and similarly for the trailing occurrences of succ before
the final 0.

To start approximating T <ω
α , consider the product transducer T 2

α shown
in Fig. 1(b): It moves the symbol α over one more occurrence of succ, while
turning it into a ¬, as reflected by the edge from state 01 to 12 (ε denotes the
empty string). In every next product transducer T 3

α , T 4
α , . . . , an additional such

succ /¬-edge will appear. Clearly, the limit transducer T <ω
α , the union of all

approximants, is going to have infinitely many states. On the other hand, the
combined effect of the ever-growing sequence of succ /¬-edges would be captured
by a simple loop if states 01 and 12 were identified. Collapsing T <ω

α in this way,
we can hope for a finite quotient. To do so, we need to address the following
questions: First, how can we justify equating pairs of states like 01 and 12 (they
are obviously semantically different), i.e., what is the equivalence notion on T <ω

α

employed for quotienting, and secondly, how to compute the quotient without
prior calculation of the infinite T <ω

α ?
As for the first point, we must require that identifying states in the quotient

does not introduce transductions not already present in T <ω
α . Equating 01 with

12 in the above example, consider the run through the “collapsed” transducer
that goes from 00 to 01 (or rather to the new state obtained by collapsing 01
and 12) and then continues from this state as if continuing from 12. Exploiting
the equation 01 = 12, this run is introduced by the collapse. However, it does
not change the semantics of T <ω

α , as there exists another state that “glues”
together the past of 01 and the future of 12, namely state 1 of T 1

α . Another
class of artificial runs are those that go from 00 to 12 and then continue as if
continuing from 01. But also in this case, there is a state in T <ω

α that glues (this
time) the past of 12 to the future of 01, although it has not been constructed

when considering T ≤2
α . This state is 012 and would enter the scene as part of T 3

α ,
when constructing the next approximant. We formalize these ideas as follows:
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States q1 and q2 may be identified if there exists a past bisimulation P and a
future bisimulation F such that the pair (q1, q2) is both in the composed relation
P ;F and in F ;P , thus ensuring the existence of both “gluing” states. Indeed,
we will require that the bisimulations swap, i.e., F ;P=P ;F . So it will be enough
to show that (q1, q2) is in either one of the composed relations.

The second question is how to know that two states in some approximant
T ≤n

α are equivalent in the above sense, i.e., how do we know that there exists a
state somewhere in T <ω

α that is past-bisimilar to one and future-bisimilar to the
other? For this we exploit the structure of T <ω

α ’s states, namely that they are
sequences of states from Tα. It is easily seen that bisimulations are congruences
under juxtaposition of such sequences. In the example above, this means that
we can conclude the existence of an appropriate state without actually having to
construct T 3

α . Namely, by looking at T ≤2 only, we see that 1 and 12 are future
bisimilar, whence by congruence also 01 and 012. Similarly, past bisimilarity of
12 and 012 can be inferred by comparing 1 and 01. So we know that 012 is
our candidate, without ever having constructed it in any approximant so far. In
short, exploiting the congruence property allows to extrapolate the quotienting
relation found on a finite T ≤n

α to the whole T <ω
α , and thus to obtain a finite

quotient of T <ω
α , without calculating the limit first.

The remainder of the paper is organized as follows. After introducing nota-
tion and the relevant preliminary definitions in the next section, Section 3 will
formalize the criterion for a sound quotient. An algorithm based on this and
profiting from results of rewriting theory forms the topic of Section 4, where
we will also report on the results obtained from our prototype implementation.
Section 5 concludes and discusses related and future work.

2 Preliminaries

A transducer T = (Q,Qi, Qf , Σ,R) consists of a set Q of states, sets Qi, Qf ⊆ Q
of initial resp. final states, a set Σ of symbols, and a set R of rules. A rule has the
form qa // wq′ with q, q′ ∈ Q, a ∈ Σ ∪ {ε}, and w ∈ Σ∗, specifying that when
in state q and reading input symbol a ∈ Σ (or reading no input in case a = ε),
the transducer produces output w and assumes q′ as its new state. A finite-state
transducer is also called regular. The operation of a transducer is captured by
the move relation //

R on strings consisting of symbols and a state (where ε has
its usual meaning as neutral element of concatenation), defined as follows: For
t1, t2 ∈ Σ∗, t1qat2 //

Rt1wq′t2 iff qa // wq′ ∈ R. For this and other arrows we
use common notations like // −1 for inverse, //∗ for reflexive-transitive closure,
and oo // for symmetric closure. T ’s semantics [[T ]] : Σ∗ → 2(Σ∗) is defined as
follows: t2 ∈ [[T ]](t1) iff there exist qi ∈ Qi and qf ∈ Qf such that qit1 //∗

Rt2qf .
We will use the notation //

T synonymously for the rewrite relation //
R.

Transducers T1 and T2 over the same symbol set can be composed into T2◦T1,
so that the output of T1 is input to T2. This is a standard product construction
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where the rules R of the composition are defined by

qja //
R1

vq′j qiv //∗
R2

wq′i

qija // wq
′

ij ∈ R

where R1 and R2 are the rules of the two constituent transducers, and we write
qij as short-hand for the tuple (qi, qj). Note that multiple steps of T2 may be
needed for qi to “move through” v (or none, if v = ε). This construction captures
the semantical composition, i.e., [[T2]] ◦ [[T1]] = [[T2 ◦ T1]]. The n-fold composition of
a transducer T with itself is written asT n, with T 0 being defined such that it
realizes the neutral element wrt. transduction composition, i.e., [[T 0]] = IdΣ∗ . By
the same token, we will use Qn as the set of states of T n, when Q is the set of
states of T . Finally we will need the union of transducers: given two transducers
T1 and T2 over the same signature, T1 ∪ T2 denotes the transducer over the same
signature, given by the union of states, the union of initial, of final states, and
of rules, respectively. Union can be easily extended to the union of countably
many transducers. Note that finite union preserves finiteness.

To obtain a finite-state transducer out of an a-priori infinite T <ω, we will
have to identify “equivalent” states. The notion of equivalence used to this end
will be based on bisimulation equivalences [19, 17] on states. Besides the standard
future bisimulation we need the past variant as well.

Definition 1 (Bisimulation). Let T = (Q,Qi, Qf , Σ,R) be a transducer. An
equivalence relation F ⊆ Q × Q is a future bisimulation if for all pairs (q1, q2)
of states, q1 F q2 implies:

q1 ∈ Qf iff q2 ∈ Qf , and for every a,w, q′1 such that q1a //
T wq′1, there

exists q′2 such that q2a //
T wq′2 and q′1 F q′2.

An equivalence relation R ⊆ Q×Q is a past bisimulation, if for all pairs (q′1, q
′
2)

of states, q′1 R q′2 implies:

q′1 ∈ Qi iff q′2 ∈ Qi, and for every a,w, q1 such that q1a //
T wq′1, there exists

q2 such that q2a //
T wq′2 and q1 P q2.

We call q1 and q2 (future) bisimilar, written q1 ∼f q2, if there exists a future
bisimulation F with q1 F q2; and q1 ∼p q2 denotes two past bisimilar states,
defined analogously.

The bisimulation relations enjoy the expected properties ([17]): For both the
future and the past case, the identity relation is a bisimulation, the inverse
of a bisimulation is one, as well, and the notion of bisimulation is closed under
relational composition. Furthermore, the notions of bisimulation are closed under
union, more precisely, given two future bisimulation relations Rf1

and Rf2
, then

(Rf1
∪Rf2

)∗ is a future bisimulation, and analogously for the past case. The
extra Kleene closure is needed since we require a bisimulation relation to be an
equivalence. It is standard to show that future bisimilarity implies semantical
equality, i.e., T1 ∼f T2 implies [[T1]] = [[T2]], and that the two relations ∼p and
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∼f are congruences on Q∗, the free monoid over of T ’s set of states Q. We will
exploit this property in Section 4.

The definition of a quotient is fairly standard:

Definition 2 (Quotient). Let T = (Q,Qi, Qf , Σ,R) be a transducer and ∼= ⊆
Q × Q an equivalence relation. T/∼= is defined as the transducer (Q/∼= , {[q]∼= | q ∈
Qi}, {[q]∼= | q ∈ Qf}, Σ,R/∼=), where Q/∼= is the set of ∼=-equivalence classes of Q
and [q]∼= the ∼=-equivalence class of q. The rules of T/∼= are given by q̂a // wq̂′ ∈
R/∼= iff there exist q, q′ such that q̂ = [q]∼=, q̂′ = [q′]∼=, and q′a // wq′ ∈ R.

3 Sound Quotienting of T
<ω

Next we formalize the equivalence relation used to quotient T <ω and show the
correctness of the construction. As illustrated on the example of Section 1, the
key intuition behind a sound quotient is that, whenever identifying states q1 and
q2, there must exist a state realizing q1’s future and q2’s past, and a state realizing
q1’s past and q2’s future. “Having the same future (past)” will be captured by
being future (past) bisimilar . To ensure the existence of both required states, we
will restrict our attention to swapping future and past bisimulations:

Definition 3 (Swapping). Two relations R and S over the same set swap (or:
are swapping), if R;S = S;R (where ; denotes relational composition).

We are now ready to formulate the section’s central result, which allows to
collapse the infinite T <ω to a (possibly) finite transducer without changing its
semantics. Note that the theorem covers collapsing T <ω with respect to ∼f or
with respect to ∼p as special cases, since the identity relation on Q∗ is a past
as well as a future bisimulation and moreover, as neutral element of relational
composition, swaps with every relation. The full proof appears in [6].

Theorem 4. Let T be a transducer, and F and P a swapping pair of a future
and past bisimulation on T <ω. Then the quotient T <ω

/F ;P
of T <ω under F ;P is

well-defined and preserves the transduction relation, i.e., [[T <ω
/F ;P

]] = [[T <ω]].

Proof sketch. With F ;P being a congruence, we’ll write ≡F ;P for that relation
for the rest of the proof.

t1

P

T <ω
// t3

∗

T <ω∪≡F ;P
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P

t2

t′1
T <ω

// t′′3
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F
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∗

T <ω
// t′2.

F ;P

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

The important direction to show is that
t′ ∈ [[T <ω

/≡F ;P
]](t) implies t′ ∈ [[T <ω]](t) (the reverse

implication is straightforward: Collapsing states
never yields fewer transductions). To show this
implication requires a characterization of the re-
ductions realized by a quotient: Since for any
congruence relation ∼=, T <ω

/∼=
is given by identi-

fying states of T <ω while retaining the reduc-
tion relation of T <ω (modulo the collapsing of
states), the possible reduction steps of T <ω

/∼=
are
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either reduction steps from T <ω or steps replacing a term by a congruent one,
i.e., [t1]∼= //∗

T <ω
/∼=

[t2]∼= iff t1 ( //
T <ω ∪ ∼=)∗ t2. Using this characterization for the

congruence ≡F ;P , the above implication can be phrased as (and generalized, for
sake of induction, to) the following requirement:

If t1( //
T <ω ∪ ≡F ;P )∗ t2, then there exist words t′1 and t′2 such that

t′1 //∗
T <ω t′2, and furthermore t1 ≡F ;P t′1 and t2 ≡F ;P t′2.

This property is shown by induction on the
length of the reduction sequence. Distinguish-
ing in the induction step t1 ≡F ;P t3 and t1 //

T <ω t3, both cases are solved by straightforward
induction, where the second one (cf. the above
diagram) exploits the assumption that ≡F ;P is
swapping.

To see that the result follows from the above implication, use the soundness
observation for the unquotiented transducer, that t′ ∈ [[T <ω]](t) iff t′ ∈ [[T k]](t)
for some k ∈ ω, and specialize t1 resp. t2 to qit̃1 resp. to t̃2qf , where t̃1, t̃2 ∈ Σ∗,
and furthermore qi ∈ Qi and qf ∈ Qf . Note that t̃1 and t̃2 do not contain any
q ∈ Q∗, which means that ≡F ;P specializes to the identity relation. ut

4 An On-the-fly Algorithm for Quotienting T
<ω

To make algorithmic use of the quotienting result, we must be able to effectively
compute (and represent) swapping bisimulation relations on T <ω. In this section,
we show how to obtain these by extrapolating from information established on a
finite approximant T ≤n, and exploiting the structure of T <ω = T 0 ∪ T (T 0) ∪
T (T (T 0)) ∪ . . . . To apply Theorem 4 we must extrapolate two properties: 1)
the (future or past) bisimulation requirement, and 2) the property of swapping.
In order to do the extrapolation, we will view the relations F and P on Q≤n

as rewriting systems on Q∗, indeed a restricted form of ground (i.e., without
variables) rewriting systems on strings. We will draw upon various standard
notions and results from rewrite theory, briefly recalling them as they occur. A
detailed treatment of the field can be found in e.g. [2]. The basic notions can
be illustrated on our running example. The fact that states 1 and 12 are future
bisimilar is rephrased by assuming two rewrite rules, one saying that 1 may be
rewritten into 12, and another saying that 12 may be rewritten into 1. We use

//
F to denote the rewrite relation generated by F , i.e., for s, t ∈ Q∗, we have

s //
F t if s = xuy, t = xvy, and (u, v) ∈ F for some x, y, u, v ∈ Q∗; similarly for

//
P . The relations oo //∗

F and oo //∗
P denote the congruence closures of F and P

over the monoid Q∗ of strings over Q.1

1 As F and P are symmetric, taking the symmetric closure has no effect, but we still
prefer to write oo //

F and oo //
P instead of //

F and //
P in order to stress that they

are symmetric.



8

We first address question 1) from above. As mentionend in Section 2, the
future and past bisimilarity relations are congruences over the monoid Q∗, i.e.,
letting x, x′, y, y′ ∈ Q∗, if x ∼f x′ and y ∼f y′, then xy ∼f x′y′, and similarly for
∼p. Using the congruence property, the following lemma expresses the required
extrapolation of bisimulation relations from a finite approximant to T <ω.

Lemma 5. Let T be a finite-state transducer with states Q and, for some n ≥ 0,
let F and P ⊆ Q≤n ×Q≤n be future and a past bisimulation on T ≤n. Then the
relation oo // ∗

F , resp. oo // ∗
P , is a future, resp. a past, bisimulation on T <ω.

After having thus extended finite bisimulations F and P , question 2) is
whether oo //∗

F and oo //∗
P additionally enjoy the swapping requirement. Now, re-

ducing properties of a many-step rewrite relation to properties of the one-step
relation is a standard topic in rewrite theory. First note that swapping of re-
lations is closely related to the notion of commutation: R and S commute if
(R−1)∗;S∗ ⊆ S∗; (R−1)∗ (note the transitive closures). Now for symmetric re-
lations, clearly R and S commute iff R∗ and S∗ swap. The following lemma
(see e.g. [2]) reduces commutation to the commuting-diamond property : R and
S have the commuting-diamond property if R−1;S ⊆ S;R−1.

Lemma 6. Let F and P be two relations on Q≤n×Q≤n. If oo //
F and oo //

P have
the commuting-diamond property2, then they commute.

Rewrite theory offers a technique that can be used to effectively identify cases
where the (infinite) relations oo //

F and oo //
P have the commuting-diamond prop-

erty. Consider rewrite rules (uF , vF ) and (uP , vP ) from F and P respectively,
such that their left-hand sides overlap, i.e. either xuF = uP y with |x| < |uP |, or
uF = xuP y, for some x, y ∈ Q∗. Then the corresponding critical pair is defined
as (xvF , vP y) in the first case and (vF , xvP y) in the second. Now, in order to
check whether oo //

F and oo //
P have the commuting-diamond property, it suffices

to check, for every such critical pair (cF , cP ), whether there exists z such that
cF P z, and cP F z3. As the rewrite systems F and P are finite, there are also
only finitely many critical pairs to be checked. Note that this technique offers
only a sufficient condition for the commuting-diamond property.

Lemma 5 and Lemma 6 together allow now to apply the quotienting Theo-
rem 4 and do the desired extrapolation.

Corollary 7 (Soundness). Let T be a transducer with states from Q and, for
some n, let F ⊆ Q≤n × Q≤n and P ⊆ Q≤n × Q≤n a future resp. a past bisimu-
lation on T ≤n. If oo //

F and oo //
P strongly commute, then [[T <ω]] = [[T <ω

/oo //∗
P

;
oo //∗

F

]].

To make notation a little less heavy-weight, let for the rest ≡ abbreviate the
congruence relation oo //∗

F ; oo //∗
P .

2 In fact, a weaker property suffices, called strong commutation: R−1; S ⊆ (S ∪

Id); (R−1)∗.
3 There is a similar condition for strong commutation.
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input T = (Q, Q0, Σ, R)
X := Tid ;
repeat

X := (T ◦ X ) ∪ Tid ;
determine b i s imu la t i on s F and P on X s . t .

oo //
F and oo //

P swap and each posse s s the diamond property ;
un t i l X/≡ ∼f (T ◦ X/≡) ∪ Tid

Fig. 3. Calculating T ∗

Let us illustrate the ideas so far on the transducer from Fig. 1. On the
approximant T ≤2

α (i.e. the unions of the transducers in parts (a) and (b) of
Fig. 1), one pair of a future and a past bisimulation (represented as rewrit-
ing systems) is F = {(12, 1), (1, 12), (22, 2), (2, 22)} ∪ Id {0,1,... ,22} and P =
{(00, 0), (0, 00), (01, 1), (1, 01)} ∪ Id{0,1,... ,22}, where IdS denotes the “identity
rewrite system” on S. Indeed, these bisimulations are the largest choices. It can
be easily checked that the corresponding rewrite relations oo //

F and oo //
P have

the commuting-diamond property. For example, the overlapping pair consisting
of state 1 from the rule (1, 12) of F and state 1 from the rule (1, 01) of P opens
a diamond that may be closed again by rewriting both 12 and 01 to 012 (using
the same rules). Now, without actually attempting to fully compute the relation

GFED@ABC[0]≡
α /ε //

¬/¬

�� GFED@ABC[1]≡

succ /¬

��
succ /¬α//

0/ even

��

GFED@ABC[2]≡

succ / succ

��

0/0

��

OO

/.-,()*+�������� /.-,()*+��������
Fig. 2. Transducer T ∗

α

≡, we can already detect several equiva-
lences between states. Most importantly,
the states 1, 01, and 12 belong to the
same equivalence class. Furthermore, we
have 00 ≡ 0 and 22 ≡ 2. Quotienting
T ≤2

α by this equivalence gives the trans-
ducer of Fig. 2, where only the relevant
part is shown. It can be checked that the
construction stabilizes at this point, so we
have arrived at T ∗

α . Note that quotienting
T <ω

α using ∼p or ∼f in isolation does not
give a finite quotient.

The algorithm based on these ideas is sketched in pseudo-code in Fig. 3.
Given a transducer T = (Q,Q0, Σ,R), the until -loop iteratively calculates, in
variable X , the approximations T ≤n. On each approximation, bisimulations F
and P are computed by a partition refinement algorithm [18, 9]. Note that in
the termination condition, the approximant transducer X is quotiented using
the whole equivalence ≡ = oo //∗

F ; oo //∗
P , and not just by those identifications that

happen to be directly detectable on X , as suggested in the example above. The
ability to do so relies again on techniques from rewrite theory. First, it can
be shown that oo //∗

F ; oo //∗
P = ( oo //

F∪ oo //
P )∗ = oo //∗

F∪P . So, the question is when
strings are congruent under the rewrite system F ∪ P . The first answer of rewrite
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theory is: If this system is confluent, i.e., commutes with itself, and terminating,
i.e., allows no infinite sequences of rewrite steps, then strings are congruent
iff they rewrite to the same normal forms. This obviously gives a procedure to
determine congruence. Being a special case of commutation, confluence of F ∪ P
can be checked using Lemma 6, by inspecting critical pairs. In practice, we can
avoid duplicating work by the following standard result.

Lemma 8. If oo //
F and oo //

P commute, then oo //
F ∪ oo //

P is confluent if each of
oo //

F and oo //
P in separation is confluent.

So, if commutation of oo //
F and oo //

P has already been checked when determining
whether oo //∗

F and oo //∗
P swap, then it suffices to check confluence of the individual

relations. In case oo //
F ∪ oo //

P turns out to be not confluent, still not all hope
is lost. The next, more advanced technique offered by rewrite theory is to try
to turn the rewrite system F ∪ P into an equivalent rewrite system that is
confluent, using so-called completion; we refer to [2] for details.

As for checking termination — it is clear that the relations F and P in sepa-
ration are already non-terminating, as they are reflexive and symmetric. But also
in this case, there is the possibility of turning F ∪ P into an equivalent system
that does terminate. Because of the very simple form of this rewriting system
—ground rewriting on strings— it is easy to capture oo //∗

F∪P by a terminating
one: Just order pairs lexicographically and remove the “reflexive” part IdQ≤n . In
our example, the quotienting relation ≡ can in this way be represented by the
four rules {(00, 0), (01, 1), (21, 1), (22, 2)}, where the right-hand side of each rule
is strictly smaller than the corresponding left-hand side in lexicographic order.

A few points concerning the implementation deserve mention. For once, the
naive iteration as sketched in the pseudo-code can be optimized in a number of
ways, especially by reusing information collected from the lower approximants
when treating T ≤n+1. For instance, in case one knows already that (00, 0) are
past bisimilar after investigating the first two levels, as in our example, there is
no need to check (000, 00) for past-bisimilarity at the third (if at all it would be
needed to construct that level). Another, more tricky point is that the search
for bisimulations F and P under the additional requirements of swapping and
confluence, adds an element of non-determinism to the process. Namely, it may
be that bisimulations as they are found do not swap or are not confluent, but that
smaller bisimulations would in fact satisfy these requirements. In such a case we
would have to choose which pairs of states to delete. However, in the examples we
tested, the largest bisimulations ∼f and ∼p, as given by the partition refinement,
always worked.

We tested our implementation on various examples, for instance the one of
Fig. 1 or the token array example of [14]. In all but one case, the transitive
closure was computed in a short time on a standard desktop workstation. In the
remaining case, a ring configuration of the token array, the computation took
too long. We expect that by implementing some additional optimizations (see
below), this and other, larger transducers can be successfully handled.
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5 Conclusions, Related Work, and Future Work

We presented a partial algorithm for computing the transitive closure of regular
word transducers. This algorithm allows to reason about the effect of iterating
transduction relations an unbounded number of times. Such relations are used,
for instance, in regular model checking where they represent the transition re-
lation of an infinite-state system. Given a transducer T , our algorithm is based
on quotienting, w.r.t. the composition of a future and a past bisimulation, the
possibly infinite-state transducer T <ω, the union of all finite compositions of T .
To be able to develop our algorithm, we presented sufficient conditions that al-
low to exploit bisimulations discovered on a finite approximant T ≤n, and hence,
to avoid constructing T <ω. Though our prototype implementation can be im-
proved in several ways, we obtained encouraging results on the examples we have
considered.

In order to compute T ∗(S) for a given regular set S, our results specialize to
automata, allowing to accelerate the computation of T ≤0(S), T ≤1(S), T ≤2(S),
. . . . This problem, where the set of initial configurations is also a parameter of
the algorithm, can be solved in more cases than the general case4.

Closest to our work is [3, 14], which presents an algorithm using standard
subset-construction and minimization techniques from automata theory. Suffi-
cient conditions for termination of the algorithm are identified. Roughly speak-
ing, our algorithm and the one from [3, 14] start from opposite extremes. Our
algorithm starts from T and tries to compute a finite quotient of T <ω. Their
algorithm starts from the initial state of T <ω, which can be represented by the
regular language q∗0 , and tries to compute the states of T <ω performing a for-
ward symbolic reachability analysis (this is the determinization) while relaxing
the condition stating when a state has already been visited. This relaxation
(called saturation in their work) assumes a fixed set of equivalences between
states of T <ω. On the contrary, our algorithm tries to discover such equivalences
dynamically, i.e., during execution. Now, an important assumption in their ap-
proach is that the set of pairs (a,w) ∈ Σ × Σ∗ that occur along the edges of
T <ω is finite and known in advance (or at least a finite super-set must satisfy
these conditions). In case T is a “letter-to-letter” transducer, only pairs from
Σ × Σ may occur in T <ω, and hence, the assumption is satisfied. However, for
non-length-preserving transducers the assumption is in general not satisfied.

Besides the improvements mentioned in Section 4 and implementation im-
provements like using BDDs to represent transducers, we believe that there are
variations of our algorithm that are worth studying. One such variation con-
sists in computing at each iteration of the algorithm the composition of T with
the quotiented transducer obtained upto that iteration. This would reduce the
number of states of the transducers that occur as intermediate results of the
algorithm. A similar idea underlies what is called compositional model-checking,

4 This interesting suggestion was made both by Kedar Namjoshi and an anonynous
referee.
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e.g. [11]. The difficulty in our context lies in the generalization of the computed
bisimulations to T <ω.

We are currently extending our results to the case of tree transducers. Here,
in the general case, one is confronted with negative results from tree transducer
theory, the main one being that regular tree transducers are not closed under
composition. To avoid this problem, we restrict ourselves to linear tree trans-
ducers. A preliminary account, which also provides the full proofs for the word
case, can be found in [6].
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