
Electronic Notes in Theoretical Computer Science 89 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html 12 pages

Comparing Abstraction Refinement
Algorithms

Dennis Dams

Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974.
dennis@research.bell-labs.com

Abstract

We present a generic algorithm that provides a unifying scheme for the comparison
of abstraction refinement algorithms. It is centered around the notion of refine-
ment cue which generalizes counterexamples. It is demonstrated how the essential
features of several refinement algorithms can be captured as instances.

We argue that the generic algorithm does not limit the completeness of in-
stances, and show that the proposed generalization of counterexamples is neces-
sary for completeness — thus addressing a shortcoming of more limited notions of
counterexample-guided refinement.

1 Introduction

In order to use model checking [7] for the analysis of implementations, one
needs to extract models that are small enough to allow for exhaustive explo-
ration yet contain sufficient detail to be able to demonstrate the properties of
interest. Automation of this model extraction process is needed if model check-
ing is to be used more widely in software debugging. One approach to this is
abstraction refinement, which starts with a coarse initial model (abstraction)
of the system, iteratively refining it until it contains sufficient detail. Exam-
ples of this approach can e.g. be found in [13,3,20,10,6,18,1]. Recently, there
have been various proposals to use counterexamples to drive the refinement
process (among others, [2,14]).

Appropriate abstractions of infinite state programs are not computable in
general: it would imply that the program verification problem is decidable (see
e.g. [11]). On the other hand, it has been shown [21,12,17] that for any given
program and (temporal logic) correctness property, there exists an appropriate
finitary abstraction. Hence, there will always exist better (semi-)algorithms 1 .
However, the comparison of proposals is currently difficult, due to the lack
of a “common denominator” of such algorithms and established criteria for

1 We will sometimes use the word algorithm in cases where semi-algorithm is meant.

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume89.html


Dams

comparison. One comparison is carried out in [1], however, the criterion used
in that paper is tailored towards a particular algorithm.

In this paper, we suggest a generic abstraction refinement algorithm that
facilitates reasoning about many concrete instances. Its parameters capture
aspects that are common to such algorithms but that vary in their details. In
particular, we introduce the notion of a refinement cue, that generalizes the
notion of counterexample. Indeed, it allows to frame several algorithms that
are not counterexample-driven. The generic algorithm repeats the following
two steps: (1) the identification of a finite number of refinement cues, followed
by (2) a refinement of the current abstraction based on each of the cues. The
second step is formalized by the notion of a refinement function. These steps
are iterated until the abstraction is sufficiently fine to prove the given property
of interest, or until it is clear that the property does not hold. We illustrate
the generality of this framework by rephrasing the essential aspects of several
proposed algorithms in terms of it.

More than a blueprint of what an abstraction refinement algorithm is,
our generic scheme offers a framework for reasoning about its instances. One
issue is completeness : how often does an algorithm succeed (terminate)? We
argue that the generic algorithm does not limit the completeness of instances,
and show that the proposed generalization of counterexamples is necessary
for completeness — thus addressing a shortcoming of more limited notions of
counterexample-guided refinement.

2 Preliminaries

A program P is a finite automaton over an alphabet A of actions, representing
the program’s control-flow graph. Its states are called (control) locations. An
action a ∈ A represents a program instruction; it is a guarded command
specifying a conditional update of P ’s data state (∈ D), i.e. a is a partial
function from D to D. We assume w.l.o.g. that every action a has a unique
source and destination location in the control-flow graph, and denote these
by srcloc(a) and destloc(a) resp. The semantics of P , denoted ‖P‖, is the
transition system whose states (∈ Σ) are pairs (`, d) of a control location `

and a data valuation d ∈ D, and in which there is a transition from (`, d) to
(`′, d′) iff there is an action a with srcloc(a) = `, destloc(a) = `′, and a(d) = d′;
in such a case we write (`, d)

a
→ (`′, d′). (`, d) is initial in ‖P‖ iff ` is initial

in the control-flow graph P ; we assume there is a unique initial state. The
pre-image operator is defined by prea(S) = {s

′ ∈ Σ | ∃s∈S s′
a
→ s}.

Correctness properties of P are expressed as formulas in some temporal
logic which is interpreted over ‖P‖. We assume that the reader is familiar with
the general concepts of temporal logic in the context of program verification.
Here, we restrict attention to safety properties in a linear-time logic such
as LTL [16]. This ensures that (i) truth of formulas is preserved (from the
more abstract to the more concrete side) under simulation relations, and (ii)

2



Dams

falsehood can be demonstrated by a linear counterexample. The finite set of
atomic propositions over which formulas are built is denoted atoms ; they are
predicates over Σ. We use predicates of the form (@`, p) where ` is a control
location and p a predicate over D; such a predicate is true precisely for those
states (m, d) where m = ` and p(d) is true.

A (predicate) abstraction Abs is a set of such predicates. Abs is called
finitary when it has finite cardinality. Every predicate q partitions Σ into
those states for which q is true and those for which q is false; the partitioning
induced by a set Q ⊆ Abs of predicates is the coarsest that refines each of the
partitionings caused by any single q ∈ Q. In other words, in every class C of
the partitioning, every q ∈ Q is either true for all states in C or false for all
states in C; and for every two different classes, there exists some q ∈ Q that
is (uniformly) true in one class and false in the other. Abs then determines
an abstract transition system (denoted αAbs(‖P‖)) whose abstract states are
the classes of the partitioning induced by Abs , and where there is an abstract
transition between classes C1 and C2 iff there exist s1 ∈ C1 and s2 ∈ C2,
such that in ‖P‖ we have s1

a
→ s2 for some action a; in such a case we write

C1
a
→ C2. Furthermore, the valuation of an atom q in an abstract state C

is defined by C |= q iff ∀s∈C s |= q. A temporal logic formula can then be
evaluated over an abstract transition system.

Depending on the possible shapes of predicates, the questions whether a
predicate holds in an abstract state and whether there is an abstract transi-
tion between two abstract states may be undecidable. We assume that there
are oracles for these questions. Oracles are functions that solve problems that
are typically undecidable. In order to compare abstraction refinement (semi-
)algorithms, we formalize them in a framework in which certain elements are
fixed while others can be varied in a controlled way. If we were to fix un-
decidable subquestions by particular approximation methods, this could blur
the comparison because those methods’ performances might depend on other
parameters which are varying. The use of oracles as “black box subroutines”
avoids this.

A refinement of an abstraction Abs is a superset of Abs , inducing a finer
partitioning of Σ. Such a refinement results in an abstract transition system
that possibly satisfies more correctness properties, and certainly not fewer.
An abstraction refinement algorithm takes a program P and a correctness
property ϕ as input. Being a semi-algorithm, it may not terminate. If it
does terminate, then it returns an abstraction Abs that is fine for ϕ, i.e.
either αAbs(‖P‖) |= ϕ (thus demonstrating, by preservation, that ‖P‖ |= ϕ),
or αAbs(‖P‖) 6|= ϕ while there exists no refinement Abs ′ ⊇ Abs for which
αAbs ′(‖P‖) |= ϕ (which implies that ‖P‖ 6|= ϕ) 2 . Typically, such algorithms
are based on successively refining intermediate abstractions (where the initial
abstraction can be seen as ∅). Thus, a major challenge in designing good

2 Note that we do not pose any requirements on how easy it should be to extract a concrete
counterexample (on the level of ‖P‖) from any counterexample on the level of αAbs(‖P‖).

3



Dams

refinement algorithms is to identify a refinement, given a program P and an
abstraction Abs that is too coarse, i.e. not fine for ϕ.

3 A Generic Abstraction Refinement Algorithm

In many abstraction refinement algorithms that have been proposed in the
literature, the identification of new predicates for abstraction refinement can
be viewed as a two-step process:

(i) Collect information on which to base the computation of new predicates.
A typical example is to construct a counterexample from a failed model
checking run, which will then guide the refinement.

(ii) Compute the new predicates from that information. E.g. this step may
involve computation of pre- or post-images of current predicates, or ap-
plication of widening operators.

We formalize the “information on which to base the computation of new pred-
icates” by the concept of a refinement cue, or cue for short. Being a general-
ization of counterexamples, cues play a central role in our comparison of, and
reasoning about, refinement algorithms. A cue is a regular language over pairs
(a, p) in which a is an action from A and p a predicate. Intuitively, an ele-
ment of a cue, i.e. a word (a1, p1) · · · (an, pn), suggests the computation of new
predicates by viewing the sequences a1 · · · an of actions as predicate trans-
formers and applying them to the pi in some way. For example, in typical
counterexample-guided refinement approaches, every cue consists of a (single)
sequence denoting a counterexample in an abstract transition system. In ap-
proaches that do not depend on counterexamples, cues may be sets of single
pairs (i.e. languages of “one-letter words”); examples will be given in the next
section. Note that a cue can always be finitely represented, e.g. explicitly (enu-
merating the words) if it is a finite language, and by a finite-state automaton
or regular expression otherwise.

Our generic algorithm depends on two functions, whose definitions are the
parameters to the algorithm. One, called a cue selection function and de-
noted selcue, takes a program, a property, and an abstraction, and returns
a refinement cue. The other function is called refinement function, denoted
refine. It takes a refinement cue and returns a set of predicates. Thus, the
refinement function abstracts away from the particular way in which new pred-
icates are computed from a cue. For example, a cue may consist of infinitely
many words. Computing pre-images over the corresponding sequences of ac-
tions might result in an infinite refinement, whence a more “clever” technique
might be used, e.g. based on widening functions. The generic algorithm is
presented in Figure 1.

4



Dams

input: program P , property ϕ;
npreds := ∅; Abs := ∅;
repeat

Abs := Abs ∪ npreds ;
cue := selcue(P, ϕ,Abs);
npreds := refine(cue)

until npreds = ∅;
output: Abs

Fig. 1. Generic Abstraction Refinement Algorithm

3.1 Completeness

Formulating a generic algorithm is a balancing act. On the one hand, it
should fix those elements that are common to all concrete algorithms that it
intends to capture, so that the amount of instantiation needed to obtain each
of those algorithms is minimal — this allows for better comparisons. In the
next section we demonstrate how several abstraction refinement algorithms
from the literature are readily expressed as instances of our generic algorithm.

On the other hand it should not fix too much or it might exclude too many
algorithms. The following observation pleads for the genericness of our algo-
rithm by showing that it poses no limitations on the “degree of completeness”
of its instantiations. An abstraction refinement algorithm is said to succeed
on an input (of a program and a formula) if it terminates on that input; oth-
erwise it fails. We call algorithm A1 more complete 3 than A2 if, for every
input on which A2 succeeds, A1 succeeds as well. An abstraction refinement
algorithm is complete if it succeeds on every input. Clearly, if selcue and
refine are required to be computable functions, then the generic algorithm
has no complete instances. However, if we are allowed to utilize oracles in
defining these functions, then a complete 4 instance exists. The reason is that
the statement of the verification problem, P |= ϕ, can be encoded in terms of
a refinement cue. This is done by rephrasing this statement as the emptiness
problem of the program obtained as the synchronous product P × T¬ϕ where
T¬ϕ is the tableau automaton for ¬ϕ [15,9]. As ϕ is a safety property, this
product is a finite-state automaton, representing a regular language L. Its
alphabet consists of actions from P combined with atoms from ϕ. We let
selcue(P, ϕ,Abs) be the refinement cue L, hence this cue contains all the in-
formation needed to determine whether P |= ϕ. Now suppose that we have an
oracle that can tell us whether P |= ϕ. The function refine, when applied to
L, first calls this oracle. If the oracle responds that P 6|= ϕ, then refine returns
any abstraction (e.g. ∅), since it is certain that no abstraction Abs exists such

3 Note that the word “more” is to be interpreted as “greater than or equal”.
4 Of course, completeness is relative to the unavoidable “Gödelian” incompleteness of the
assertion language used to express predicates.

5



Dams

that αAbs(‖P‖) |= ϕ (because that would imply P |= ϕ by preservation). If
the oracle says that P |= ϕ, then refine uses another oracle, namely one that
gives the proper invariant needed to demonstrate emptiness of the semantics
‖P ×T¬ϕ‖ of the product automaton. Note that ‖P ×T¬ϕ‖ may be an infinite
transition system and constructing the invariant is undecidable in general.
That such an oracle nevertheless exists follows from the completeness results
about finitary abstractions in [21,12]. Note that selcue is in fact computable
— all “oracle power” goes into refine, and the oracles are so powerful that no
iteration is needed in this case.

This argument sets our proposal apart from the oracle-guided widening
method of [1]. The purpose of that paper is to show that a particular real
(implementable) algorithm is equally complete as their oracle-guided widening
method. Being tailored towards that algorithm, the widening method is not
general enough to capture other abstraction refinement algorithms. As ob-
served in [19], that particular widening method would have to be generalized
and made into a parameter of the method.

4 Comparing Abstraction Refinement Algorithms

Oracles are useful in reasoning about algorithms that attempt to solve un-
decidable problems. When it comes to implementing abstraction refinement
algorithms, we must do without them however. In practice, the power of or-
acles is usually substituted by an iterative approach in which heuristics are
used to find ever better abstractions. In this section we rephrase some such
real algorithms as instances of our framework.

Throughout the sequel, we assume that selcue(P, ϕ,Abs) always first per-
forms a verification (e.g. a model checking run) in order to determine whether
αAbs(‖P‖) |= ϕ. If so, it returns the empty cue, causing the algorithm to ter-
minate (we assume that refine(∅) = ∅). Otherwise, it calls another function
(with the same arguments), selcue1. Different possibilities for this function
are considered below. The refinement functions are given by specifying their
effect on a single word; the effect on a set of such words is then obtained by
a standard lifting to sets.

Recall that atoms is the finite set of atomic propositions of the temporal
logic. atoms(P ) denotes the set of atoms that occur in the guards or the initial
condition of P , atoms(ϕ) the atoms that occur in ϕ. actions(P ) denotes the
set of actions that occur in program P .

4.1 Non-guided refinement

The first abstraction refinement algorithm that we consider, from [18], is “non-
guided”: the selection of cues is not based on a counterexample produced by
a model checking run. Cues are formed by taking all pairs of a single action
from the program with a predicate from the current abstraction. The programs

6



Dams

considered in [18] are assumed to have a single control location `0, so all control
flow needs to be encoded in variables.

selcue1(P, ϕ,Abs) =
{

{(a, (@`0, p)) | a ∈ actions(P ), p ∈ atoms(P ) ∪ atoms(ϕ)} if Abs = ∅

{(a, q) | a ∈ actions(P ), q ∈ Abs} otherwise

Predicates are quantifier-free formulas from a first-order logic. The refinement
function computes the syntactic weakest precondition relative to an action a.
This is done by performing substitution, possibly followed by quantifier elimi-
nation and other rewriting steps; we denote this process by swlpa. The atoms
that occur in the resulting formula are then used to refine the abstraction.

refine((a, (@`0, p))) = {(@`0, p
′) | p′ ∈ atoms(swlpa(p))}

In [18], this strategy is shown to be complete for the class of inputs P , ϕ

in which P has a finite reachable bisimulation quotient (w.r.t. atoms(ϕ) ∪
atoms(P )), and P |= ϕ.

If the control flow can be made more explicit in the form of a non-trivial
control-flow graph, then its structure can be used to limit the set of cues,
by tying predicates more closely to control locations. Function selcue1 would
be as above but it would limit the set of cues (a, (@`, p)) it returns to those
for which destloc(a) = `. This approach is taken in [4]. Similar non-guided
abstraction refinement algorithms have been presented (in the context of finite-
state programs) in [3,5].

4.2 Counterexample-guided refinement

In counterexample-guided approaches, counterexamples that are produced by
the model checking runs are used as cues for refinement. A counterexample is
a sequence C0, a1, C1, . . . , Cn−1, an, Cn of abstract states Ci (these are equiva-
lence classes of concrete states) and actions ai of P such that C0 is the initial

abstract state, Ci

ai+1
−→ Ci+1 for all i, and ϕ is not satisfied along the path

C0, C1, . . . , Cn. Given an abstract transition system S for P , let mc(S, ϕ) be a
model checking procedure that returns the empty set if S |= ϕ and a singleton
with a counterexample otherwise.

selcue1(P, ϕ,Abs) = {(a1, (@destloc(a1), C1)) · · · (an, (@destloc(an), Cn)) |

C0, a1, C1, . . . , Cn−1, an, Cn ∈ mc(αAbs(‖P‖), ϕ)}

Refinement triggered by such a cue seeks to weed out the counterexample by
splitting one of its states. One example is the following inductive definition of
refine, which captures the essence of the algorithm CouAnal in [14] (ε denotes
the empty sequence of pairs, s · p the sequence s with pair p appended at its
end, and s− the sequence s with its last pair removed):

7



Dams

refine(ε) = ∅

refine(s · (ai, (@destloc(ai), C))) = (when i ≥ 1)
{

(@destloc(ai), C) if Ci−1 ∩ preai
(C) = ∅

refine(s− · (ai−1, (@destloc(ai−1), Ci−1 ∩ preai
(C)))) otherwise

Note that this functions performs a backwards computation along the coun-
terexample, using pre-image operators. The algorithm SplitPATH from [2]
performs a similar refinement in the forward direction.

4.3 Considering loops in counterexamples

The refinement algorithm above could be called single-counterexample-guided,
as it refines w.r.t. one counterexample at a time, introducing a predicate that
weeds out the counterexample. If a counterexample corresponds to a loop in
the program, then it may be that the next counterexample found is similar
to the one that just has been removed, corresponding to a path that takes
one more iteration through the loop. In such a case, a single-counterexample-
guided algorithm could go on forever, removing one by one the infinitely many
counterexamples that are generated by the loop in the control-flow graph. This
phenomenon is addressed in [14]. Before discussing the solution proposed, we
repeat the example of [14]. Consider the (infinite state) program depicted in

(c)

c

x := 1;

x ++

x = y

(b)(a)

x = 0

x := y;
z := 0

y := 0

z := 1

x := y

z = 0 → y ++;

a

d

y := 1;

b

`0

`1

`2

`0

`1

`2`2

`0

`1

Fig. 2. Counterexamples with loops

Figure 2(a), and suppose we want to check the property that location `2 is not
reachable. The single-counterexample-guided algorithm described above will
introduce the predicates x = y, x = y − 1, x = y − 2, . . . at `1 (we omit the
details), aimed at weeding out the different counterexamples that correspond
to successive unfoldings of the loop. Clearly, this approach will not succeed
in establishing the property.

Note that a non-guided algorithm might “accidentally” find a predicate
that does help to establish the property, as the result of considering some
other precondition. For example, if we add another location, `3, to the pro-
gram, and an edge from `1 to `3 with action x ≤ y, then x ≤ y would be
found as a predicate of interest at `1; at the same time, it would rule out all
counterexamples around the loop, in “one fell swoop”. This shows that the
single-counterexample-guided algorithm cannot be more complete than the
non-guided algorithm.

8



Dams

In [14], a step towards more complete algorithms is made by considering
all counterexamples around the loop at once, and using an acceleration of the
precondition calculations along it. When a segment L of the counterexample
corresponds to a loop, then the union is computed of all iterated pre-image
sets along L (“pre∗L”) as part of the refinement. Even in cases where single
pre-image sets are computable, such an acceleration function may be unde-
cidable as it may involve infinitely many pre-image computations — it is like
constructing a loop invariant. In other words, an oracle is needed, or, for prac-
tical purposes, an approximation method. The resulting algorithm is called
AccCouAnal. A similar approach is proposed in [2], but since it considers
finite state programs, no acceleration is needed.

4.4 A shortcoming

The approaches to abstraction refinement discussed above propose several no-
tions of refinement cue (using single actions, single counterexamples, multiple
counterexamples caused by loops), in an attempt to arrive at more complete
refinement algorithms. Each of the selcue functions discussed above is com-
putable (up to the computation of abstract transitions that is needed in model
checking — for this we assume that an oracle is available, see Section 2).
The refine functions are not, and when viewing them as oracles, we see that
stronger oracles are needed as we move towards more sophisticated notions of
refinement cue.

Let’s assume that we have an oracle that meets the demands of algorithm
AccCouAnal of [14], i.e. it can essentially compute pre-images over loops. Is
the resulting algorithm complete? The answer is no. On an intuitive level,
the explanation is that although all unfoldings of all loops in the counterex-
ample are considered (and this can be done, as noted in [14], for all possible
partitionings of the counterexample into loops), the interaction among dif-
ferent loops is not considered. In other words, only a collection of loops is
considered where in fact one would need to reason about a strongly connected
component. As an example, consider the program of Figure 2(b), where a, b,
c, and d are actions. Suppose that during the course of abstraction refinement
the counterexample abd occurs. Since b sits on a loop, a refinement would
be computed based on all of the counterexamples in ab∗d. Using this refine-
ment, we might find as the next counterexample abcbd. Taking into account
all different partitionings into loops, a refinement would be computed weeding
out all counterexamples of any one of the forms ab∗c∗b∗d, a(bc)∗b∗d, ab∗(cb)∗d,
and a(bcb)∗d. Continuing with the refinement thus found, the next counterex-
ample might be abbcbbcbbd, which is not included in any of the above forms.
Indeed, if we continue to remove sequences according to this scheme, there
will always remain sequences that have not been considered. What is missing
is a refinement based on a(b∗c∗)∗d.

A more concrete example is the program in Figure 2(c), with the property

9



Dams

of interest being unreachability of `2.

5 Discussion

The observations above are a strong indication that the generalization that is
suggested by the concept of refinement cues is essential if we are not to limit
the “degree of completeness” in the search for better refinement algorithms.
The discussion in the previous section showed that, regardless of the power
of the oracle-based refinement function used, even dealing with multiple loop-
generated counterexamples at the same time may not result in a complete
algorithm. In refinement cues, these notions are generalized to regular lan-
guages. The observation, in Section 3, that a complete algorithm exists within
the framework of our generic algorithm, implies that this generalization suf-
fices. It suggests novel approaches to refinement, guided by counterexample
automata. A counterexample automaton is a representation of all counterex-
amples to a property. For example, a refinement function taking a cue consist-
ing of such an automaton could compute iterated weakest preconditions over
the structure of the automaton, identifying new relevant predicates associated
with the automaton’s locations (which correspond to program locations).

An interesting question is whether such a counterexample automaton can
be decomposed into (finitely many) smaller automata so as to allow for a
modular approach. In a way, counterexample automata can be viewed as
mini-programs that are “error slices”. The smaller they can be, the easier
it will be for a human user to understand the cause of the counterexamples.
In the end, such interaction remains necessary as the general problem we are
dealing with is undecidable. One option for decomposing the task is to consider
the counterexample automaton for one error at a time. An error could be
defined as a final (accepting) state of the product of the program’s abstracted
state-transition system (relative to some current abstraction) with the tableau
automaton of the negated property. The counterexample automaton for one
such error would then be the sub-automaton of this product consisting of all
reachable states from which the error can be reached.

Abstraction refinement for liveness

Taking automata as counterexamples also provides the right starting point
for considering abstraction refinement in the context of liveness properties.
Counterexamples to liveness properties are by definition infinite sequences,
and, when these are generated by a finite abstraction, then they must involve
loops. Such a refinement will necessarily involve the identification of additional
ranking functions, as opposed to additional predicates for the case of safety
properties.

10



Dams

Acknowledgement

Kedar Namjoshi and the anonymous referees are thanked for their suggestions.

References

[1] Ball, T., A. Podelski and S. K. Rajamani, Relative completeness of abstraction
refinement for software model checking, in: Katoen and Stevens, editors, Tools
and Algorithms for the Construction and Analysis of Systems: 8th International
Conference, LNCS 2280 (2002), pp. 158–172.

[2] Clarke, E., O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample-guided
abstraction refinement, in: Emerson and Sistla [8], pp. 154–169.

[3] Dams, D., R. Gerth and O. Grumberg, Generation of reduced models for
checking fragments of CTL, in: C. Courcoubetis, editor, Computer Aided
Verification, number 697 in LNCS (1993), pp. 479–490.

[4] Dams, D. and K. S. Namjoshi, Shape analysis through predicate abstraction and
model checking, in: Verification, Model Checking, and Abstract Interpretation
(VMCAI), number 2575 in LNCS (2003), pp. 310–323.

[5] Dams, D. R., “Abstract Interpretation and Partition Refinement for Model
Checking,” Ph.D. thesis, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands (1996).

[6] Das, S., D. L. Dill and S. Park, Experience with predicate abstraction, in:
Computer Aided Verification, 1999, pp. 160–171.

[7] E.M. Clarke, J., O. Grumberg and D. Peled, “Model Checking,” MIT Press,
2000.

[8] Emerson, E. A. and A. P. Sistla, editors, “Computer Aided Verification,”
Springer, Berlin, 2000.

[9] Gerth, R., D. Peled, M. Y. Vardi and P. Wolper, Simple on-the-fly automatic
verification of linear temporal logic, in: Protocol Specification Testing and
Verification (1995), pp. 3–18.

[10] Graf, S. and H. Saidi, Construction of abstract state graphs with PVS, in:
O. Grumberg, editor, Computer Aided Verification, number 1254 in LNCS
(1997), pp. 72–83.

[11] Henzinger, T., R. Jhala, R. Majumdar and G. Sutre, Lazy abstraction, in:
POPL, 2002, pp. 58–70.

[12] Kesten, Y. and A. Pnueli, Verification by augmented finitary abstraction,
Information and Computation 163 (2000), pp. 203–243.

[13] Kurshan, R. P., “Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach,” Princeton Series in Computer Science,
Princeton University Press, Princeton, NJ, 1994.

11



Dams

[14] Lakhnech, Y., S. Bensalem, S. Berezin and S. Owre, Incremental verification
by abstraction, in: T. Margaria and W. Yi, editors, Tools and Algorithms for
the Construction and Analysis of Systems: 7th International Conference, LNCS
2031 (2001), pp. 98–112.

[15] Lichtenstein, O. and A. Pnueli, Checking that finite state concurrent programs
satisfy their linear specification, in: Twelfth Annual ACM Symposium on
Principles of Programming Languages, ACM SIGACT/SIGPLAN, 1985, pp.
97–107.

[16] Manna, Z. and A. Pnueli, “The Temporal Logic of Reactive and Concurrent
Systems: Specification,” Springer-Verlag, New York, 1992.

[17] Namjoshi, K., Abstraction for branching time properties, in: W. A. Hunt and
F. Somenzi, editors, Computer Aided Verification, number 2725 in LNCS (2003),
pp. 288–300.

[18] Namjoshi, K. S. and R. P. Kurshan, Syntactic program transformations for
automatic abstraction, in: Emerson and Sistla [8], pp. 435–449.

[19] Podelski, A., Software model checking with abstraction refinement (2002),
invited talk at the Fourth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI).

[20] Sipma, H. B., T. E. Uribe and Z. Manna, Deductive model checking, in:
R. Alur and T. A. Henzinger, editors, Proceedings of the Eighth International
Conference on Computer Aided Verification, number 1102 in LNCS (1996), pp.
208–219.

[21] Uribe, T., “Abstraction-based Deductive-Algorithmic Verification of Reactive
Systems,” Ph.D. thesis, Computer Science Department, Stanford University
(1998), technical report STAN-CS-TR-99-1618.

12


	Introduction
	Preliminaries
	A Generic Abstraction Refinement Algorithm
	Completeness

	Comparing Abstraction Refinement Algorithms
	Non-guided refinement
	Counterexample-guided refinement
	Considering loops in counterexamples
	A shortcoming

	Discussion
	Acknowledgement 
	References

