
Abstraction in Software Model Checking:
Principles and Practice

(Tutorial overview and bibliography)

Dennis Dams

Bell Labs, Lucent Technologies, 600 Mountain Ave, Murray Hill, NJ 07974, USA.
dennis@research.bell-labs.com

Abstract. This paper provides a brief description, including a bibliography, of
the SPIN2002 tutorial on abstraction in model checking of software.

1 Introduction

The tutorial assumes familiarity with the principles of model checking ([CGP99]),
which is an approach to the formal verification of temporal correctness properties of
finite state systems. The starting point of a model checker is a verification model: a
formal system description, calledabstract systemhenceforth, having a state space that
is small enough to render model checking feasible. The goal is to establish correctness
of the original system being modelled. When a (more detailed) formal description is
also available for thisconcrete system, one can try and formalize the relation between
these systems, possibly with the aim of offering automated support for the abstraction
process. In the context of model checking, the termabstractionrefers to methodol-
ogy, theory, techniques, and tools that deal with the relation between formalized system
descriptions at different levels of detail.

Abstraction methodologies are concerned with theprocessof abstraction: Given a
concrete system and a property to be checked, how to get to a suitable abstract system?
This process typically involves a form of trial-and-error, and depends on rules-of-thumb
and ingenuity. Abstraction theory focuses on formalizing the relation between the se-
mantic models of concrete and abstract systems. A prime requirement of such a relation
is that it ensurespreservationof correctness properties: A property checked to be true
for the abstract system should also hold for the concrete system being modelled. By
abstraction techniques we mean the methods that can be employed to construct abstract
systems from concrete ones. These range from slicing and variable hiding to more gen-
eral, less algorithmic approaches like program transformation based on abstract inter-
pretation, which may require human interaction. There exist several software tools that
implement such abstraction techniques. At its front end such a tool offers what is essen-
tially a programming language in which a system description may be entered. The core
of the tool consists of a collection of components that implement techniques, some-
times several alternative ones, for abstraction. Also, methodological guidelines may be
provided aiding in the selection of a sequence of abstraction steps. At the back end, a
verification model is then produced in a form that is accepted by a model checker.



As abstraction is a very broad field, we cannot discuss all relevant approaches. Tech-
niques that can be viewed as instances of abstraction but that will not be further touched
upon here include data-independence, (de)compositionality, parameterization, partial
order reduction, real time verification, and symmetry techniques. The focus will be
mostly on model checking of software source code — as a consequence BBD-based
approaches to abstraction will receive less attention.

Much of the tutorial is based on [Dam96].

2 Methodology

There is relatively little research into the methodological aspects of combining model
checking and abstraction. Generally, the process follows the cycle that occurs in all
approaches to software validation. For the case of model checking the steps are sum-
marized in [CGP99], p. 4: modeling, specification, verification. If the last of these steps
fails, then inspection of the counterexample will indicate an error in the system, in the
model, or in the specification, leading to a repetition of the steps.

For an approach that combines model checking with formal abstraction, an instance
of this cycle is commonly proposed. In this setting, the model can be viewed as the
result of applying an abstraction to the concrete system, and thus the triple (system,
model, specification) may be replaced by (system, abstraction, specification). A nega-
tive answer produced by running a model checker on this may indicate an error in any
of the three ingredients. The termfalse negativerefers to the case that the abstraction is
too coarse — inspection of the counterexample may then suggest a way to refine it.

More or less explicit descriptions of methodologies are found in [BH99, BR01,
DHJ+01, Hol01, HS02, LBBO01, WC99], often embedded in reports on case studies,
or in descriptions of verification tools by which they are supported. A paper discussing
methodological issues in formal methods at a more general level is [Hei98].

3 Theory

Because of its strong roots in the formal methods community, there is a large body of
theory on abstraction. Here we focus on papers that provide the common theoretical
underpinnings. Papers that provide the foundations for specific techniques and tools
may be found through references given in the sections below.

State-transition systemsare commonly used as the formal semantics on both the
concrete and abstract sides. Results on property-preserving relations between these
draw on the theory of formal languages and automata ([HU79]), in particular on results
about homomorphisms and language inclusion ([Gin68]), minimization and partition
refinement ([BFH+92, GV90, Hop71, KS90, PT87]), and on extensions of automata
to infinite words ([Buc60]). The topic of comparative semantics has also been exten-
sively studied in the context of process algebra ([BW90]), see e.g. [DN87, vG90]. In
particular the notion ofbisimulation([Par81]), weaker equivalences and pre-orders re-
lated to it ([GW89, Mil71, Mil80]), and their connection to modal and temporal logic
([ASB+94, BCG88, BFG+91, BR83, Cho95, DNV90, GKP92, GS84, HM80, Kur94,
Sti89, vBvES94]) are relevant.



The partition refinement algorithms mentioned above may be used in aquotient
constructionthat produces a minimal transition system that is equivalent to the original
system under some notion of behavioural (bisimulation-like) equivalence. The starting
point for model checking under abstraction is usually a more drastically reduced system
which is related to the concrete system through a behavioural pre-order like simulation
([CGL94]). The satisfaction of (temporal) logic formulas over these abstract systems is
usually non-standard: properties may evaluate to “unknown” as a result of abstracting
away certain information. A similar notion of incomplete information is common in the
related area of program analysis and Abstract Interpretation ([CC77, NNH99]). Rea-
soning with it in terms of modal and temporal logic, in the context of model checking,
is a topic that is receiving considerable attention: [BG99, CDE+01, DGG00a, HJS01].
An overview of many-valued modal logics is given in [Fit91, Fit92].

In a general framework for abstracting transition systems that accommodates for
the preservation of universal as well as existential temporal properties, not only the
evaluation of atomic propositions in states, but also the treatment of transitions between
states becomes non-standard. Notions of abstract transition systems that feature two
different, dual transition relations are presented in [CIY94, DGG94, GHJ01, Kel95],
and the approach in [LGS+95] uses two separate transition systems — intuitively, one
representing an over- and the other an under-approximation.Modal transition systems
([LT88]) also combine two transition relations (“may” and “must”) but there they are
not strictly dual.

An orthogonal duality is formed by the distinction betweeninvarianceandprogress
properties. Although both are preserved in most of the frameworks mentioned above,
abstraction tends to introduce more false counterexamples to progress than to safety
properties. In terms of Floyd-Hoare style correctness proofs, abstractions tend to be
more like invariants than ranking functions. This problem is addressed in [BLS00,
CS01, DGG00b].

The question whether a finite abstraction that is suitable for model checking any
given temporal property always exists, is answered positively in [KPV99].

4 Techniques/Algorithms

Abstraction techniques are the methods or algorithms that can be employed to construct
abstract systems from concrete ones. One approach consist in having the user choose
abstract interpretations, given a concrete system and a property to be verified. These
are replacements of data types with smaller-sized types that only reflect certain aspects
of the original values; operations on these types will then have to be lifted correspond-
ingly. Such abstracted data types may already exists, e.g. in the form of a library, or
they may be newly constructed ([DHJ+01, dMGM99]). In the latter case,safetyof the
abstractions may have to be proven ([SBLS99]).

More ambitious are the attempts to automatically derive suitable abstractions, e.g.
[ASSSV94, BLO98, CU98, DGG93, GS97, NK00, RS99]. The technique proposed
in [GS97] is now known aspredicate abstractionand has inspired many case studies,
tools, and approaches to abstraction refinement, see e.g. [AKN02, BHPV00, BMMR01,
BPR, CGJ+00, DDP99, GQ01].



On the other hand there are several techniques that are less general but fully au-
tomatic, like slicing ([HDZ00]), variable hiding ([BH99, DHH02]), and localization
reduction ([Kur94]).

5 Tools

Some tools that combine model checking with abstraction and the URLs at which they
can be found are:

αSpin: http://polaris.lcc.uma.es/˜ gisum/fmse/tools/
Bandera: http://www.cis.ksu.edu/santos/bandera/
SLAM : http://www.research.microsoft.com/projects/slam/
FeaVer: http://cm.bell-labs.com/cm/cs/what/feaver/
InVeSt: http://www-verimag.imag.fr/̃async/INVEST/
JPF: http://ase.arc.nasa.gov/visser/jpf/
STeP: http://www-step.stanford.edu/

References

[AKN02] Nina Amla, Robert P. Kurshan, and Kedar S. Namjoshi. AutoAbs: Syntax-directed
program abstraction, 2002. Submitted.

[ASB+94] Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Equivalences for fair Kripke structures. In Serge Abite-
boul and Eli Shamir, editors,Automata, Languages and Programming, number 820
in LNCS, pages 364–375, Springer-Verlag, Berlin, 1994.

[ASSSV94] Adnan Aziz, Thomas R. Shiple, Vigyan Singhal, and Alberto L. Sangiovanni-
Vincentelli. Formula-dependent equivalence for compositional CTL model check-
ing. In David L. Dill, editor,Computer Aided Verification, number 818 in LNCS,
pages 324–337, Springer-Verlag, Berlin, 1994.

[BCG88] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke struc-
tures in propositional temporal logic.Journal of Theoretical Computer Science,
59:115–131, 1988.

[BFG+91] A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for
branching time semantics. In J. Leach Albert, B. Monien, and M. Rodrı́guez Ar-
talejo, editors,Automata, Languages and Programming, number 510 in LNCS,
pages 76–92, Springer-Verlag, New York, 1991.

[BFH+92] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal
state graph generation.Science of Computer Programming, 18:247–269, 1992.

[BG99] Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with 3-
valued temporal logics. In Halbwachs and Peled [HP99], pages 274–287.

[BH99] Ramesh Bharadwaj and Constance L. Heitmeyer. Model checking complete re-
quirements specifications using abstraction.Automated Software Engineering: An
International Journal, 6(1):37–68, January 1999.

[BHPV00] G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. InIEEE
International Conference on Automated Software Engineering (ASE), 2000.

[BLO98] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of
infinite state systems compositionally and automatically. In Hu and Vardi [HV98],
pages 319–331.



[BLS00] Kai Baukus, Yassine Lakhnech, and Karsten Stahl. Verifying universal properties
of parameterized networks. In M. Joseph, editor,Proceedings of the Sixth Interna-
tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
FTRTFT2000, number 1926 in LNCS, pages 291–303, Springer, Berlin, 2000.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Au-
tomatic predicate abstraction of C programs.SIGPLAN Notices, 36(5):203–213,
2001.

[BPR] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative completeness of
abstraction refinement for software model checking. To appear in TACAS 2002.

[BR83] Stephen D. Brookes and William C. Rounds. Behavioural equivalence relations
induced by programming logics. In J. Diaz, editor,Automata, Languages and Pro-
gramming, number 154 in LNCS, pages 97–108, Springer-Verlag, Berlin, 1983.

[BR01] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety
properties of interfaces. In Matthew Dwyer, editor,Model Checking Software, num-
ber 2057 in LNCS, pages 103–122, Springer, Berlin, 2001.

[Buc60] J. Buchi. Weak second-order arithmetic and finite automata.Zeitschrift fur Mathe-
matische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[BW90] J.C.M. Baeten and W.P. Weijland.Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge,
1990.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. InProc. 4th
ACM Symp. on Principles of Programming Languages, pages 238–252, Los Ange-
les, California, 1977.

[CDE+01] Marsha Chechik, Benet Devereux, Steve Easterbrook, Albert Y. C. Lai, and Victor
Petrovykh. Efficient multiple-valued model-checking using lattice representations.
In K. G. Larsen and M. Nielsen, editors,International Conference on Concurrency
Theory, number 2154 in LNCS, pages 441–455, Springer, Berlin, 2001.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Emerson and Sistla [ES00],
pages 154–169.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, Septem-
ber 1994.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking. The
MIT Press, Cambridge, Mass., 1999.

[Cho95] Ching-Tsun Chou. A simple treatment of property preservation via simulation.
Technical Report 950014, Comp. Sc. Dept., University of California at Los Angeles,
March 1995.

[CIY94] R. Cleaveland, S. P. Iyer, and D. Yankelevich. Abstractions for preserving all CTL∗

formulae. Technical Report 94-03, Dept. of Comp. Sc., North Carolina State Uni-
versity, Raleigh, NC 27695, April 1994.

[CS01] Michael Colon and Henny Sipma. Synthesis of linear ranking functions. In Mar-
garia and Yi [MY01], pages 67–81.

[CU98] Michael Colon and Tomas E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Hu and Vardi [HV98], pages 293–304.

[Dam96] Dennis Reńe Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, July 1996.

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate abstrac-
tion. In Halbwachs and Peled [HP99], pages 160–171.



[DGG93] Dennis Dams, Rob Gerth, and Orna Grumberg. Generation of reduced models for
checking fragments of CTL. In Costas Courcoubetis, editor,Computer Aided Veri-
fication, number 697 in LNCS, pages 479–490, Springer-Verlag, Berlin, 1993.

[DGG94] Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of reactive
systems: Abstractions preserving∀CTL∗, ∃CTL∗ and CTL∗. In E.-R. Olderog,
editor,Proceedings of the IFIP WG2.1/WG2.2/WG2.3 Working Conference on Pro-
gramming Concepts, Methods and Calculi (PROCOMET), IFIP Transactions, Am-
sterdam, June 1994. North-Holland/Elsevier.

[DGG00a] Dennis Dams, Rob Gerth, and Orna Grumberg. Fair model checking of abstrac-
tions (extended abstract). In Michael Leuschel, Andreas Podelski, C.R. Ramakr-
ishnan, and Ulrich Ultes-Nitsche, editors,Proceedings of the Workshop on Verifica-
tion and Computational Logic (VCL’2000), number DSSE-TR-2000-6, University
of Southampton, July 2000.

[DGG00b] Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for the automatic gen-
eration of ranking functions. In Ganesh Gopalakrishnan, editor,Workshop on Ad-
vances in Verification (WAVe’00), pages 1–8, School of Computing, university of
Utah, July 2000.

[DGLM99] Dennis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, editors.Theoretical
and Practical Aspects of SPIN Model Checking, number 1680 in LNCS, Springer,
Berlin, 1999.

[DHH02] Dennis Dams, William Hesse, and Gerard Holzmann. Abstracting C with abC,
2002. Submitted.

[DHJ+01] Matthew Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina Pasareanu,
Robby, Willem Visser, and Hongjun Zheng. Tool-supported program abstraction
for finite-state verification. InProceedings of the 23rd International Conference
on Software Engineering, Toronto, Canada, May 12-19 2001. ICSE 2001, IEEE
Computer Society.

[dMGM99] Maria del Mar Gallardo and Pedro Merino. A framework for automatic construction
of abstract promela models. In Dams et al. [DGLM99], pages 184–199.

[DN87] Rocco De Nicola. Extensional equivalences for transition systems.Acta Informat-
ica, 24:211–237, 1987.

[DNV90] Rocco De Nicola and Frits Vaandrager. Three logics for branching bisimulation. In
1990 IEEE Fifth Annual Symposium on Logic in Computer Science, pages 118–129,
Los Alamitos, CA, 1990. IEEE Computer Society Press.

[ES00] E. Allen Emerson and A. Prasad Sistla, editors.Computer Aided Verification, num-
ber 1855 in LNCS, Springer, Berlin, 2000.

[Fit91] Melvin Fitting. Many-valued modal logics.Fundamenta Informaticae, 15(3–
4):335–3, 1991.

[Fit92] Melvin C. Fitting. Many-valued modal logics II. In A. Nerode and M. Taitslin,
editors,Proc. LFCS’92, number 620 in LNCS. Springer-Verlag, 1992.

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based model
checking using modal transition systems. In K. G. Larsen and M. Nielsen, editors,
International Conference on Concurrency Theory, number 2154 in LNCS, pages
426–440, Springer, Berlin, 2001.

[Gin68] A. Ginzburg. Algebraic Theory of Automata. ACM Monograph Series. Academic
Press, New York/London, 1968.

[GKP92] Ursula Goltz, Ruurd Kuiper, and Wojciech Penczek. Propositional temporal logics
and equivalences. In W.R. Cleaveland, editor,CONCUR ’92, number 630 in LNCS,
pages 222–236, Springer-Verlag, Berlin, 1992.



[GQ01] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements
in abstract model-checking. In P. Cousot, editor,Proc. of The 8th International
Static Analysis Symposium, SAS’01, volume 2126 ofLecture Notes in Computer
Science, pages 356–373. Springer-Verlag, 2001.

[GS84] S. Graf and J. Sifakis. A modal characterization of observational congruence on
finite terms of CCS. In Jan Paredaens, editor,Proc. of the Eleventh International
Colloquium on Automata Languages and Programming (ICALP), number 172 in
LNCS, pages 222–234, Springer-Verlag, Berlin, 1984.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor,Computer Aided Verification, number 1254 in LNCS, pages 72–
83, Springer, Berlin, 1997.

[GV90] Jan Friso Groote and Frits Vaandrager. An efficient algorithm for branching bisim-
ulation and stuttering equivalence. In M. S. Paterson, editor,Automata, Languages
and Programming, number 443 in LNCS, pages 626–638, Springer-Verlag, New
York, 1990.

[GW89] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimu-
lation semantics (extended abstract). In G. X. Ritter, editor,Information Processing
89, pages 613–618, Amsterdam, 1989. North-Holland.

[HDZ00] John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing software for model
construction.Higher-Order and Symbolic Computation, 13(4):315–353, 2000.

[Hei98] Constance L. Heitmeyer. On the need for practical formal methods. In A.P. Ravn
and H. Rischel, editors,Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, number 1486 in LNCS, pages 18–26, Springer, Berlin, 1998.

[HJS01] Michael Huth, Radha Jagadeesan, and David A. Schmidt. Modal transition systems:
A foundation for three-valued program analysis. In D. Sands, editor,Programming
Languages and Systems, number 2028 in LNCS, pages 155–169, Springer, Berlin,
2001.

[HM80] Matthew Hennessy and Robin Milner. On observing nondeterminism and concur-
rency. In J.W. de Bakker and J. van Leeuwen, editors,Proc. of the Seventh Interna-
tional Colloquium on Automata Languages and Programming (ICALP), number 85
in LNCS, pages 299–309, Springer-Verlag, Berlin, 1980.

[Hol01] G.J. Holzmann. From code to models. InProc. 2nd Int. Conf. on Applications of
Concurrency to System Design, pages 3–10, Newcastle upon Tyne, U.K., June 2001.

[Hop71] John Hopcroft. Ann log n algorithm for minimizing states in a finite automaton. In
Zvi Kohavi and Azaria Paz, editors,Theory of Machines and Computations, pages
189–196, Academic Press, New York, 1971.

[HP99] Nicolas Halbwachs and Doron Peled, editors.Computer Aided Verification, number
1633 in LNCS, Springer, Berlin, 1999.

[HS02] G.J. Holzmann and Margaret H. Smith. An automated verification method for dis-
tributed systems software based on model extraction.IEEE Trans. on Software
Engineering, 28(4), April 2002.

[HU79] John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[HV98] Alan J. Hu and Moshe Y. Vardi, editors.Computer Aided Verification, number 1427
in LNCS, Springer, Berlin, 1998.

[Kel95] Peter Kelb. Abstraktionstechniken für automatische Verifikationsmethoden. PhD
thesis, Carl von Ossietzky University of Oldenburg, Germany, December 1995.

[KPV99] Y. Kesten, A. Pnueli, and M. Vardi. Verification by augmented abstraction: The
automata-theoretic view. InProceedings of the Annual Conference of the Euro-
pean Association for Computer Science Logic (CSL-99), LNCS, pages 307–321,
Springer, Berlin, 1999.



[KS90] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence.Information and Computation, 86:43–68, 1990.

[Kur94] R. Kurshan.Computer-aided Verification of Coordinating Processes: The Automa-
ta-Theoretic Approach. Princeton University Press, 1994.

[LBBO01] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by
abstraction. In Margaria and Yi [MY01], pages 98–112.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems.Formal Methods in System
Design, 6:11–44, January 1995.

[LT88] Kim G. Larsen and Bent Thomsen. A modal process logic. In1988 IEEE Sym-
posium on Logic in Computer Science, pages 203–210, Computer Society Press,
Washington, 1988.

[Mil71] R. Milner. An algebraic definition of simulation between programs. InSecond
International Joint Conference on Artificial Intelligence, pages 481–489, British
Computer Society, London, 1971.

[Mil80] R. Milner. A Calculus of Communicating Systems. Number 92 in LNCS. Springer-
Verlag, Berlin, 1980.

[MY01] Tiziana Margaria and Wang Yi, editors.Tools and Algorithms for the Construction
and Analysis of Systems, number 2031 in LNCS, Springer, Berlin, 2001.

[NK00] Kedar S. Namjoshi and Robert P. Kurshan. Syntactic program transformations for
automatic abstraction. In Emerson and Sistla [ES00], pages 435–449.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of Program
Analysis. Springer, Berlin, 1999.

[Par81] D. Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor,
Theoretical Computer Science, number 104 in LNCS, pages 167–183, Springer-
Verlag, Berlin, 1981.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms.SIAM
Journal of Computation, 16(6):973–989, 1987.

[RS99] Vlad Rusu and Eli Singerman. On proving safety properties by integrating static
analysis, theorem proving and abstraction. In W. Rance Cleaveland, editor,Tools
and Algorithms for the Construction and Analysis of Systems (TACAS ’99), number
1579 in LNCS, pages 178–192, Springer, Berlin, 1999.

[SBLS99] K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen. Divide, abstract, and model-
check. In Dams et al. [DGLM99].

[Sti89] Colin Stirling. Comparing linear and branching time temporal logics. In B. Ban-
ieqbal, H. Barringer, and A. Pnueli, editors,Temporal Logic in Specification, num-
ber 398 in LNCS, pages 1–20, Springer-Verlag, Berlin, 1989.

[vBvES94] Johan van Benthem, Jan van Eijck, and Vera Stebletsova. Modal logic, transition
systems and processes.Journal of Logic and Computation, 4(5):811–855, 1994.

[vG90] R.J. van Glabbeek.Comparative Concurrency Semantics and Refinement of Ac-
tions. PhD thesis, Free University of Amsterdam/Center for Math. and Comp. Sc.,
Amsterdam, 1990.

[WC99] Andre Wong and Marsha Chechik. Formal modeling in a commercial setting: A
case study. InFM’99 - Formal Methods, number 1708 in LNCS, pages 590–607,
Springer, Berlin, 1999.


