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Abstract. This paper provides a brief description, including a bibliography, of
the SPIN2002 tutorial on abstraction in model checking of software.

1 Introduction

The tutorial assumes familiarity with the principles of model checking ([CGP99]),
which is an approach to the formal verification of temporal correctness properties of
finite state systems. The starting point of a model checker is a verification model: a
formal system description, calledabstract systemhenceforth, having a state space that
is small enough to render model checking feasible. The goal is to establish correctness
of the original system being modelled. When a (more detailed) formal description is
also available for thisconcrete system, one can try and formalize the relation between
these systems, possibly with the aim of offering automated support for the abstraction
process. In the context of model checking, the termabstractionrefers to methodol-
ogy, theory, techniques, and tools that deal with the relation between formalized system
descriptions at different levels of detail.

Abstraction methodologies are concerned with theprocessof abstraction: Given a
concrete system and a property to be checked, how to get to a suitable abstract system?
This process typically involves a form of trial-and-error, and depends on rules-of-thumb
and ingenuity. Abstraction theory focuses on formalizing the relation between the se-
mantic models of concrete and abstract systems. A prime requirement of such a relation
is that it ensurespreservationof correctness properties: A property checked to be true
for the abstract system should also hold for the concrete system being modelled. By
abstraction techniques we mean the methods that can be employed to construct abstract
systems from concrete ones. These range from slicing and variable hiding to more gen-
eral, less algorithmic approaches like program transformation based on abstract inter-
pretation, which may require human interaction. There exist several software tools that
implement such abstraction techniques. At its front end such a tool offers what is essen-
tially a programming language in which a system description may be entered. The core
of the tool consists of a collection of components that implement techniques, some-
times several alternative ones, for abstraction. Also, methodological guidelines may be
provided aiding in the selection of a sequence of abstraction steps. At the back end, a
verification model is then produced in a form that is accepted by a model checker.



As abstraction is a very broad field, we cannot discuss all relevant approaches. Tech-
niques that can be viewed as instances of abstraction but that will not be further touched
upon here include data-independence, (de)compositionality, parameterization, partial
order reduction, real time verification, and symmetry techniques. The focus will be
mostly on model checking of software source code — as a consequence BBD-based
approaches to abstraction will receive less attention.

Much of the tutorial is based on [Dam96].

2 Methodology

There is relatively little research into the methodological aspects of combining model
checking and abstraction. Generally, the process follows the cycle that occurs in all
approaches to software validation. For the case of model checking the steps are sum-
marized in [CGP99], p. 4: modeling, specification, verification. If the last of these steps
fails, then inspection of the counterexample will indicate an error in the system, in the
model, or in the specification, leading to a repetition of the steps.

For an approach that combines model checking with formal abstraction, an instance
of this cycle is commonly proposed. In this setting, the model can be viewed as the
result of applying an abstraction to the concrete system, and thus the triple (system,
model, specification) may be replaced by (system, abstraction, specification). A nega-
tive answer produced by running a model checker on this may indicate an error in any
of the three ingredients. The termfalse negativerefers to the case that the abstraction is
too coarse — inspection of the counterexample may then suggest a way to refine it.

More or less explicit descriptions of methodologies are found in [BH99, BR01,
DHJ+01, Hol01, HS02, LBBO01, WC99], often embedded in reports on case studies,
or in descriptions of verification tools by which they are supported. A paper discussing
methodological issues in formal methods at a more general level is [Hei98].

3 Theory

Because of its strong roots in the formal methods community, there is a large body of
theory on abstraction. Here we focus on papers that provide the common theoretical
underpinnings. Papers that provide the foundations for specific techniques and tools
may be found through references given in the sections below.

State-transition systemsare commonly used as the formal semantics on both the
concrete and abstract sides. Results on property-preserving relations between these
draw on the theory of formal languages and automata ([HU79]), in particular on results
about homomorphisms and language inclusion ([Gin68]), minimization and partition
refinement ([BFH+92, GV90, Hop71, KS90, PT87]), and on extensions of automata
to infinite words ([Buc60]). The topic of comparative semantics has also been exten-
sively studied in the context of process algebra ([BW90]), see e.g. [DN87, vG90]. In
particular the notion ofbisimulation([Par81]), weaker equivalences and pre-orders re-
lated to it ([GW89, Mil71, Mil80]), and their connection to modal and temporal logic
([ASB+94, BCG88, BFG+91, BR83, Cho95, DNV90, GKP92, GS84, HM80, Kur94,
Sti89, vBvES94]) are relevant.



The partition refinement algorithms mentioned above may be used in aquotient
constructionthat produces a minimal transition system that is equivalent to the original
system under some notion of behavioural (bisimulation-like) equivalence. The starting
point for model checking under abstraction is usually a more drastically reduced system
which is related to the concrete system through a behavioural pre-order like simulation
([CGL94]). The satisfaction of (temporal) logic formulas over these abstract systems is
usually non-standard: properties may evaluate to “unknown” as a result of abstracting
away certain information. A similar notion of incomplete information is common in the
related area of program analysis and Abstract Interpretation ([CC77, NNH99]). Rea-
soning with it in terms of modal and temporal logic, in the context of model checking,
is a topic that is receiving considerable attention: [BG99, CDE+01, DGG00a, HJS01].
An overview of many-valued modal logics is given in [Fit91, Fit92].

In a general framework for abstracting transition systems that accommodates for
the preservation of universal as well as existential temporal properties, not only the
evaluation of atomic propositions in states, but also the treatment of transitions between
states becomes non-standard. Notions of abstract transition systems that feature two
different, dual transition relations are presented in [CIY94, DGG94, GHJ01, Kel95],
and the approach in [LGS+95] uses two separate transition systems — intuitively, one
representing an over- and the other an under-approximation.Modal transition systems
([LT88]) also combine two transition relations (“may” and “must”) but there they are
not strictly dual.

An orthogonal duality is formed by the distinction betweeninvarianceandprogress
properties. Although both are preserved in most of the frameworks mentioned above,
abstraction tends to introduce more false counterexamples to progress than to safety
properties. In terms of Floyd-Hoare style correctness proofs, abstractions tend to be
more like invariants than ranking functions. This problem is addressed in [BLS00,
CS01, DGG00b].

The question whether a finite abstraction that is suitable for model checking any
given temporal property always exists, is answered positively in [KPV99].

4 Techniques/Algorithms

Abstraction techniques are the methods or algorithms that can be employed to construct
abstract systems from concrete ones. One approach consist in having the user choose
abstract interpretations, given a concrete system and a property to be verified. These
are replacements of data types with smaller-sized types that only reflect certain aspects
of the original values; operations on these types will then have to be lifted correspond-
ingly. Such abstracted data types may already exists, e.g. in the form of a library, or
they may be newly constructed ([DHJ+01, dMGM99]). In the latter case,safetyof the
abstractions may have to be proven ([SBLS99]).

More ambitious are the attempts to automatically derive suitable abstractions, e.g.
[ASSSV94, BLO98, CU98, DGG93, GS97, NK00, RS99]. The technique proposed
in [GS97] is now known aspredicate abstractionand has inspired many case studies,
tools, and approaches to abstraction refinement, see e.g. [AKN02, BHPV00, BMMR01,
BPR, CGJ+00, DDP99, GQ01].



On the other hand there are several techniques that are less general but fully au-
tomatic, like slicing ([HDZ00]), variable hiding ([BH99, DHH02]), and localization
reduction ([Kur94]).

5 Tools

Some tools that combine model checking with abstraction and the URLs at which they
can be found are:

αSpin: http://polaris.lcc.uma.es/˜ gisum/fmse/tools/
Bandera: http://www.cis.ksu.edu/santos/bandera/
SLAM : http://www.research.microsoft.com/projects/slam/
FeaVer: http://cm.bell-labs.com/cm/cs/what/feaver/
InVeSt: http://www-verimag.imag.fr/̃async/INVEST/
JPF: http://ase.arc.nasa.gov/visser/jpf/
STeP: http://www-step.stanford.edu/
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