
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Symmetric Spin?

Dragan Bošnački?? and Dennis Dams??? and Leszek Holenderski†

Address(es) of author(s) should be given

Received: date / Revised version: date

Abstract. We give a detailed description of SymmSpin,
a prototype implementation of a symmetry-reduction
package for the Spin model checker. It offers several
heuristics for state-space reduction. A series of experi-
ments is described, underlining the effectiveness of the
heuristics and demonstrating the ability of the imple-
mentation to handle almost all of Spin’s input language
Promela.

1 Introduction

Model checking [7,10] is a highly automated approach
to debugging and verification that is based on traversing
the full state space of the system under consideration.
Not surprisingly, the ability to effectively deal with large
state spaces is one of the main challenges in the field. One
option is to exploit symmetries in a system description.
In order to grasp the idea of symmetry reduction, con-
sider a mutual exclusion protocol based on semaphores.
The (im)possibility for processes to enter their critical
sections will be similar regardless of their identities, since
process identities (pids) play no role in the semaphore
mechanism. More formally, the system state remains be-
haviorally equivalent under permutations of pids. Dur-
ing state-space exploration, when a state is visited that

? This research has been supported by the VIRES project (Ver-
ifying Industrial Reactive Systems, Esprit Long Term Research
Project #23498).
?? Dept. of Computing Sci., Eindhoven University of Technol-
ogy, PO Box 513, 5600 MB Eindhoven, The Netherlands. e-mail:
D.Bosnacki@tue.nl
??? Dept. of Electrical Eng., Eindhoven University of Technol-
ogy, PO Box 513, 5600 MB Eindhoven, The Netherlands. e-mail:
D.Dams@tue.nl

† Dept. of Computing Sci., Eindhoven University of Technol-
ogy, PO Box 513, 5600 MB Eindhoven, The Netherlands. e-mail:
Leszek.Holenderski@philips.com

is the same, up to a permutation of pids, as some state
that has already been visited, the search can be pruned.
The notion of behavioral equivalence used (bisimilarity,
trace equivalence, sensitivity to deadlock, fairness, etc.)
and the class of permutations allowed (full, rotational,
mirror, etc.) may vary, leading to a spectrum of symme-
try techniques.

The two main questions in practical applications of
symmetry techniques are how to find symmetries in a
system description, and how to detect, during explo-
ration of the state-space, that two states are equivalent.
To start with the first issue: as in any other state-space
reduction technique based on behavioral equivalences,
the problem of deciding equivalence of states requires,
in general, the construction of the full state space. Do-
ing this would obviously invalidate the approach, as it is
precisely what we are trying to avoid. Therefore, most
approaches proceed by listing sufficient conditions that
can be statically checked on the system description. The
second problem, of detecting equivalence of states, in-
volves the search for a canonical state by permuting the
values of certain, symmetric, data structures. In [6] it
was shown that this orbit problem is at least as hard as
testing for graph isomorphism, for which currently no
polynomial algorithms are known. Furthermore, this op-
eration must be performed for every state encountered
during the exploration. For these reasons, it is of great
practical importance to work around the orbit prob-
lem. In practice, heuristics for the graph isomorphism
problem can be reused to obtain significant speedups. In
case these do not work, one can revert to a suboptimal
approach in which (not necessarily unique) normalized

states are stored and compared.

The use of symmetry has been studied in the con-
text of various automated verification techniques. We
mention here only a few papers that are most closely
related to our work, which is in the context of asyn-
chronous systems. For a more complete overview we re-

2 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

fer to the bibliography of [24]. Emerson and Sistla have
applied the idea to CTL model checking in [13], with
extensions to fairness in [16] and [20]. In [13] they out-
lined a method for efficient calculation of a canonical
representative for a special case when the global state
vector consists only of individual process locations (pro-
gram counters), i.e., no variables are allowed. In [14],
Emerson and Trefler extended the concepts to real-time
logics, while in [15] they considered systems that are al-

most symmetric and they also adapted the method for
finding a canonical representative from [13] in the con-
text of symbolic model checking. More recent papers to
consider almost-symmetric systems are [11,19]. Clarke,
Enders, Filkorn, and Jha used symmetries in the con-
text of symbolic model checking in [6] where they pro-
posed a heuristic involving multiple representatives of
equivalence classes. Emerson, Jha, and Peled, and more
recently Godefroid, have studied the combination of par-
tial order and symmetry reductions, see [12,18].

Our work draws upon the ideas of Ip and Dill [22–
24]. They introduce, in the protocol description language
Murϕ, a new data type called scalarset by which the user
can point out (full) symmetries to the verification tool.
The values of scalarsets are finite in number, unordered,
and allow only a restricted number of operations, that
do not break symmetry; any violations can be detected
at compile time.

We take the approach of Ip and Dill as the start-
ing point. In order to work around the orbit problem,
we follow their idea of splitting the state vector — the
following is adapted from [22]:

We separate the state into two parts. The leftmost
(most significant) part is canonicalized (by pick-
ing the lexicographically smallest equivalent as a
representative). Because the same lexicographi-
cal value may be obtained from different permu-
tations, we may have a few canonicalizing per-
mutations for this part of the state. The second,
rightmost part is normalized by one of the per-
mutations used to canonicalize the first part. The
result is a normalized state of a small lexicograph-
ical value.

In this paper, we improve on this idea by exploiting an-
other degree of freedom, namely the freedom to choose
the ordering of variables in the state vector, on which
the lexicographical ordering is based. Viewed differently,
we reshuffle the positions of variables in the state vec-
tor — but only conceptually so! — before splitting it.
In doing so, the goal is to move certain variables to the
left so as to reduce the number of permutations that is
determined by canonicalizing the leftmost part. Reshuf-
fling of the state vector is done by searching for an ar-
ray that is indexed by a scalarset type. This main ar-

ray is then conceptually positioned at the leftmost end
of the state vector. This results in a new heuristic for
normalization, called the sorted strategy. A second im-

provement ensues by not using one of the permutations
obtained from canonicalizing the leftmost part of the
state vector, but using all of them in order to canonical-

ize the second part. This segmented strategy induces the
same reduction as canonicalization of the state vector
without splitting—which we have also implemented for
reference purposes (full strategy)—but involves a much
smaller overhead in time, as is demonstrated by our ex-
periments.

We have also implemented a variation on this, which
is particularly useful when no main array occurs in the
system description. Namely, in the case that the pro-
cess identities are of type scalarset, a main array can be
coined by putting the program counters of the individual
processes together in an array. The resulting strategies
are called pc-sorted and pc-segmented.

We have implemented these strategies on top of the
Spin model checker [21]. Building upon results reported
in [12], our extension is compatible with Spin’s partial
order reduction algorithm, which is another, orthogonal
approach to reduce the state space, and indeed one of the
major strengths of the Spin tool. In addition, it handles
queues, multiple scalar sets, as well as multiple process

families. Although we can in principle handle all cor-
rectness properties that are symmetric (i.e. semantically
closed under permutations of scalarset values), we focus
in this paper on safety properties.

We are aware of only one other attempt to extend
Spin with symmetry reductions [27]. With their imple-
mentation the user has to write a function that computes
the normalized state. As a consequence, it is hard to see
how this approach can be generalized. Moreover, it re-
quires knowledge of Spin’s internal workings.

This article is based on [3] and [4].

After the preliminary Section 2, the heuristic and
the strategies based on it are presented in Section 3.
The overall implementation in the context of Spin is de-
scribed in Section 4. Having implemented this symmetry
package, we have run several experiments. The results of
these, and their evaluation, are the topic of Section 5.

2 Preliminaries

A transition system is a tuple T = (S, s0,→) where S is
a set of states, s0 ∈ S is an initial state, and → ⊆ S ×S
is a transition relation. We assume that S contains an
error state e 6= s0 which is a sink state (whenever e → s
then s = e).

An equivalence relation on S, say ∼, is called a con-

gruence on T iff for all s1, s2, s
′
1 ∈ S such that s1 ∼ s2

and s1 → s′1, there exists s′2 ∈ S such that s′1 ∼ s′2 and
s2 → s′2. Any congruence on T induces a quotient tran-
sition system T/∼ = (S/∼, [s0],⇒) such that [s] ⇒ [s′]
iff there exists a transition q → q′, such that q ∈ [s],
q′ ∈ [s′].

Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin 3

A bijection h : S → S is said to be a symmetry of T
iff h(s0) = s0, h(e) = e, and for any s, s′ ∈ S, s → s′

iff h(s) → h(s′). The set of all symmetries of T forms a
group (with function composition).

Any set A of symmetries generates a subgroup G(A)
called a symmetry group (induced by A). G(A) induces
an equivalence relation ∼A on states, defined as

s ∼A s′ iff h(s) = s′, for some h ∈ G(A)

Such an equivalence relation is called a symmetry rela-

tion of T (induced by A). The equivalence class of s is
called the orbit of s, and is denoted by [s]A.

Any symmetry relation of T is a congruence on T
(Theorem 1 in [23]), and thus induces the quotient tran-
sition system T/∼A. Moreover, s is reachable from s0

if and only if [s]A is reachable from [s0]A (Theorem 2
in [23]). This allows to reduce the verification of safety
properties of T to the reachability of the error state [e]
in T/∼A (via observers, for example).

In order to extend an enumerative model checker to
handle symmetries, i.e., to explore T/∼A instead of T , a
representation for equivalence classes is needed, as well
as a way to find the successors of an equivalence class. A
practical choice is to use states of T as representatives of
their class; any mechanism for finding successor states in
T can then be reused at the level of T/∼A. The remain-
ing question is how to detect whether a newly-visited
state is equivalent to any state that was visited before.
Clearly, the more often such equivalences are detected
when present, the more reduction we get from the sym-
metry. In the context of using states as representatives
for their class, this quality depends on how many states
per class are entitled to act as representatives. A repre-

sentative function is a function rep : S → S that, given
a state s, returns an equivalent state from [s]A. For an
equivalence class C, the states in {rep(s) | s ∈ C} are
called the representatives of C. Clearly, if rep(s) = rep(t)
then states s and t are equivalent. The reverse does not
hold in general, but the smaller the set of all represen-
tatives of a class, the more often it will hold. The two
extremes are rep = id (the identity function), which can
obviously be implemented very efficiently but will never
succeed to detect the equivalence of two different states
(“high speed, low precision”); and λ s ∈ S. c[s] which re-
turns for any input s a canonical state c[s] that is the
unique representative for the class [s]. Such a canonical

representative function will detect all equivalences but is
harder to compute (“low speed, high precision”). Now,
one can explore T/∼A by simply exploring a part of T ,
using rep(s) instead of s. A generic algorithm of this
type is given in Section 4. In the sequel, by a reduction

strategy we mean any concrete rep.
The definition of the representatives is usually based

on some partial ordering on states, e.g. by taking as rep-
resentatives those states that are minimal in a class, rel-
ative to the ordering. If the ordering is total, then the
representatives are unique for their class.

In practice, a transition system is given implicitly as
a program, whose possible behaviours it models. In order
to simplify the detection of symmetries on the level of the
program, we assume that a simple type can be marked as
scalarset, which essentially means that it is considered to
be an unordered, finite enumerated type, with elements
called scalars. As a representation for scalars, we use
integers from 0 to n − 1, for some fixed n. Syntactical
criteria can be identified under which scalarsets induce
symmetries on the program’s transition system, see [23].
In this presentation, we usually restrict ourselves to one
scalarset which is then denoted I . Our implementation
is able to deal with multiple scalarsets however.

3 Reduction Strategies

In this section we present the heuristic to solve the orbit
problem and the 4 strategies that are based on it. A
complementary description of the heuristic is given in
[4].

Assume a model is specified by a program in a pro-
gramming language based on shared variables. The vari-
ables are typed, and the types are of two kinds only: sim-

ple types (say, finite ranges of integers) and array types.
An array type can be represented by a pair X 7→ Y of
types where X is the type of indices and Y is the type
of elements. X must be simple while Y can be any type.
Let DT denote the set of all values of type T then a value
of an array type X 7→ Y is a function a : DX → DY . We
write a[x] instead of a(x).

We assume that a program specifies a set of processes
run in parallel, and that the processes use only global
variables. (The latter assumption is not essential. We use
it only to simplify the presentation.) Let V denote the set
of variables used in the program and D denote the union
of DT , for all types T used in the program. A program P
induces a transition system TP , via a formal semantics
of the programming language. We assume that in the
semantics states are pairs (sV , sPC) where sV : V → D
is the valuation of program variables and sPC represents
the values of program counters, for each process in P .
For s = (sV , sPC) and v ∈ V, s(v) means sV(v).

In order to simplify the detection of symmetries in
TP , we assume a special simple type called I which is a
scalarset (i.e., an unordered subrange of integers from 0
to n − 1, for some fixed n). Its elements are called pids

(for process identifiers). We assume that all programs are
of the form B||C0|| · · · ||Cn−1 where B is a base process
and C0, . . . , Cn−1 are instances of a parameterized family
C = λ i : I . Ci of processes.

For such a class of programs, it is convenient to treat
the program counters of the family C as an array indexed
by pids, and to consider it as a global variable. Thus, in
s = (sV , sPC), the program counters of the family C are
in fact “stored” in the component sV , and sPC represents
only the program counter of B.

4 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

Let P denote the set (in fact, the group) of all pid
permutations. A pid permutation p : I → I can be lifted
to states, via p∗ : S → S. Intuitively, p∗ applies p to all
values of type I that occur in a state, including the pids
used as array indices. Formally, for s = (sV , sPC), we
have p∗(s) = (λ v.ptype(v)(sV(v)), sPC) where pT : DT →
DT is defined as

pT (d) = d if T is a simple type other than I

pI (d) = p(d)
pX 7→Y (a) = λx ∈ DX . pY (a[p−1

X
(x)])

In fact, p∗ is a symmetry of TP (Theorem 3 in [23]).
Moreover, P∗ = {p∗ : p ∈ P} is a symmetry group of TP

(since (·)∗ preserves the group operations of P). In fact,
P and P∗ are isomorphic (with (·)∗ as an isomorphism).

All the reduction strategies considered in this paper
have the same pattern. For a given state, a set of pid
permutations is generated, and each permutation is ap-
plied to the given state. All the states obtained in this
way are equivalent w.r.t. the symmetry relation, and we
choose one of them as a representative. Formally, this
process is specified by a function rep : S → S defined as

rep(s) = µ({p∗(s) : p ∈ π(s)})

where µ : 2S → S is a choice function (i.e., µ(X) ∈ X,
for any nonempty X ⊆ S) and π : S → 2P generates a
set of pid permutations for a given state.

We call such rep a general reduction strategy since it
is parameterized by π and µ. A concrete reduction strat-
egy is obtained from rep by fixing some π, but still leav-
ing µ free, and is denoted by repπ. In the sequel, we con-
sider several concrete strategies which we call full, sorted,
segmented, pc-sorted and pc-segmented. The names de-
note the respective π functions in repπ, and whenever
we say “strategy π” we really mean “strategy repπ”.

In the full strategy, all pid permutations are taken
into account, thus full(s) = P. Since this strategy is
canonical, for any choice function µ, it leads to the best
reduction of the state space. However, it is computation-
ally intensive.

In order to improve the full strategy we make two as-
sumptions. In fact, the assumptions are needed only for
presentation purposes (we want to derive the improve-
ments to full, and not just state them). As it will turn
out later, they can be dropped.

First, we assume a choice function of a particular
kind, namely the one which picks up the lexicographi-
cally smallest state, under some lexicographical ordering
of states. Formally, let us assume that each simple type
used in a program is totally ordered, and that the order
of pids is just the natural order of the set {0, . . . , n−1}.1

1 This is not inconsistent with the assumption that I is a
scalarset, and thus unordered. In fact, a scalarset can be ordered
but a program that uses such a scalarset must not depend on the
order (all the models of the program obtained under different or-
derings must be isomorphic).

7

2

7

7

82

M [0]

2

8

sorting M

M [3] M [4]

7 rest of the state vector

“p(rest of the state vector)”

M [2]

2

induces a
pid permu-
tation p

M [1]

Fig. 1. A state vector before and after sorting the main array M .

As usual, such a total order can be lifted to the lexico-
graphical order on arrays (by considering them as vec-
tors), and then to states (by considering them as vec-
tors).

Second, we assume that program P uses a variable
M : I 7→ Y which is an array indexed by pids and whose
elements do not involve pids. M is called a main ar-

ray. Most real protocols specified in a language based on
shared variables, and of the form B||C0|| · · · ||Cn−1, use
such an array, either directly or indirectly. (Notice that
each local variable declared in the parametric program
C = λ i : I . Ci, and whose type does not involve I ,
can be considered an element of an array indexed by I ,
when lifted to the global level.) We further assume that
M dominates in the total order used by our particular
choice function µ, in the sense that the main array is
located at the beginning of the state vector. (If it is not
the case, the state vector can be reshuffled.)

Let us consider a state s. Notice that if rep full(s) = s′

then s′(M) must be sorted, w.r.t. the ordering of Y , due
to our particular choice of µ. So instead of considering
all pid permutations in full it is enough to consider only
those which sort s(M). (Notice that there may be more
than one sorting permutation, if s(M) contains repeated
values.) Let ~s(M) denote the set of all sorting permuta-
tions.

In the sorted strategy we consider just one pid per-
mutation ~p ∈ ~s(M) obtained by applying a particular
sorting algorithm to s(M). (Formally, sorted(s) = {~p}.)
Obviously, the repsorted strategy is faster then rep full. Un-
fortunately, it is not canonical since ~p minimizes only
s(M) and not necessarily the whole s. (If s(M) contains
repeated values then there may be another sorting per-
mutation p such that p∗(s) is smaller than ~p∗(s).)

In the segmented strategy we consider all the permu-
tations in~s(M).2 (Formally, segmented(s) = ~s(M).) Ob-
viously, repsegmented is canonical, for the particular choice
function we have assumed. Moreover, repsegmented(s) =
repfull(s), for any s.

As an example, consider Figure 1 showing a state
vector before and after sorting its main array M . M is
indexed by pids, which in this case range from 0 to 4. M ’s
elements are the numbers 2, 7, and 8, taken from some
type that differs from I . Suppose that the particular

2 The name “segmented” comes from the way we have imple-
mented the computation of segmented(s). We first sort s(M), lo-
cate all the segments of equal values in the sorted array, and per-
mute these segments independently.

Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin 5

sorting algorithm being used sorts M as indicated by the
dashed arrows. This particular sorting induces the pid
permutation p = {0 7→ 0, 1 7→ 4, 2 7→ 2, 3 7→ 1, 4 7→ 3},
which is then applied to the rest of the state vector in
order to obtain the representative under the sorted strat-
egy. If we applied all pid permutations to the upper state
vector in the picture, then the lexicographical minimum
among the results, call it smin, would start with the same
values as the lower state vector, namely 2, 2, 7, 7, 8. How-
ever, the rest of smin need not coincide with the rest of
the lower state vector. The reason is that there are other
pid permutations that yield the same initial values, for
example p′ = {0 7→ 1, 1 7→ 4, 2 7→ 3, 3 7→ 0, 4 7→ 2}, but
may give smaller results than p. The segmented strat-
egy applies all the permutations that sort M (in this
example there are four of them) on the whole state vec-
tor, and selects the smallest among the results, which is
then guaranteed to be smin.

The requirement that program P uses an explicit
main array can be dropped, by observing that in ev-
ery program of the form B||C0|| · · · ||Cn−1 there is, in
fact, an implicit array indexed by pids, namely the array
of program counters for processes C0,. . . ,Cn−1. Thus,
we can consider the variants of sorted and segmented in
which we use the array of program counters instead of
M . The variants are called pc-sorted and pc-segmented,
respectively. If P contains a main array as well then
both sorted/segmented and pc-sorted/pc-segmented are
applicable to P , so the question arises which of the com-
binations is better. We cannot say much about sorted

versus pc-sorted, in general. However, segmented and pc-

segmented are both canonical, so they are equally good,
as far as the reduction of a state space is concerned.

The following result allows us to drop the assumption
about our particular µ function.

Theorem 1. For any choice function µ, repsegmented is

canonical.

Proof. Let P (s) = {p∗(s) : p ∈ segmented(s)}. We have
to show that if s ∼ s′, i.e., there exists a pid permutation
p such that p∗(s) = s′, then µ(P (s)) = µ(P (s′)). In order
to show it for any choice function µ, it is enough to show
that P (s) = P (s′). Assume s1 ∈ P (s) then s1 = p∗1(s) for
some pid permutation p1, where p∗1 sorts the array M in
s. Observe that s = (p−1)∗(s′) where p−1 is the inverse
of p. Hence, s1 = p∗1((p

−1)∗(s′)). Since p∗1 ◦ (p−1)∗ sorts
the array M in s′, s1 ∈ P (s′). Similarly, if s1 ∈ P (s′)
then s1 ∈ P (s). ut

Remark 1. In the proof, the only step specific to the seg-

mented strategy is the observation that if p establishes
the equivalence of states s and s′, and p∗1 sorts the ar-
ray M , then also p∗1 ◦ (p−1)∗ sorts the array M . Thus,
the theorem can be generalized to any strategy π that
preserves pid permutations in the following sense: if p
establishes the equivalence of states s and s′ then for
any p1 ∈ π(s), p∗1 ◦ (p−1)∗ ∈ π(s′). For example, this

condition holds for the full and pc-segmented strategy as
well.

The theorem has an important consequence in prac-
tice. Suppose we want to extend an existing enumera-
tive model checker with symmetry reductions. Usually,
a model checker stores a state in a continuous chunk of
memory. A very efficient way of implementing µ is to
choose the lexicographically smallest chunk by simply
comparing such memory chunks byte by byte (for ex-
ample, in C, the built-in function memcmp could be used
for this purpose). Obviously, such µ is a choice function,
no matter where the main array resides in the mem-
ory chunk. Thus, the requirement that the main array
dominates in the total order used by µ is not needed.
Also, the array of program counters, used in pc-sorted

and pc-segmented, need not even be contiguous. As a
consequence, we do not need to reshuffle a state vector
in order to use the presented strategies.

Finally, the assumption that programs are of the
form B||C0|| · · · ||Cn−1with process indices in the scalar-
set I is only needed to formalize the pc-sorted and pc-

segmented strategies. For segmented and sorted, the only
essential assumption about I is that it is a distinguished
scalarset.

In Section 4.4.4 we estimate the theoretical complex-
ity of our strategies. Their factual performance is com-
pared, on several examples, in Section 5.

4 Extending Spin with Symmetry Reductions

In order to compare the performance of the various re-
duction strategies in practice, we have embedded them
into the enumerative model checker Spin [21]. The re-
sult of our extension of Spin with a symmetry package
is called SymmSpin.

When extending an enumerative model checker, in
the spirit of [23], two essential problems must be solved.
First, the input language must be extended, to allow the
usage of scalarsets in a program that specifies a model.
Second, a symmetry reduction strategy must be added
to the state space exploration algorithm. Both problems
are non-trivial. As far as the extension of the input lan-
guage is concerned, a compiler should be able to check
whether the scalarsets really induce a symmetry rela-
tion (i.e., whether a program does not rely on the order
of the range of integers that represents a scalarset). As
far as adding a reduction strategy is concerned, the rep

function should be implementable in an efficient way.
In order for a model checker to be a successful tool for

the verification of symmetric systems, good solutions are
needed for both problems. However, there does not seem
to be much sense in putting an effort into solving the
language extension problem without having an efficient
reduction strategy. That is why in SymmSpin we have
mainly concentrated on the second problem.

6 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

1 reached := unexpanded := {s0};
2 while unexpanded 6= Ø do
3 remove a state s from unexpanded;
4 for each transition s → s

′ do
5 if s

′ = error then
6 stop and report error;
7 if s

′ 6∈ reached then
8 add s

′ to reached and unexpanded;

Fig. 2. A standard exploration algorithm

1 reached := unexpanded := {rep(s0)};
2 while unexpanded 6= Ø do
3 remove a state s from unexpanded;
4 for each transition s → s

′ do
5 if s

′ = error then
6 stop and report error;
7 if rep(s′) 6∈ reached then
8 add rep(s′) to reached and unexpanded;

Fig. 3. A standard exploration algorithm with symmetry reduc-
tions

As far as the first problem is concerned, it could
be solved just by lifting the syntactical extensions of
Murϕ [23] to Spin. Although not entirely straightfor-
ward, it should not pose fundamental difficulties. Unfor-
tunately, to do it in the right way, one would need to ex-
tensively modify the existing Promela parser. In Symm-
Spin, we have tried to avoid this effort, as explained in
Section 4.3.

4.1 A Modified State Space Exploration Algorithm

In principle, extending an existing enumerative model
checker to handle symmetries is not difficult, once the
rep function is implemented. Instead of using a stan-
dard algorithm for exploring T = (S, s0,→), as depicted
in Fig. 2, one explores the quotient T/∼ using a sim-
ple modification of the algorithm, as depicted in Fig. 3.
(This modification is borrowed from [23].) Obviously, the
algorithm in Fig. 3 deals with smaller number of states
than the algorithm in Fig. 2.

In practice, we had to overcome several problems, due
to idiosyncrasies of Spin. For example, it turned out that
the operation “add rep(s′) to unexpanded ” is difficult
to implement reliably, due to a peculiar way Spin repre-
sents the set unexpanded as a set of “differences” between
states rather than states themselves. For this reason, we
had to change the exploration algorithm given in Fig. 3.
In our3 algorithm, the original states, and not their rep-
resentatives, are used to generate the state space to be
explored, as depicted in Fig. 4. (The algorithms differ
only in lines 1 and 8.)

Using the notation of Section 2, consider a state tran-
sition system T = (S, s0,→) and some group G(A) of

3 We acknowledge a remark from Gerard Holzmann which led
us to this algorithm.

1 reached := {rep(s0)}; unexpanded := {s0};
2 while unexpanded 6= Ø do
3 remove a state s from unexpanded;
4 for each transition s → s

′ do
5 if s

′ = error then
6 stop and report error;
7 if rep(s′) 6∈ reached then
8 add rep(s′) to reached and s

′ to unexpanded;

Fig. 4. Our exploration algorithm with symmetry reductions

symmetries. Since the symmetry relation ∼A is a con-
gruence, obviously the algorithm in Fig. 4 visits at least
one representative of each equivalence class (orbit) in-
duced by ∼A. In other words, after the algorithm ends,
provided that no error is reported, for each state s ∈ S,
there is at least one s′ ∈ reached such that s′ ∈ [s]A.
Using the results of [23], this implies directly the cor-
rectness of the algorithm in Fig. 4, i.e., the algorithm
reports an error iff there exists an error state e ∈ S.

If the rep function is canonical, the algorithms from
Fig. 3 and 4 explore the same number of states, pro-
vided that no error is reported. This follows from the
following reasoning. The total number of visited states
is bounded by the number of representatives, i.e., the
number of different states s such that s = rep(s′), for
some s′ ∈ S. This is because the number of visited
states is equal to the number of states which are re-
moved from unexpanded in line 3. Since a state s is added
to unexpanded only if its representative is not already in
reached (lines 7 and 8), the total number of states which
are added to unexpanded cannot exceed the number of
representatives. On the other hand, as we already men-
tioned, the algorithm is guaranteed to visit at least one
representative of each equivalence class. Thus, if rep is
canonical, the upper and lower bounds of visited states
are the same and they are equal to the number of equiv-
alence classes. Moreover, the number of explored tran-
sitions is also the same in both algorithms. This follows
from the fact that for each state s for which our algo-
rithm computes its successors with the statement “for
each transition s → s′ do” (line 4), the algorithm in
Fig. 3 computes the successors of rep(s). Since s and
rep(s) are related by a symmetry, they must have the
same number of successors (recall that any symmetry is
a bijection).

If an error is reported, one can show that, under
some constraints on the nondeterministic parts of the
algorithms (and provided that rep is canonical), both of
them visit the same number of states and explore the
same number of transitions:

Proposition 1. Given a transition system T , let rep be

canonical and let the following holds for the algorithms

in Figures 3 and 4:

1. The order in which a state s is chosen from the set

unexpanded in line 3 (remove a state s from unex-

Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin 7

panded) in the algorithm in Fig. 4 is such that: For

each two states s1, s2, it is the case that s1 is cho-

sen before s2 iff in the same line in the algorithm in

Fig. 3 rep(s1) is chosen before rep(s2).
2. The order in which transitions are explored in line 4

(for each transition s → s′ do) in the algorithm in

Fig. 4 is such that: For each two transitions s → s′,
s → s′′, it is the case that s → s′ is chosen before

s → s′′ iff in the same line in in the algorithm in

Fig. 3 the transition rep(s) → s1, where rep(s1) =
rep(s′), is chosen before the transition rep(s) → s2,

where rep(s2) = rep(s′′).

Then, when applied on T , for both algorithms the total

number of states that are removed from unexpanded in

line 3 is the same, as well as the total number of transi-

tions that are explored in line 4.

Proof. For brevity, we denote the algorithms in Fig. 3
and 4 with A3 and A4, respectively. In order to prove
the property we show that each execution step of A3 can
be mimicked by an execution step of A4. To this end we
prove that at each point the following invariants hold:

1. the set of reached states is the same in both execu-
tions,

2. there is a bijection between the sets unexpanded such
that each state s from unexpanded of A4 is mapped
into the state rep(s) in unexpanded of A3.

The proof is by induction on the length of the execution
sequences of A3 and A4. Base case: Obviously the in-
variants are preserved after the initialization of reached

and unexpanded in line 1. Inductive step: Constraint (1)
and invariant (2) (induction hypothesis) imply that, if a
state s is chosen in line 3 of A3, then a state s′ is cho-
sen in the same line of A4 such that rep(s′) = s. Sim-
ilarly, because of constraint (2), if a transition s → s1

is chosen in line 4 of A3, then the transition s′ → s′1 is
chosen in the same line of A4 such that s = rep(s′) and
s1 = rep(s′1). (As any symmetry is bijection, the same
number of transitions are chosen in both executions in
line 4.) Thus, from the discussion above it follows that, if
an error is reported (line 5) by A3, then it is reported also
by A4. Further, having in mind invariant (1) (induction
hypothesis) we can conclude that the boolean expression
“rep(s′) 6∈ reached” (line 7) has the same value in both
executions. This in combination with constraint (2) also
implies that the invariants are preserved by the state-
ments in line 8 that update reached and unexpanded. ut

If rep is not canonical, then the number of explored
states and transitions differs between the two algorithms
and depends on the choice of rep. The algorithms are
incomparable in this case, because it can happen that
our algorithm explores fewer states and/or transitions
than the algorithm in Fig. 3, or vice versa.

An advantage of our algorithm is that it allows (re-
gardless of the fact whether rep is canonical or not) to

easily regenerate an erroneous trace from unexpanded,
in case an error is encountered. Since Spin explores the
state space in a depth first manner, the set unexpanded

is, in fact, structured as a stack. When an error is en-
countered, the stack contains the sequence of states that
lead to the error, and its contents can then directly be
dumped, giving the erroneous trace. In the algorithm
from Fig. 3, the stack would contain the representatives
of the original states, and since the representatives are
not necessarily related by the transition relation in the
original model, the stack would not necessarily represent
an existing trace in the original model.

We have put considerable effort into efficiently imple-
menting the 5 variants of the rep function. For example,
it turns out that all the sets of pid permutations used
in our reduction strategies can always be enumerated
starting with an initial permutation and then compos-
ing it with transpositions (permutations that swap two
elements). As a consequence, the most costly operation
p∗ (that applies a given pid permutation to a given state)
can be optimized by using two versions of p∗. In addi-
tion to the general version that is applicable to any pid
permutation, we also use a restricted (and more efficient)
version that is only applicable to transpositions. Our im-
plementation is described in more detail below in 4.2.

In the verification experiments described in Section 5,
we used Spin in two ways: with and without its partial
order reduction (POR) algorithm. Allowing Spin to use
its POR algorithm together with our symmetry reduc-
tions is sound due to Theorem 19 in [12] which guar-
antees that the class of POR algorithms to which the
Spin’s POR algorithm belongs, is compatible with the
generic symmetry reduction algorithm. With a straight-
forward modification, the theorem’s proof is valid for our
algorithm as well.

4.2 An Overview of SymmSpin

Our goal was first to experiment with various reduction
strategies, to check whether they perform well enough to
undertake the effort of fully extending Spin with a sym-
metry package (such as modifying the Promela parser).
So the problem was how to extend Spin in a minimal way
that would be sufficient to perform various verification
experiments with some symmetric protocols. In fact, we
have managed to find a way which does not require any
change to the Spin tool itself, but only to the C program
generated by Spin.

The C program generated by Spin is kept in sev-
eral files. Two of them are of particular interest to us:
pan.c that implements a state exploration algorithm,
and pan.h that contains the declarations of various data
structures used in pan.c, including a C structure called
State that represents a state of the transition system be-
ing verified. Our current extension of Spin with symme-
try reductions simply adds a particular reduction strat-
egy to pan.c. This is done in two steps.

8 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

First, we locate in pan.c all calls to the procedures
that add a newly visited state to the set of already vis-
ited states. The calls have the generic form store(now)

where now is a global variable that keeps the current
state. All the calls are changed to store(rep(now))

where rep is the name of a C function that implements
the reduction strategy. In this way, the representatives,
and not the states themselves, are stored in the set of
already visited states. The pan.c code that computes
the successor states of now is left unchanged. As a conse-
quence, the original states, and not their representatives,
are used to generate the state space to be explored. This
agrees with the exploration algorithm in Fig. 4.

Second, the C code for rep is generated and added
to pan.c. This step is not straightforward since we have
to scan pan.h for various pieces of information needed
for the implementation of rep.

The two steps are performed by a Tcl script called
AdjustPan. The current version of the script is about
1800 lines, not counting comments.

4.3 The AdjustPan Script

Conceptually, the symmetry relation is deduced from a
Promela program, say foo.pml, that uses special types
called scalarsets which are unordered ranges of integers
(in SymmSpin, always of the form 0..n − 1, for some
constant n < 256).

Actually, in order to avoid modifications to the Pro-
mela parser, there is no special declaration for scalarsets.
Instead, the standard Promela type byte is used for
this purpose. Also, the symmetry relation is not deduced
from foo.pml itself. Instead, it is deduced from an addi-
tional file, say foo.sym, that must accompany the Pro-
mela program. The additional file (later called a system

description file) must be prepared by a user, and must
contain all information relevant to the usage of scalarsets
in the original Promela program that specifies a symmet-
ric concurrent system.

The precise description of the syntax of the system
description file, and its meaning, is beyond the scope of
this paper. In short, it resembles the declaration part of
Promela, and allows to describe all the data structures
and processes, appearing in the original Promela pro-
gram, that depend on scalarsets. This description is then
used by the rep function to locate all fragments of the
Spin state vector that depend on a particular scalarset,
and lift a permutation of the scalarset to the state.

In the current implementation we assume that the
safety properties to be verified are symmetric, i.e., in-
variant under pid permutation (also see [6,13]). Indeed,
we get the symmetry of the properties for free. This is
because we deal only with safety properties which are
expressed as assertions, i.e. with assert statements in
the Promela model. These assert statements, just as
any other statement, must obey the syntactic restrictions
of [23] on the scalarset (pid) type. As a consequence, the

properties they express are invariant under permutation
of pids. Further, the syntactic criteria guarantee that the
obtained state space remains symmetric in presence of
such symmetric assertions.

The only important restriction in the current version
of SymmSpin is that the concurrent system specified by
a symmetric Promela program must be static, in the
sense that all the processes must be started simultane-
ously, by the init{atomic{...}} statement. Lifting this
restriction would probably substantially complicate the
implementation.

The AdjustPan script is called with two parameters:
the name of one of the 5 reduction strategies described
in Section 3, and the name of a system description file.
The script reads three files: pan.h, pan.c (both gener-
ated by Spin from foo.pml), and foo.sym. The infor-
mation in foo.sym and pan.h is used to modify pan.c.
The modified version of pan.c is stored under the name
pan-sym.c, and is used to model check the symmetric
Promela program.

In summary, SymmSpin is used in the following way:

– Write a symmetric Promela program, say foo.pml,
and its system description file, say foo.sym.

– Run Spin (with the -a option) on foo.pml (this will
generate pan.h and pan.c files).

– Run AdjustPan on foo.sym with a particular reduc-
tion strategy (this will generate pan-sym.c file).

– Compile pan-sym.c with the same options you would
use for pan.c, and run the generated binaries to
model check the symmetric Promela program.

4.4 The Implementation of Strategies

In this section we highlight some implementation details
of SymmSpin, to give an idea of how the rep function
is implemented in an efficient way. To simplify presen-
tation, we assume that only one scalarset is used in a
Promela program.

The canonical strategies full, segmented and pc-seg-

mented are implemented by a C function of the following
shape:

State tmp_now, min_now;

State *rep(State *orig_now) {

/* initialize */

memcpy(&tmp_now, orig_now, vsize);

/* find the representative */

memcpy(&min_now, &tmp_now, vsize);

...

return &min_now;

}

The parameter orig now is used to pass the current
state now. In order to avoid any interference with the
original code in pan.c that uses now for its own pur-
poses (for example, to generate the successor states of
the current state), we must assure that rep does not

Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin 9

modify now. For this reason, we copy orig now to the
auxiliary state tmp now.

The representative is found by enumerating permu-
tations of a scalarset, and applying them to (the copy of)
the current state. The lexicographically smallest result
is kept in min now. After each permutation, it is updated
by the following statement

if (memcmp(&tmp_now, &min_now, vsize) < 0)

memcpy(&min_now, &tmp_now, vsize);

In strategies sorted and pc-sorted, only one permu-
tation is considered, so the auxiliary state min now is
not needed. Hence, the strategies are implemented by a
function of the following shape:

State tmp_now;

State *rep(State *orig_now) {

/* initialize */

memcpy(&tmp_now, orig_now, vsize);

/* find the representative */

...

return &tmp_now;

}

In the rest of this section, we present the rep func-
tions for the full, sorted and segmented strategies. The
pc-sorted and pc-segmented strategies are similar to the
sorted and segmented strategies.

4.4.1 Strategy full

State tmp_now, min_now;

State *rep_full(State *orig_now) {

memcpy(&tmp_now, orig_now, vsize);

/* find the representative */

memcpy(&min_now, &tmp_now, vsize);

permute_scalar(SIZE_OF_SCALAR);

return &min_now;

}

The representative is found by the permute scalar

procedure that takes the size of a scalarset, say size,
and generates all permutations of numbers from 0 to
size − 1, excluding the identity permutation. Each per-
mutation is then applied to the current state. Applying
a permutation may be quite expensive. It can be imple-
mented more efficiently if a permutation is a transposi-
tion (i.e, a swap of two numbers). For this reason, the
permutations are generated incrementally, by compos-
ing successive transpositions (starting from the identity
permutation). A tricky algorithm (borrowed from [25],
and presented in Fig. 5) is used for this purpose.

It happens that the transpositions generated by the
algorithm always swap two successive elements p and
p + 1, but we do not rely on this feature. Whenever
a new transposition is computed, permute scalar calls
apply swap. The apply swap procedure has the follow-
ing header:

void permute_scalar(int size) {

int i, p, offset,

pos[MAX_SCALAR_SIZE],dir[MAX_SCALAR_SIZE];

for (i = 0; i < size; i++) {

pos[i] = 1; dir[i] = 1;

}

pos[size-1] = 0;

i = 0;

while (i < size-1) {

for (i = offset = 0;pos[i] == size-i;i++) {

pos[i] = 1; dir[i] = !dir[i];

if (dir[i]) offset++;

}

if (i < size-1) {

p = offset-1 +

(dir[i] ? pos[i] : size-i-pos[i]);

pos[i]++;

/* apply transposition p <-> p+1 */

apply_swap(&tmp_now, p, p+1);

if (memcmp(&tmp_now, &min_now, vsize) < 0)

memcpy(&min_now, &tmp_now, vsize);

}

}

}

Fig. 5. Generating permutations by transpositions

void apply_swap(State *state, int v1, int v2)

It lifts the transposition of scalar values v1 and v2 to a
given state. The lifting is performed in situ, by modifying
the given state. The body of apply swap is generated
by AdjustPan, using the information given in a system
description file. The generated C code is straightforward.
It consists of a sequence of guarded assignments that
swap v1 with v2, for each variable that depends on a
scalarset.

For example, if x is a global variable of a scalarset
type then the following code fragment is generated:

if (state->x == v1) state->x = v2; else

if (state->x == v2) state->x = v1;

For arrays, the code is more complex. For example,
if x is a global array of a scalarset type, and indexed by
the same scalarset, then the following code fragment is
generated:

/* swap values */

for (i = 0; i < SCALAR_SIZE; i++) {

if (state->x[i] == v1) state->x[i] = v2; else

if (state->x[i] == v2) state->x[i] = v1;

}

/* swap indices */

{ uchar tmp;

tmp = x[v1]; x[v1] = x[v2]; x[v2] = tmp; }

In addition, for every family of processes indexed
by a scalarset, say proctype P(scalar i), apply swap

swaps the two chunks of memory (in a state vector) that
correspond to P (v1) and P (v2).

10 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

4.4.2 Strategy sorted

State *rep_sorted(State *orig_now) {

int perm[MAX_SCALAR_SIZE];

memcpy(&tmp_now, orig_now, vsize);

/* sort the main array and compute

the sorting permutation */

...

/* find the representative */

apply_perm(perm, &tmp_now);

return &tmp_now;

}

The main array is sorted using a straightforward al-
gorithm that successively finds minimal elements. Its
quadratic complexity is acceptable since the size of a
scalarset is usually small. On the other hand, it allows
to compute the sorting permutation with minimal cost,
since each element is swapped only once.

The apply perm procedure has the following header:

void apply_perm(int *perm, State *state)

It lifts the given scalarset permutation to state. As in
apply swap, the lifting is performed in situ, and it con-
sists of a sequence of guarded assignments, for each vari-
able that depends on a scalarset. For example, if x is a
global variable of a scalarset type then the following code
fragment is generated:

if (state->x < SCALAR_SIZE)

state->x = perm[state->x];

The guard is needed to solve a subtle problem with
the initialization of scalarset variables. Since all variables
used in a standard Promela program are automatically
initialized with 0, it is common to use 0 to represent an
undefined value. Unfortunately, this convention cannot
be used for scalarsets. The reason is that in our imple-
mentation, a scalarset of size n is a range of integers from
0 to n−1, so 0 must be treated as other well-defined val-
ues (otherwise, the symmetry would be broken). Thus, a
value outside of the range must be used for an undefined
value. By convention, we use n for this purpose, and the
guard guarantees that the undefined value is treated in
a symmetric way (i.e., it is never permuted, as required
in [23]). In fact, any value not less than n can be used
to represent the undefined value.

For arrays, the code is more complex. For example,
if x is a global array of a scalarset type, and indexed by
the same scalarset, then the following code fragment is
generated:

/* permute values */

for (i = 0; i < SCALAR_SIZE; i++) {

if (state->x[i] < SCALAR_SIZE)

state->x[i] = perm[state->x[i]];

}

/* permute indices */

{ uchar buf[SCALAR_SIZE];

memcpy(buf, state->x, sizeof(state->x));

for (i = 0; i < SCALAR_SIZE; i++)

state->x[perm[i]] = buf[i];

}

Notice that when permuting indices we have to use
a buffer.

4.4.3 Strategy segmented

State *rep_segmented(State *orig_now) {

int perm[MAX_SCALAR_SIZE];

memcpy(&tmp_now, orig_now, vsize);

/* sort the main array and compute

the sorting permutation */

...

/* locate blocks */

...

/* find the representative */

apply_perm(perm, &tmp_now);

memcpy(&min_now, &tmp_now, vsize);

if (num_of_blocks > 0)

permute_blocks(0, block_start[0],

block_size[0]);

return &min_now;

}

First, the main array is sorted as in the sorted strat-
egy. Second, the segments of equal values are located,
in the sorted main array, by a straightforward linear
algorithm. The information about the segments (called
blocks henceforth) is stored in the following global data
structures:

int num_of_blocks;

int block_start[MAX_SCALAR_SIZE],

block_size[MAX_SCALAR_SIZE];

Finally, the canonical representative is found by pro-
cedure permute blocks that generates all permutations
of indices in successive blocks, excluding the identity per-
mutation. Its code is given in Fig. 6. Each permutation
is then applied to the current state, and the lexicograph-
ically smallest result is chosen.

The procedure uses double recursion, to assure that
the number of calls to apply swap and comparisons be-
tween tmp now and min now is minimal. It is a generaliza-
tion of permute scalar used in rep full. Conceptually,
the indices of separate blocks, when considered relative
to the start of a respective block, can be perceived as
separate scalarsets. Inside one block, all transpositions of
the block’s indices are generated as in permute scalar.
The double recursion is used to properly compose the
permutations of separate blocks, by chaining the invoca-
tions of permute blocks.

4.4.4 Cost of full, sorted and segmented

Let us recall the general formula for computing a repre-
sentative in all our strategies:

rep(s) = µ({p∗(s) : p ∈ π(s)})

Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin 11

void permute_blocks(int block, int start,

int size) {

int i, p, offset,

pos[MAX_SCALAR_SIZE],dir[MAX_SCALAR_SIZE];

/* go to the last block */

if (++block < num_of_blocks)

permute_blocks(block, block_start[block],

block_size[block]);

block--;

/* the same as permute_scalar, but apply

transposition is changed to */

...

swap_in_block(block, p, p+1);

...

}

void swap_in_block(int block, int p1, int p2) {

/* apply transposition p1 <-> p2 */

apply_swap(&tmp_now, p1, p2);

if (memcmp(&tmp_now, &min_now, vsize) < 0)

memcpy(&min_now, &tmp_now, vsize);

/* permute the next block */

if (++block < num_of_blocks)

permute_blocks(block, block_start[block],

block_size[block]);

}

Fig. 6. Permuting blocks

Let |s| denote the size of state s (say, in bytes), |π(s)|
denote the cardinality of set π(s), and 〈x〉 denote the cost
of computing x. Using this notation,

〈rep(s)〉 = 〈π(s)〉 + |π(s)| · 〈p∗(s)〉 + 〈µ(X)〉

where X = {p∗(s) : p ∈ π(s)}.
In all our strategies, µ(X) finds the lexicographically

smallest state in set X, using the linear search algorithm
that performs |X|−1 comparisons between states. Notice
that |X| = |π(s)| so 〈µ(X)〉 can be approximated by
(|π(s)| − 1) · |s| where the number of state comparisons
is |π(s)| − 1 and the cost of one such comparison comes
down to |s|. On the other hand, 〈p∗(s)〉 (i.e., the cost of
lifting a pid permutation to a state) can be approximated
by |s|. Thus,

〈rep(s)〉 ≈ (2|π(s)| − 1) · |s| + 〈π(s)〉.

For full, 〈π(s)〉 is the cost of generating all pid permu-
tations, so it is proportional to n! where n is the size of
scalarset I. Also, |π(s)| = n!. Thus, 〈rep full(s)〉 ≈ n! · |s|.

For sorted, 〈π(s)〉 is the cost of generating one per-
mutation of pids that sorts an array of size n. This cost
depends on the algorithm used to sort the array. In our
implementation, we use a naive n2 algorithm. There is
no need for a more sophisticated n log(n) algorithm since
n is usually very small (say, less than 5). Notice that
|π(s)| = 1. Thus, 〈repsorted(s)〉 ≈ n2 + |s|.

For segmented, 〈π(s)〉 is proportional to n2+|π(s)|−1
since we first generate a sorting permutation of pids (in
cost n2) and then generate the rest of permutations in
the set π(s) (in cost |π(s)| − 1). For n > 0,

〈repsorted(s)〉 ≤ 〈repsegmented(s)〉 ≤ 〈rep full(s)〉.

5 Experimental Results

We tried our prototype implementation on several ex-
amples. The obtained reductions were often very close
to the theoretical limits, thus, we were able to obtain re-
ductions of several orders of magnitude in the number of
states. Also, due to the significantly smaller number of
states that had to be explored, in all the cases the ver-
ification with symmetry reduction was faster than the
one without it. The experiments showed that there is
no favorite among the reduction strategies regarding the
space/time ratio. This suggests that it makes sense to
have all strategies (maybe except full) as separate op-
tions of the extended model-checker.

In the verification experiments we used Spin and
SymmSpin both with and without the partial order re-
duction (POR) option. In most of the cases there was
a synergy between the symmetry and the partial order
reductions. The two reduction techniques are orthogonal
because they exploit different features of the concurrent
systems, therefore, their cumulative effect can be used
to obtain more efficient verification.

In the sequel, we present the results for four exam-
ples. All experiments were performed on a Sun Ultra-
Enterprise machine, with three 248 MHz Ultra SPARC-
II processors and 2304MB of main memory, running the
SunOS 5.5.1 operating system. In the tables below the
verification times (in the rows labeled with “t”) are given
in seconds (s.x), minutes (m:s), or hours (h:m:s); the
number of states (in the rows labeled with “s”) is given
directly or in millions (say, 9.1M); o.m. stands for out
of memory, and o.t. denotes out of time (more than 10
hours); +POR and -POR mean with and without POR,
respectively.

5.1 Peterson’s Mutual Exclusion algorithm

For this well known example [26]4 we verified the mutual
exclusion property. The results for different numbers N
of processes are shown in Table 1.

The gain due to the symmetry reduction is obvious.
The obtained reductions, ranging from 49% (for N = 2)
to 99% and more (for N ≥ 5) are close to the theoretical
maxima, which can be explained with the high degree

4 In our implementation the global predicate that guards the
entry in the critical section is checked atomically. As this guard
ranges over all process indices, the atomicity was necessary due to
the restrictions on statements that can be used such that the state
space symmetry is preserved.

12 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

Table 1. Results for Peterson’s mutual exclusion algorithm.

N 2 3 4 5 6 7

+POR -POR +POR -POR +POR -POR +POR -POR +POR -POR +POR -POR

s 154 263 4992 11318 202673 542921 9.1M o.m. o.m. o.m. o.m. o.m.

no sym. t 6.5 5.6 6.8 6.3 25.0 1:09 19:04 — — — — —

s 89 134 980 1976 9634 24383 86112 262749 700543 2.5Ma 5.3Ma o.m.

full t 6.5 5.6 6.7 5.9 10.4 19.3 2:35 12:02 2:04:03 o.t. o.t. —

seg. t 6.7 5.6 6.6 5.8 8.5 12.4 38.0 2:31 7:36 44:40 1:56:00 —

pc-seg. t 6.5 5.6 6.6 5.8 8.4 11.3 37.4 1:59 10:01 40:46 4:26:32 —

s 113 160 1877 3967 35644 88489 595843 1.8M 8.8M o.m. o.m. o.m.

sorted t 6.5 5.6 6.6 6.1 11.0 21.6 1:42 8:13 28:37 — — —

s 92 137 1149 2396 20339 46804 401423 942786 9.6M o.m. o.m. o.m.

pc-sort. t 6.5 5.6 6.6 5.8 10.2 15.0 1:36 4:53 54:53 — — —

a The number of states is obtained with segmented and pc-segmented.

of symmetry in the protocol. The verification times are
also better, even with the straightforward full strategy,
due to the smaller number of states that are generated
during the search. We used both symmetry and partial
order reduction (which is default in standard Spin), sep-
arately and in combination. Standard Spin with partial
order reduction could not handle more than 5 processes.
However, the segmented versions of the symmetry heuris-
tics alone were sufficient for N = 6. For N = 7 we had to
use a combination of both reduction techniques in order
to stay inside the available memory.

The sorted strategies are comparable with their seg-

mented counterparts only for small values of N . For
greater values they deteriorate and even the possible gain
in time over the segmented versions disappears because
of the greater number of states that have to be explored.

One can also expect that as N increases pc-segmented

and pc-sorted will loose the advantage they have over
segmented and sorted, for smaller values of N . The reason
is that the number of different elements in the main array
of segmented and sorted increases as N increases, while
the number of values of the pc counter stays the same.
(We use as a main array the array of flags. Whenever
process i enters the competition for the critical section,
it sets flag i to a value between 1 and N −1. The default
value is 0. Notice that the values of the flag array are not
of the scalarset type I , although their range is the same
as the range of I .) Intuitively, the greater versatility of
the values in the main array, the fewer permutations
have to be generated on average, in order to canonicalize
the state. This tendency is already visible for N = 6 (for
which sorted is winning over pc-sorted) as well as for N =
7 (for which segmented is better than pc-segmented).

5.2 Data Base Manager

In this example, borrowed from [28], one considers a sys-
tem that consists of N ≥ 2 data base managers, which
modify a data base and exchange messages to ensure the
consistency of the data base contents. Our model deals
with the procedural part of the protocol, i.e., with the
message exchange, by abstracting from the actual mod-
ification of the data base. Initially all managers are in
inactive state until one of them modifies the data base.
This manager in one atomic step reserves the data base
for itself and sends a message to every other manager.
After that it waits for acknowledgments from the other
managers. All other managers concurrently perform a
two step sequence: reception of the message, and sending
of an acknowledgment. When all acknowledgments are
available, the manager who initially modified the data
base and started the whole procedure, reads them. At
the same moment it also releases the data base so that
it can be modified by the other managers, after which
it returns to inactive state. We checked the model for
absence of deadlock. The results are given in Table 2.

Our experiments are in accord with the theoretically
predicted results from [28]: both symmetry and POR
applied separately reduce the exponential growth of the
state space to quadratic, and in combination they give
linear growth. Unlike in the previous example, this time
pc-segmented strategy is a clear winner over segmented.
The explanation is again in the diversity of the elements
occurring in the sorted array – the only possible val-
ues of the main array for segmented are 0 and 1, while
the pc counter has seven different values. (The main ar-
ray consists of boolean flags which are set to 1 when a
manager reserves the data base and sends a message to
all the other processes.) It is interesting that pc-sorted

in combination with POR is by far the most successful
strategy. It achieves the same reduction as the canonical

Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin 13

Table 2. Results for the Data Base Manager example.

N 7 8 9 10 11 12

+POR -POR +POR -POR +POR -POR +POR -POR +POR -POR +POR -POR

s 100 5112 130 17506 164 59060 202 196842 244 649552 290 2.1M

no sym. t 0.0 0.5 0.0 1.9 0.0 8.2 0.0 32.1 0.0 2:11 0.0 8:27

s 16 31 18 39 20 48 22 58 24 69 — —

full t 0.5 2.0 4.6 24.5 48.0 6:16 9:08 1:27:40 1:55:09 22:07:36 o.t. o.t.

seg. t 0.3 0.4 2.8 3.8 28.3 39.1 5:22 7:20 1:06:32 1:30:53 o.t. o.t.

pc-seg. t 0.1 0.1 0.8 1.0 7.3 9.1 1:16 1:33 15:16 17:14 o.t. o.t.

s 27 250 31 505 35 1016 39 2039 43 4086 47 8181

sorted t 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.6 0.0 1.3 0.0 3.1

s 16 58 18 91 20 155 22 245 24 415 26 659

pc-sort. t 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.3

strategies, but within much shorter time. It remains to
be seen whether this is just a peculiarity of this model,
or it occurs for a wider class of examples.

5.3 The Initialization Protocol

Assume that we are given a system of n processes each
consisting of an initial part and a main part. The data
structures can have arbitrary initial values. The role of
the Initialization Protocol from [17] is to synchronize the
processes such that none of them can enter its main part
before all the others have finished their initial parts.5

Process synchronization is done via shared boolean vari-
ables. Each process has so called co-component process
whose task is to manage the synchronization of these
boolean variables. We refer the reader to [17] for more
details.

The protocol is an example of a system with one
scalar variable and two process families indexed by this
scalar – the family of processes that are synchronized
and the family of their co-components. In such a case
one can expect the same maximal amount of reduction
of n! (where n is the family size) as with one family.

We verified the correctness of the algorithm for sev-
eral values of n by placing before the main part of each
process an assertion which checks that all the other pro-
cesses have terminated their initial parts. The results are
given in Table 3.

Because of the intensive use of global variables, par-
tial order reduction had almost no effect in this example.
Thus, the state space reduction was mostly due to the
symmetry. The canonical heuristic segmented and pc-

segmented prevailed over the non-canonical ones regard-
ing both space and time. Compared to full, they were
significantly faster for larger values of n. Better perfor-
mance of pc-segmented and pc-sorted over segmented and
sorted respectively, can be explained by the fact that

5 Note that this would be trivial if we could assume that the
variables’ initial values were known.

the main array that was used in the latter strategies is
of boolean type. This means that the elements of the
main array can have only two values, in contrast with
the program counter which ranges over at least 15 dif-
ferent values. Intuitively, the greater versatility of values
in the pc array means that fewer permutations have to be
generated on average in order to canonicalize the state.

5.4 Base Station

This example is a simplified version of MASCARA –
a telecommunication protocol developed by the WAND
(Wireless ATM Network Demonstrator) consortium [9].
The protocol is an extension of the ATM (Asynchronous
Transfer Mode) networking protocol to the wireless do-
main. We present the results for two models of the pro-
tocol.

Our first model represents a wireless network con-
necting N ≥ 2 mobile stations (MS) that may commu-
nicate with each other, using a limited number (M ≥ 1)
of radio channels provided by one base station BS. More
specifically, when MS A wants to send a message to MS
B it must request a channel from BS. Provided there
are channels available, A is granted one, call it c. If B
wants to receive messages, it queries BS. As there is a
pending communication for B through c, BS assigns c
to B. After the communication has taken place, both
A and B return the channel to BS. The results given
in Table 4 are for checking for unreachable code, with
M = 2.

For N = 2 the symmetry reduction approaches the
theoretical limit of 50%. For N = 3 standard Spin ran
out of memory, while with symmetry reduction it was
possible to verify the model. In this example POR did
not play a significant role. Also, there was no clear pref-
erence between segmented, pc-segmented and sorted.

In the second model, instead of having N stations
which can both receive and send messages, we consider a
network connecting ns ≥ 1 sending mobile stations and
nr ≥ 1 receiving mobile stations. Another important

14 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

Table 3. Results for the Initialization Protocol example.

n 2 3 4 5

+POR -POR +POR -POR +POR -POR +POR -POR

s 2578 2578 131484 131484 7.0M 7.0M o.m. o.m.

no sym. t 6.4 1.1 19.3 12.2 18:50 16:31 — —

s 1520 1521 26389 26399 386457 386536 5.3M o.m.

full t 6.2 1.0 11.4 6.0 4:53 4:46 5:38:05 —

seg. t 6.3 1.0 11.1 5.4 3:19 3:04 2:28:20 —

pc-seg. t 6.3 0.9 10.1 4.4 1:54 1:39 47:03 —

s 2344 2344 98602 98602 4.2M 4.2M o.m. o.m.

sorted t 6.3 1.0 17.9 11.0 12:13 12:22 — —

s 1607 1607 40395 40395 987830 987830 o.m. o.m.

pc-sort. t 6.3 0.1 11.8 5.7 3:55 3:17 — —

Table 4. Results for the Base Station example (first model).

N 2 3

+POR -POR +POR -POR

s 15613 15621 o.m. o.m.

no sym. t 7.6 6.4 — —

s 7808 7812 3.4M 3.4M

full t 7.5 6.3 17:39 13:00

seg. t 5.8 6.3 12:10 9:46

pc-seg. t 5.9 6.4 13:24 10:18

s 7856 7860 3.9M 3.9M

sorted t 7.2 6.3 12:58 9:48

s 8282 8286 5.1M 5.1M

pc-sort. t 7.5 6.3 16:48 12:57

Table 5. Results for the Base Station example (second model).

ns = 2 ns = 3 ns = 2

nr = 2 nr = 2 nr = 3

+POR -POR +POR -POR +POR -POR

s 4.6M 9.0M o.m. o.m. o.m. o.m.

no sym. t 5:02 13:48 — — — —

s 1.2M 2.3M 9.0M o.m. 9.4M o.m.

full t 1:41 5:03 28:57 — 30:32 —

pc-seg. t 1:32 4:54 19:29 — 20:36 —

s 1.7M 3.5M o.m. o.m. o.m. o.m.

pc-sort. t 1:58 6:03 39:02 — — —

difference is that the communication is modeled with
Promela channels, instead of global variables. For the
rest the description of the protocol given for the first
model applies also to the second one.

Thus, there are two families of symmetric processes
in the second model: the family of sending stations and
the family of receiving stations. Unlike in the Initial-
ization Protocol, the two families are independent, and,
consequently, indexed with two different scalar sets.

On this example we could apply only pc-segmented

and pc-sorted because there was no main array that could
be used for sorted and segmented. One can see that for
the canonical strategies the reduction indeed approaches
the theoretical limit ns! · nr!. (In general, for a system
with k independent process families indexed by k scalar
sets, the reduction due to symmetry is limited by n1! ·
n2! · . . . · nk!, where ni, 1 ≤ i ≤ k, is the number of
processes in the i-th family.)

With the usage of Promela channels instead of global
variables, the contribution of the partial order reduction
became significant (Table 5), which was not at all the
case in the first model. One can also notice the orthog-
onality of the two heuristics – namely, the factor of re-
duction due to symmetry was almost the same with or
without POR.

6 Conclusions and Future Work

We have presented SymmSpin, an extension of Spin with
a symmetry-reduction package. The package is based on
a heuristic for solving instances of the orbit problem.
It provides the four reduction strategies based on this
heuristic (sorted/pc-sorted and segmented/pc-segmented)
as well as the full reduction strategy. Our implementa-
tion deals with almost all Promela features, including
queues, multiple scalar sets, and multiple process fam-
ilies. The only remaining restrictions are that the ele-
ments of queues are as yet restricted to simple, non-
structured types, and that no dynamic process creation
is allowed.

The resulting package has been described at a de-
tailed level. For maximal modularity, the implementa-
tion is in the form of a Tcl script that operates on the ver-
ification engine produced by Spin. The full source code
is available from the authors.

We performed an extensive series of experiments. The
results show that there is no uniform winner: It depends
on the program which of the strategies performs best.

Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin 15

In some cases, this was in fact predicted by the form of
the program. Thus, it make sense to have all strategies
(maybe except full) as separate options of the extended
model-checker.

The most natural next step would be to extend the
Promela syntax to allow specifications of scalarsets di-
rectly instead of via an accompanying file. This will fa-
cilitate the automatic verification of the syntactic condi-
tions along the lines of [23], that are needed to ensure the
soundness of the analysis. With the present implemen-
tation this is still a task for the user. A more ambitious
attempt would be the automatic detection of scalarsets
directly from the Promela sources.

Another extension is to also allow the verification of
(symmetric) liveness properties. It can be shown [1] that
the nested depth-first search algorithm of [8], which is
used in Spin for cycle detection, remains correct under
the symmetry reduction. This implies that we can go be-
yond safety properties, or more precisely, the full class
of ω-regular correctness properties can be handled by
SymmSpin.However, as also shown in [1], Spin’s algorith-
mic notion of process fairness, which is usually needed
in the verification of liveness aspects, is not compatible
with symmetry reduction. Hence, this is a topic for fu-
ture research.

References

1. D. Bošnački, Nested Depth First Search Algorithms for
Symmetry Reduction in Model Checking, in Enhancing
State Space Reduction Techniques for Model Checking,
Ph.D. Thesis, Department of Mathematics and Com-
puter Science, Eindhoven University of Technology, 2001.

2. D. Bošnački, D. Dams, Integrating real time into Spin: a
prototype implementation, in S. Budkowski, A. Cavalli,
E. Najm (eds), Proc. of FORTE/PSTV’98 (Formal De-
scription Techniques and Protocol Specification, Testing
and Verification), 423–438, Paris, France, Oct. 1998.

3. D. Bošnački, D. Dams, L. Holenderski, A Heuristic
for Symmetry Reductions with Scalarsets, Proc. of
FME’2001 (Fomal Methods Europe), LNCS 2021, 518–
533, Springer, 2001.

4. D. Bošnački, D. Dams, L. Holenderski, Symmetric Spin,
Proc. of SPIN’2000 (The 7th International SPIN Work-
shop on Model Checking of Software), LNCS 1885, 1–19,
Springer, 2000.

5. D. Bošnački, D. Dams, L. Holenderski, N. Sidorova,
Model checking SDL with Spin, Proc. of TACAS’2000
(Tools and Algorithms for the Construction and Analy-
sis of Systems), LNCS 1785, 363–377, Springer, 2000.

6. E.M. Clarke, R. Enders, T. Filkorn, S. Jha, Exploit-
ing symmetry in temporal logic model checking, Formal
Methods in System Design, Vol. 19, 77–104, 1996.

7. E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking,
The MIT Press, 2000.

8. C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis,
Memory efficient algorithm for the verification of tem-
poral properties, Formal Methods in System Design I,
275-288, 1992.

9. I. Dravapoulos, N. Pronios, S. Denazis et al, The Magic
WAND, Deliverable 3D2, Wireless ATM MAC, Sep 1997.

10. E.A. Emerson, Temporal and modal logic, in Jan van
Leeuwen (ed.), Formal Models and Semantic, Vol. B of
Handbook of Theoretical Computer Science, Chap. 16,
995–1072, Elsevier/The MIT Press, 1990.

11. E.A. Emerson, J. Havlicek, R.J. Trefler, Virtual Sym-
metry Reduction, in Proc. of 15th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’00), 121–131,
Springer, 2000.

12. E.A. Emerson, S. Jha, D. Peled, Combining partial order
and symmetry reductions, in Ed Brinksma (ed.), Proc. of
TACAS’97 (Tools and Algorithms for the Construction
and Analysis of Systems), LNCS 1217, 19–34, Springer,
1997.

13. E.A. Emerson, A.P. Sistla, Symmetry and model check-
ing, in C. Courcoubetis (ed.), Proc. of CAV’93 (Com-
puter Aided Verification), LNCS 697, 463–478, Springer,
1993.

14. E.A. Emerson, R.J. Trefler, Model checking real-time
properties of symmetric systems, Proc. of the 23rd In-
ternational Symposium on Mathematical Foundations of
Computer Science (MFCS), 427–436, Aug. 1998.

15. E.A. Emerson, R.J. Trefler, From asymmetry to full
symmetry: new techniques for symmetry reduction in
model checking, Proc. of CHARME’99 (The 10th IFIP
WG10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods), Bad
Herrenalb, Germany, Sep. 1999.

16. E.A. Emerson, A.P. Sistla, Utilizing symmetry
when model-checking under fairness assumptions: an
automata-theoretic approach, ACM Transactions on
Programming Languages and Systems, 19(4):617–638,
July 1997.

17. W.H.J. Feijen, A.J.M. van Gasteren, On a method of
multiprogramming, Springer-Verlag, 1999.

18. P. Godefroid, Exploiting symmetry when model-checking
software, Proc. of FORTE/PSTV’99 (Formal Methods
for Protocol Engineering and Distributed Systems), 257–
275, Beijing, Oct. 1999.

19. P. Godefroid, A.P. Sistla, Symmetry and Reduced Sym-
metry in Model Checking, in G. Berry, H. Comon,
A. Finkel (eds.), Proc. of CAV’2001 (13th Conference
on Computer Aided Verification), LNCS 2102, 91–103,
Springer, 2001.

20. V. Gyuris, A.P. Sistla, On-the-fly model checking under
fairness that exploits symmetry, in O. Grumberg (ed.),
Proc. of CAV’97 (Computer Aided Verification), LNCS
1254, 232–243, Springer, 1997.

21. G.J. Holzmann, Design and Validation of Com-
munication Protocols, Prentice Hall, 1991. Also:
http://netlib.bell-labs.com/netlib/spin/

whatispin.html

22. C.N. Ip, D.L. Dill, Better verification through symmetry,
in D. Agnew, L. Claesen, R. Camposano (eds), Proc. of
the 1993 Conference on Computer Hardware Description
Languages and their Applications, Apr. 1993.

23. C.N. Ip, D.L. Dill, Better verification through symmetry.
Formal Methods in System Design, Vol. 9, 41–75, 1996.

24. C.N. Ip, State Reduction Methods for Automatic For-
mal Verification, PhD thesis, Department of Computer
Science of Stanford University, Dec 1996.

16 Dragan Bošnački and Dennis Dams and Leszek Holenderski: Symmetric Spin

25. V. Lipskiy, Kombinatorika dlya programmistov, Mir,
Moscow, 1988. (In Russian)

26. N.A. Lynch, Distributed Algorithms, Morgan Kaufmann
Publishers, 1996.

27. R. Nalumasu, G. Gopalakrishnan, Explicit-enumeration
based Verification made Memory-efficient, Proc. of
CHDL’95 (Computer Hardware Description Languages),
617-622, Chiba, Japan, Aug. 1995.

28. A. Valmari, Stubborn sets for reduced state space gener-
ation, Advances in Petri Nets 1990, LNCS 483, 491–515,
Springer, 1991.

