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Abstract

Given a set S of points in a metric space with distance function D, the
nearest-neighbor searching problem is to build a data structure for S so
that for an input query point q, the point s ∈ S that minimizes D(s, q) can
be found quickly. We survey approaches to this problem, and its relation
to concepts of metric space dimension. Several measures of dimension
can be estimated using nearest-neighbor searching, while others can be
used to estimate the cost of that searching. In recent years, several data
structures have been proposed that are provably good for low-dimensional
spaces, for some particular measures of dimension. These and other data
structures for nearest-neighbor searching are surveyed.

1 Introduction

The problem of nearest-neighbor search is to build a data structure for a set of
objects so that, given a query object q, the nearest object in the set to q can be
found quickly.

That is, suppose U is a set and D is a distance measure on U, a function that
takes pairs of elements of U and returns a nonnegative real number. Then given
a set S ⊂ U of size n, the nearest-neighbor searching problem is to build a data
structure so that, for an input query point q ∈ U, an element a ∈ S is found
with D(q, a) ≤ D(q, x) for all x ∈ S. We will call the members of S sites, to
distinguish them from other members of U, and say that the answer a is nearest
in S to q. Put another way, if we define D(x, S) as min{D(x, s) | s ∈ S}, then
we seek the site s such that D(q, s) = D(q, S).

This problem has been studied for a long time, and has many names in a
large and diverse literature. In an early proposal for a solution, due to McNutt
(as discussed by Knuth[Knu98]), it was called the post office problem. In another
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early proposal, it was called best-match file searching [BK73]. In the database
or information-retrieval literature, it might be called the problem of building an
index for similarity search [HS03]. In the information theory literature, it arises
as the problem of building a vector quantization encoder [LBG80, GN93]. In
the pattern recognition (or statistics or learning theory) literature, it might be
called the problem of building a fast nearest-neighbor classifier [FJ51, DGL96].

This chapter surveys the problem of nearest neighbor searching in the general
metric space setting, together with additional dimensionality properties that
make instances of the problem tractable. The meaning of “tractable” here is
vague, but mainly refers to data structures that are not too big, but allow queries
that are fast, where “not too big” means roughly O(n), and “fast” means o(n),
as n →∞.

Some basic constructions of metric spaces are also reviewed, as are some ways
of “repairing” a distance measure that does not quite satisfy all the properties
needed for a metric space.

Some concepts of dimension we consider include the Assouad dimension,
the box dimension, and a dimension based on doubling measures. These con-
cepts have been studied in measure theory and harmonic analysis. As dis-
cussed in Subsection 5.2, the theoretical computer science community has in
recent years begun to study spaces of bounded Assouad dimension, and some
of their results include provably efficient data structures for nearest-neighbor
searching [Cla99, KL04, HPM05]. Some stronger efficiency results have also
been given for spaces satisfying a stronger condition based on doubling measure
[KR02, BKL04, HKMR04]. Some of these algorithms, or related ones, have been
implemented, with promising results [Cla03, BKL04]. Also, some experimental
results have been obtained regarding the correlation dimension of a space and
the cost of some nearest-neighbor searching problems [BF98].

These results are described here in the context of the large variety of al-
gorithms and data structures that have been proposed for nearest-neighbor
searching. It is remarkable that there are so many such algorithms, especially
considering that the distance measure is used simply as a “black box” function
that takes two objects and returns a nonnegative real number.

To put these applications of dimensional properties in perspective, we sur-
vey a variety of dimensional concepts for metric spaces and for metric measure
spaces, and relate them to nearest neighbors. In addition to the box and As-
souad dimensions, we consider also for metric spaces the Hausdorff and packing
dimensions. For metric measure spaces, the pointwise, energy, and quantization
dimensions are discussed, as well as doubling measures, and also the general
Rènyi dimensions, which include the information and correlation dimensions.
Nearest-neighbor searching is a key component of several estimators of these
dimensions, while some estimates of dimension allow bounds for costs related
to nearest-neighbor queries. These relations are discussed in Section 5.

As an example of the interplay of dimensions and nearest neighbors, suppose
a metric space has a measure. Here we will assume that the measure is a
probability distribution. The pointwise dimension at point x tells how quickly
the measure of a ball B(x, ε) centered at x goes to zero, as its radius ε goes to
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zero. The pointwise dimensions of points in the space are closely related to the
Hausdorff, information, and energy dimensions of the measure. Now suppose
a set of n sites S comprises random points that are independently distributed
according to the given measure. It turns out that the pointwise dimension at x
can be estimated as the ratio of log n to the distance of x to its nearest neighbor
in S. That is, the pointwise dimension is related to how fast the nearest-neighbor
distance goes to zero as n goes to infinity. This is discussed in Subsection 4.2.
The pointwise dimension has been proposed in the database literature as a way
to determine how large the answer to a fixed-radius neighbor query is likely to
be. (Such a query asks for all sites inside a given ball.) It is a basic concept of
multifractal analysis, as used in studying dynamical systems [Pes97].

As another example: ε-nets are a kind of well-distributed subset of a met-
ric space, such that every point in the space is within distance ε of the net.
The box dimension of the space determines the rate at which the size of such
nets increases, as a function of 1/ε. There is a greedy algorithm for finding
ε-nets that has been applied to building data structures for nearest-neighbor
searching,[Bri95, Woj03, Cla03, HPS05] as well as other optimization problems
[Gon85]. These relations are discussed in Section 4 and Subsection 5.2.4.

1.1 Scope, and Survey of Surveys

There are many important aspects of nearest-neighbor searching that are not
covered here, but have been surveyed elsewhere.

Several surveys of nearest-neighbor searching in <d have been done: one
focuses on high-dimensional spaces[Ind04]; another on closest-pair problems,
including insertions and deletions of sites [Smi00]; and another [AGE+02] on
data structures to allow moving sites to be handled efficiently [Ata85, Kah91,
BGH97]. A recent survey [BBK01] and book [PM05] describe nearest-neighbor
searching from a database perspective.

There are at least two prior surveys of searching in general metric spaces
[CNBYM01, HS03]. These surveys discuss in detail many algorithms that have
arisen in practice.

The primary concern here is with reducing the number of distance evalua-
tions needed to answer a query. There is a substantial body of work on increasing
the efficiency of search by speeding up distance evaluations. Some of these tech-
niques are simple and practical, such as avoiding the evaluation of square roots,
or stopping distance evaluations when the distance value is known accurately
enough. Other techniques show that distances can be estimated quickly using
randomization. Related techniques involve the “embedding” of the metric space
in a low-dimensional space, a very active area of research [IM04].

The basic conditions for provably fast search that we consider relate to vari-
ous concepts of dimension, many of which include the possibility of nonintegral,
or fractal dimension [Fal90, Edg98]. A rigorous, thorough, and accessible intro-
duction to fractal dimension, including statistical considerations for estimators
of dimension, is given by Cutler[Cut93].
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1.2 Caveat Lector

The algorithms described in Section 3 are given only the most cursory overview.
The discussion of dimension in Section 4 may well neglect some basic conditions
needed for mathematical rigor, while the discussion of algorithms in Section 5
may not accurately reflect the data structures that are being abstracted and
simplified. The bibliography should be helpful, however.

1.3 Related Problems and Applications

Nearest-neighbor problems arise in many application areas, including informa-
tion retrieval, classification, data compression, databases, and dynamical sys-
tems. The tasks of vector quantization and nearest-neighbor classification are
illustrative.

The vector quantization problem is the following: let X denote a random
variable in U, with distribution µ. An n-quantizer for µ is a function f on U
that takes a point X to one of a set of at most n points in U. That set is called
the codebook. Let Fn be the set of all n-quantizer functions. Then the nth
quantization error for U is

Vn(µ) := inf
f∈Fn

Eρ(D(X, f(X))), (1)

the cheapest expected cost of representing X by f(X), where the cost is a
function ρ() of the distance of X to f(X), and the expectation is with respect
to the distribution µ. If the value X was information to transmit over a channel,
then an identifying number for f(X) from 1 to n could be transmitted instead,
and f(X) recovered from that number on the other end of the channel. The
quantization error is the expectation for how badly the received value f(X)
distorts the true value X.

Often U is <d, the distance is Euclidean, and ρ(a) = av for some value v > 0,
in which case the nth quantization error is of order v.

Nearest-neighbor searching arises in vector quantization as the task of im-
plementing f , after the codebook set has been chosen. Sometimes the codebook
is structured in a way that allows fast and easy search, as for example when
it comprises points on a regular grid. However, for a given distribution, the
optimal codebook may be unstructured, and look like nothing but an arbitrary
point set. (For such unstructured codebooks, the need for fast encoding has led
to the use of tree encoders, which are not guaranteed to answer a query with the
nearest site, or even a near one. However, such encoders work well in practice.)
Vector quantization, and the quantization dimension, are discussed further in
§4.3.

As noted above, the problem of classification has long been approached using
nearest-neighbor searching [DGL96]. Points in the space (typically <d) corre-
spond to sets of objects, and the point coordinates encode various properties of
the objects. Each object also has a “color,” say red or blue, corresponding to
some additional important property. The sites S are a “training set,” each of
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known color. A nearest-neighbor classifier takes as input a query point of un-
known color, and returns the color of the nearest site in the training set, or the
color of the majority of the nearest k sites. That returned value is a prediction
of the true color of the query point.

Thus the nearest-neighbor searching problem arises in finding the closest
sites in the training set. Note that, however, it is not necessary to find the near-
est sites, but only their colors. It is sometimes possible to use this simplification
of the problem to obtain a faster algorithm [MNSW00, LMG04].

We turn now to other computational problems, closely related to nearest-
neighbor searching, that arise in applications. One mentioned for classification
is k-nearest neighbors (k-NN): given an integer k and query point q, find the
k sites that are closest to q. That is, nearest-neighbor searching is the special
case of k-NN searching with k = 1. Another related problem is distance range
searching: build a data structure so that given distance value r and query point
q, all sites p ∈ S with D(q, p) ≤ r can be found quickly. If we were given the
nearest-neighbor distance D(q, S) by an oracle, then answering the range query
with parameter r = D(q, S) would answer the nearest neighbor query.

Approximate Queries. Sometimes it may not be necessary to find the near-
est neighbor, but only a (δ)-near neighbor, that is, one whose distance is within
a δ factor of the nearest distance, for some δ > 1. (Note the distinction between
“k-nearest” and “(δ)-near.”) Such approximate nearest neighbor queries are of
interest in their own right, and may have much faster algorithms than those for
nearest neighbor queries. Moreover, near neighbors can sometimes be used to
find nearest neighbors, as discussed in Subsection 5.2.

Reverse Queries. Another related problem is that of building a data struc-
ture for reverse or inverse nearest neighbor queries, where the input is similar,
but the answer is not the site nearest to query point q, but rather the sites that
have q as their (second) nearest neighbor in S ∪ {q}, that is, the answer is the
set of sites

{s ∈ S | D(s, q) ≤ D(s, S \ {s})}.

As with (forward) nearest-neighbor searching, this problem also can be gener-
alized with k and ε: given k and site q, find all sites that have q as kth nearest
neighbor, or given ε > 0, find all sites such that q is within 1+ ε of closest. This
problem has arisen as a computational bottleneck in event-driven astrophysical
simulations [AT01], and as a notion of “influence” in decision support and re-
ferral systems[KM00, SFcT03]. It also arises as a subproblem in building data
structures for nearest-neighbor queries, as mentioned in Subsection 5.2.4.

A key property for reverse queries is that in some circumstances, such as
those given for Lemma 5.1, the answer size is bounded by a value independent
of |S|, the number of elements of S. The intuition, considering points in the
plane, is that as more and more sites have q as a nearest neighbor, at some
point two of the sites must be closer to each other than to q.

Batched Queries. There are several general problems that might be solved
using a data structure for nearest-neighbor searching, or k-NN searching. For
example, the closest-pair problem is to find the two sites s and s′ such that
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D(s, s′) = min{D(p, p′) | p, p′ ∈ S, p 6= p′}. This could be solved by applying a
data structure for 2-nearest-neighbors to each site in turn. (Here we must have
2-nearest-neighbors because the closest site to a site s is s itself.) Similarly, the
all-k-nearest-neighbor (all-k-NN) problem is to find, for each site s, the k sites
closest to s. Solving this problem is a common preprocessing step for “manifold
reconstruction” in the computational geometry[FR02], learning theory[SR03],
and computer graphics[Hor03] literatures. Note that the answer to the closest-
pair problem can easily be found using the answer to the all-k-NN problem.
Similarly, the max-min distance

max
i

min
j

D(si, sj),

which has been proposed as a diversity measure [AL99], can be found among
the all-k-NN output. The correlation integral problem is a range query analog of
all-nearest neighbors: given a value r > 0, find all pairs of sites within distance
r of each other. This problem arises in computing the correlation dimension of
S, discussed in Subsection 4.2.

Bichromatic Problems In addition to the “chromatic” problem of nearest-
neighbor classification mentioned above, another class of problems is bichro-
matic. The input is two sets S and S′, and the closest pair of sites, one from
each set, is desired. (That is, sites in S are “red,” and those in S′ are “blue,”
and the closest two-color pair is wanted, hence the problem is bichromatic.)
Another bichromatic problem is called a kind of spatial join in the database
literature: given distance value D, find for each site s ∈ S, the sites in S′ that
are within distance D of s [BF98].

2 Metric Space Properties, Construction, and
Repair

So far, we have only described nearest-neighbor searching problems in great
generality, and have not even given any properties of the distance measure D,
except that it maps from pairs of points to real numbers. In instances of these
problems, U and D have many properties that can be used to obtain solutions
to the nearest-neighbor problem. The main property that often holds is that
(U, D) is a metric space, described next. An additional condition that often
applies is that (U, D) has bounded dimension, for some concept of dimension,
as discussed in Section 4.

2.1 Metric Spaces

The distance function D of a metric space (U, D) satisfies the following condi-
tions, for all x, y, z ∈ U:

1. nonnegativity: D(x, y) ≥ 0;

2. small self-distance: D(x, x) = 0;
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3. isolation: x 6= y implies D(x, y) > 0;

4. symmetry: D(x, y) = D(y, x);

5. the triangle inequality: D(x, z) ≤ D(x, y) + D(y, z).

2.2 Distance Measure Repairs

A great many instances of nearest-neighbor searching naturally have an associ-
ated metric space. Moreover, it is worth noting that if any one of the conditions
3 to 5 fails, while the others hold, there is a natural associated function that is
a metric, described next.

Condition 3, isolation, fails: here (U, D) is a called a pseudometric. Partition
U into equivalence classes based on D, where x and y are equivalent if and only
if D(x, y) = 0. With the natural distance D([x], [y]) = D(x, y) on the classes,
the result is a metric space.

Condition 4, symmetry, fails: (U, D) is a quasi-metric. The related measure
D̂(x, y) := (D(x, y) + D(y, x))/2 will satisfy symmetry, and so yield a metric
space.

Condition 5, the triangle inequality, fails: a semimetric, or positively-weighted
undirected graph. A related metric can be found using shortest paths: let

D̂(x, y) := inf
∑

i

D(zi, zi+1),

where the infinum is taken over all sequences in U of the form

x = z1, z2, . . . , zN = y,

for all N > 1. Note that D̂ satisfies the triangle inequality, and is a metric, pos-
sibly after patching up the “small self-distance” condition. This is the shortest
path distance in the graph whose vertices are the points, a graph metric.

This repair of the triangle inequality is often used in the other direction:
given a finite metric space (U, D), a graph with vertex set U and with few edges
is found, such that the resulting graph metric is a good approximation to the
original metric D. Such graphs are called spanners; these have been the focus
of considerable research and application.

Another conceivable repair for the triangle inequality is to use D̂(x, y) :=
D(x, y)1/w; for sufficiently large w, D̂ satisfies the triangle inequality. If only
w = ∞ will suffice, then the uniform metric (D(x, y) = 1 if x 6= y) is the
resulting D̂. Otherwise, with w < ∞, this approach might be of interest, since
it preserves inequalities among distances, so the nearest neighbor in D is also
the nearest in D̂. For finite spaces, maxx,y,z∈U,x 6=y log2(D(x, z)/D(x, y)) would
be large enough, for example; this quantity is bounded by the spread, which is
discussed in Subsection 5.2. Note that this transformation preserves distance
rank: if y is farther from x than z, it will also be under the repaired version. So
distance measures that do not obey the triangle inequality might be transformed
into metrics, with the answers to nearest-neighbor queries preserved. On the
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other hand, this transformation flattens the distance, and so may make clusters
less distinct, and degrade some searching algorithms.

The repair of quasi-metrics given above is computationally trivial. Pseudo-
metrics do not really need “repair” for nearest-neighbor searching: it is only
necessary to keep in mind that the answer is a representative of an equivalence
class, and the possibility that distinct sites have distance zero. The repair of the
triangle inequality may be difficult to apply in the context of nearest-neighbor
searching (although see the string edit distance below). However, graph metrics
are a concept of considerable interest and importance in optimization [IM04].
Given an arbitrary distance function (mapping from ordered pairs to the non-
negative reals) that has D(x, x) = 0, an associated metric could be found by
using shortest paths to obtain a function that satisfies the triangle inequal-
ity, then averaging to enforce symmetry, and finally grouping into equivalence
classes to achieve isolation.

2.3 Metric Space Constructions

One very basic metric space for any given set U is, as noted, the uniform metric,
where for all x, y ∈ U, D(x, y) = 1 if x 6= y, and D(x, x) = 0. Another basic
space is the set of real numbers <, with distance |x− y| for x, y ∈ <. Moreover,
metric spaces can be constructed from other spaces. In the following, suppose
(U, D) is a metric space, as are some (U1, D1) . . . (Ud, Dd).

• Submetrics. Plainly, any (U′, D′), where U′ ⊂ U and D′ is D restricted to
U′ × U′, is a metric space.

• Products. Let Û be the cross-product U1×U2×. . . Ud, that is, the d-tuples
over the Ui. For some value p with 1 ≤ p ≤ ∞, define D̂ as follows: for
x, y ∈ Û, let

D̂(x, y) :=

(∑
i

Di(xi, yi)p

)1/p

,

the product metric. When all Ui = < and Di(x, y) = |x − y|, this yields
<d with the `p distance measures, so D̂(x, y) = ‖x−y‖p. When p = d = 2,
this is simply the Euclidean plane. When p = 1 and all the Di are the
uniform metric, the result is the Hamming distance.

• Strings. Let U∗ denote the strings over U. Suppose D̂ is a distance measure
on U∗ defined as follows: when deletion or addition of one character from
x yields y, then D̂(x, y) = 1; when replacement of a character a in x by a
character b yields y, then D̂(x, y) = D(a, b). Then (U∗, D̂) is a semimetric,
and its shortest path “repair,” as discussed above, is called the string
edit, or Levenshtein distance. In other words, the string edit distance
between x, y ∈ U∗ is the minimum cost sequence of deletion, insertion, or
replacement operations to obtain y from x. If deletion and insertion have
infinite cost, then this is a kind of Hamming distance on strings. This
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measure might be used for spelling correction, and for comparing genetic
sequences.

• Subsets. The Hausdorff distance between subsets of U is

D̂(S, T ) := min{D′(S, T ), D′(T, S)},

where
D′(S, T ) := sup

s∈S
inf
t∈T

D(s, t).

Such a distance might be used for geometric shapes. (Technically, this is
only a pseudometric, but it is a metric for all closed bounded subsets.)

Another commonly used distance between subsets is

D(S, T ) := inf
s∈S,t∈T

D(s, t).

Note that this is not a metric.

When U has a measure µ, the distance µ(A∆B) has been studied, where
A∆B is the symmetric difference of A and B; this metric generalizes the
Hamming distance.

• Nonnegative combinations. Suppose the Ui are all equal, a set U, but the
Di are different. Given α1 . . . αd with αi ≥ 0, define D̂ by D̂(x, y) :=∑

i αiDi(x, y). Then (U, D̂) is a metric, a nonnegative combination of the
originals. (In particular, scaling a single metric by a positive constant also
gives a metric.) In other words, the set of metrics on U is closed under
nonnegative combination, and forms a cone; such cones are well studied
[DL97].

• Metric Transforms. If f is a real-valued function of the nonnegative reals,
and f(0) = 0, and f(z) is monotone increasing and concave for z ≥ 0,
then D̂(x, y) := f(D(x, y)) is a metric [DL97]. For example, if f is twice
differentiable, f ′(z) ≥ 0, and f ′′(z) ≤ 0 for z ≥ 0, then f is monotone
increasing and concave. One such function is f(z) := zε, for any given ε
with 0 < ε < 1. The new metric D(x, y)ε is sometimes called the snowflake
or power transform of the original. The function with f(z) = z/(1 + z)
also satisfies the given conditions, and yields a bounded distance measure.

• Steinhaus Transform. If (U,D) is a metric space and a ∈ U , then (U, D̂)
is also a metric space, where

D̂(x, y) :=
2D(x, y)

D(x, a) + D(y, a) + D(x, y)
.

This is sometimes called the Steinhaus transform[DL97].
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When this transform is applied to the distance D(A,B) = µ(A∆B), and
with a being the null set Φ, the result is

D̂(A,B) =
2µ(A∆B)

µ(A∆Φ) + µ(B∆Φ) + µ(A∆B)

=
2µ(A∆B)

µ(A) + µ(B) + µ(A∆B)
=

2µ(A∆B)
2µ(A ∪B)

=
µ(A∆B)
µ(A ∪B)

,

which is called the Steinhaus distance [DL97]. The special case for finite
sets |A∆B|/|A ∪ B| is called the Tanimoto distance [RT60], resemblance
[Bro97], set similarity distance [Cha02], Jaccard distance [Jac01, Spa80],
or Marczewski-Steinhaus distance [MS58]. It has been proven a metric in
several ways [DL97, Spa80, XA03, Cha02].

The above follows in part Deza and Laurent [DL97], and also Indyk and
Matoušek [IM04]; the latter describe other metric constructions, including the
earth-mover (or Mallows[LB01]), Fréchet, and block-edit distances.

The above hardly exhausts the distances and metrics that have been con-
sidered, even by applying the constructions repeatedly. For example, for two
probability distributions on U with density functions f and g, the α-divergence
of f and g is

1
α− 1

ln
∫

fαg1−α,

which has the Kullback-Leibler (α → 1) and Hellinger (α = 1/2) divergences as
special cases. This is not a metric, however.

There is even a distance measure between metric spaces, which can be defined
for spaces Z and Z ′ as the Hausdorff distance between κ(Z) and κ(Z ′), where
these are Kuratowski embeddings of Z and Z ′, as mentioned in Subsection 3.1,
and the embeddings are chosen to minimize the Hausdorff distance, among all
such embeddings [Hei03].

The Pearson Correlation Distance. A distance measure on <d commonly
used for biological sequences is derived from the Pearson correlation: For point
x = (x1, . . . , xd) ∈ <d, let η :=

∑
i xi/d, and x′ := (x1 − η, x2 − η, . . . , xd − η),

and finally x̂ := x′/‖x′‖2. That is, the coordinates of x are normalized to have
mean zero, and to have ‖x̂‖2 = 1, a unit vector in the Euclidean norm. The
Pearson correlation of x, y ∈ <d is then the dot product x̂ · ŷ. The commonly-
used derived distance measure is 1− x̂ · ŷ. While this measure does not satisfy
the small self-distance or triangle inequality conditions for a metric, note that

‖x̂− ŷ‖2
2 = x̂ · x̂ + ŷ · ŷ − 2x̂ · ŷ = 2(1− x̂ · ŷ).

That is, the square root of the commonly used measure is proportional to the
ordinary Euclidean distance between x̂ and ŷ. Therefore, only the small self-
distance condition fails for this variant, and metric space (even Euclidean space)
methods can be used.
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3 Using Triangle Inequalities

3.1 Triangle Inequality Bounds

The properties of metric spaces allow some basic observations that can yield
significantly faster algorithms for nearest-neighbor searching. These follow from
the triangle inequality, which allows bounds on a distance we may not have
computed, say D(q, s), to be derived from two distances we may already know,
say D(q, p) and D(p, s). The following simple properties hold.

Lemma 3.1 For q, s, p ∈ U, any value r, and any P ⊂ U,

1. |D(p, q)−D(p, s)| ≤ D(q, s) ≤ D(q, p) + D(p, s);

2. D(q, s) ≥ DP (q, s) := maxp∈P |D(p, q)−D(p, s)|;

3. if D(p, s) > D(p, q) + r or D(p, s) < D(p, q)− r, then D(q, s) > r;

4. if D(p, s) ≥ 2D(p, q), then D(q, s) ≥ D(q, p).

Proof: Applying the triangle inequality in the three possible ways,

D(q, s) ≤ D(q, p) + D(p, s)
D(p, s) ≤ D(p, q) + D(q, s)
D(q, p) ≤ D(q, s) + D(s, p)

The first of these is the upper bound for D(q, s) in (1), and the other two imply
the lower bound of (1). Claim (2) follows from (1), the two parts of Claim (3)
follow from the last two inequalities, respectively, and Claim (4) follows from
Claim (3) with r = D(p, q).

The value DP (q, s), that is a lower bound for D(q, s), is used in the AESA
algorithm, as discussed below(§3.2.2).

If sites in U are represented by the vector of their distances to P , then
DP (q, s) is the `∞ (coordinate-wise maximum) distance between the represen-
tatives of q and s. Because DP (q, s) ≤ D(q, s), the mapping from the original
(U, D) to (<|P |, D∞) is said to be contractive; such contractive mappings can
be helpful in distance range searching: if the problem is mapped to the vector
representation, then the answer to a query corresponds to a superset of the
answer in the original space [HS00].

Moreover, DP (q, s) ≤ D(q, s) is an equality if both q and s are in P . That is,
the sites s ∈ P can be represented by the vector of their distances to P , and the
`∞ (coordinate-wise maximum) distance between those vectors is the original
distance. This shows that any finite space of m sites can be embedded in the
`∞ space of dimension m. This embedding is due to Kuratowski [Hei03, IM04].

3.2 Orchard’s Algorithm, AESA, Metric Trees

The above bounds from the triangle inequality give a way to avoid computing
the distance from a query point q to many of the sites, by giving bounds on
their distance that allow the sites to be ruled out as nearest.
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3.2.1 Orchard’s Algorithm

For example, consider the following simple scheme. For each site p, create a list
of sites in increasing order of distance to p.

To find the closest site to a query point q, pick some site c as an initial
candidate for the nearest site. Compute D(c, q), and walk along the list for c,
computing distances to the sites on the list. If some site s is closer to q than
c, set c := s. Now repeat the same procedure, using the new c and its list, and
so on. Suppose some such list is traversed to a site s with D(c, s) > 2D(c, q).
Then by Lemma 3.1(4), c is the closest site: any remaining site on the list for c
must be farther from q than c is. (Here c takes the role of p in the lemma.)

This algorithm, due to Orchard[Orc91], is simple and fast[ZJL02], particu-
larly in high dimension (U is <64, for example). However, it needs Ω(n2) prepro-
cessing, making it inappropriate for large databases. Even worse, it needs Ω(n2)
storage. For many applications this is fatal. However, for the target application
of vector quantization, the preprocessing and storage costs can be acceptable.

Orchard’s algorithm is an instance of a “traversal” method, and so can be
accelerated using the skip list technique, as discussed in Subsection 5.2.3.

One refinement for Orchard’s algorithm is to ensure that the distance from q
to any given site is computed only once per query; one way to do this is to keep
a mark bit for each site, which is initially zero for all sites. When the distance
to a site is computed, the mark bit is set to one, and the site is entered in a
linked list. When a site is considered for distance computation, if the mark bit
is set to one, the site can be ignored: it cannot be closer than the current site.
After a query, the linked list is walked, and the mark bits are set to zero for
sites on the list. Such a scheme allows the mark bits to be maintained in a time
proportional to the number of distance evaluations.

The Annulus Method. To ease the storage burden, a different scheme is to
keep only one of the sorted lists for Orchard’s algorithm, proceeding as follows.
For some site p∗, build a list of the other sites and their distances to p∗, sorted
by increasing distance. As in Orchard’s algorithm, maintain a candidate closest
site c. To find sites closer to q than c, walk on the list for p∗ from the position
of c, alternately in each direction, and compute distances. As in Orchard’s
algorithm, if a site s is found that is closer to q than c, set c := s and continue.
If a site s on the lower side has D(p∗, s) < D(p∗, q) − D(c, q), then no further
sites on the lower side need be considered, by Lemma 3.1(3). (Here the r of
the lemma is D(c, q), and the p of the lemma is p∗.) Similarly, if a site on the
higher side has D(p∗, s) > D(p∗, q)+D(c, q), then no further sites on the higher
side need be considered. If both conditions hold, then the current candidate c
is closest.

Orchard’s method, the annulus method, and other methods are discussed
and tested in [ZJL02].
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3.2.2 AESA

The Approximating and Eliminating Search Algorithm, or AESA [Vid86, Vid94],
applies the bounds of Lemma 3.1 in a more thorough way than Orchard’s algo-
rithm or the annulus method, and like Orchard’s method, uses Ω(n2) preprocess-
ing and storage. The AESA algorithm precomputes and stores distances D(x, y)
for all x, y ∈ S, and uses the lower bound function DP defined in Lemma 3.1.
When AESA answers a query for point q, every site x ∈ S is in one of three
states:

• Known, so that D(x, q) has been computed; the Known sites form a set P ;

• Unknown, so that only a lower bound DP (x, q) is available;

• Rejected, so that DP (x, q) is larger than the distance of the closest Known
site.

The algorithm starts with all sites x Unknown, with DP (x, q) = ∞, and
repeats the following steps until all sites are Rejected or Known:

1. pick the Unknown site x with the smallest DP (x, q);

2. compute D(x, q), so that x becomes Known;

3. update the smallest distance r known to q;

4. set P := P ∪ {x}, and for all Unknown x′, update DP (x′, q); make x′

Rejected if DP (x′, q) > r.

Based on its definition,

DP∪{x}(x′, q) = max{DP (x′, q), |D(x, q)−D(x, x′)|},

so it is easy to maintain its value as sites are added to P .
There will be a need to break ties in the picking step 1, as at the beginning,

when all sites have DP (x, q) = ∞. This might be done at random.
While this scheme is simple and answers queries quickly, the quadratic pre-

processing and storage limit its applicability. The Linear Approximating and
Eliminating Search Algorithm, or LAESA [MOV94], reduces these needs by pre-
computing and storing the distances from all sites to only a subset V of the sites,
called pivots. The algorithm proceeds as in AESA, but only applies the update
step 4 when x ∈ V . The algorithm therefore picks the pivots preferentially in
step 1.

The LAESA algorithm works best when the pivots are well separated [MOV94];
similar observations motivate many algorithms, as discussed in Subsection 5.2.2,
to use ε-nets (defined in the next section) in a way similar to pivot sets.

While AESA makes very thorough use of bounds that are implied by the tri-
angle inequality, perhaps the ultimate in that direction is the work of Shasha and
Wang[SW90], whose algorithm considers a matrix of upper and lower bounds on
the distances among points in S∪{q}, and finds the closure of the bounds implied
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by the distance evaluations. The set of evaluated distances gives a semimetric,
or nonnegatively weighted undirected graph. The triangle inequality gives an
upper bound on the distance between two sites by way of the shortest path
in the graph, and a lower bound by way of such upper bounds and evaluated
distances.

3.2.3 Metric Trees

While the storage needs of the data structures of the last section are consider-
able, those of metric trees are quite modest. A metric tree T (S) can be built as
follows: if |S| = 1, the tree has one node; otherwise,

1. pick a ball B, with a site as center;

2. recursively construct T (S ∩B) and T (S \B);

3. make these two trees the children of the root;

4. store a description of B at the root, including its center site.

Each node of a metric tree thus corresponds to the intersection of the balls
and ball-complements stored at its ancestors in the tree. When answering a
query for point q, the tree is traversed and distances to the ball centers of
nodes are computed. As the traversal progresses, the minimum of the computed
distances gives an upper bound on the nearest-neighbor distance, and thus the
radius of a ball Bq centered at q. When a node in the tree is visited, the regions
of the two children of the node are considered; if Bq can be proven not to meet
the region of a child, based on the ball data in the path to the root, then the
child need not be visited. Otherwise, the child is visited. (Here Lemma 3.1(3)
gives a means for such a proof, using the current upper bound on the nearest-
neighbor distance as r.) The cost of answering a query is proportional to the
number of nodes explored.

In the seventies, McNutt(as discussed by Knuth [Knu98]) proposed a data
structure similar to metric trees, where children of a node are T (S ∩ B) and
T (S \B′), and B′ is a ball with the same center, but slightly smaller radius than
B. Thus some sites might be stored in both subtrees. This overlap makes for a
data structure that needs more space, but allows some queries to be answered
with less backtracking, that is, without needing to explore both children.

Burkhard and Keller [BK73] proposed a multibranch version for discrete-
valued metrics. Metric trees, in many variations, were also invented by Omo-
hundro [Omo89], by Uhlmann[Uhl91], and by Yianilos[Yia93], and they have a
large literature. For further discussion of them, prior surveys can be consulted
[HS03, CNBYM01].

4 Dimensions

While it is easy to construct or encounter metric spaces for which brute-force
search is the fastest possible, it is still useful to consider situations in which
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something faster can be done. Moreover, it may be that the properties of the
space that make it desirable to do nearest-neighbor search also make it possible
to do the search quickly.

One such property is that of bounded dimension of the metric space, for
a wide variety of definitions of the term dimension. Such a definition gives a
way of assigning a real number to a metric space; all the definitions we consider
coincide (assign the same number) for “simple” sets. So the dimension of <d,
or an open subset of it, is d for any of these definitions, and the dimension of
a d-manifold in <d′ will always be d, regardless of how big d′ is. That is, the
dimensions are generally “intrinsic,” and rely on properties of the given metric
space itself, not on any space in which the given space happens to reside.

In physics and statistics, there has long been interest in the use of nearest-
neighbor searching for the purpose of estimating the dimension of a space. The
correlation integral and correlation dimension were mentioned in Subsection 1.3
above. The k-NN problem is intimately related to the information dimension, as
discussed below. The correlation and information dimensions are both instances
of the generalized, or Rènyi, dimension spectrum; here there is a numerical
parameter v so that dimv Z is a measure of dimension, where the information
dimension corresponds to v = 1, and the correlation dimension corresponds to
v = 2. The Rènyi spectrum is much-studied in the area of chaotic, multifractal
systems, such as turbulence, the web, network traffic [FGW98], and Bayesian
belief networks [GH04].

Another dimension value on the Rènyi spectrum can be computed by way
of minimum spanning trees, or other extremal geometric graphs, as discussed in
Section 5.

This section will survey some of these concepts of dimension, and the rela-
tions among them. Only a glimpse will really be given here; as mentioned earlier,
for a more thorough understanding the survey by Cutler is helpful [Cut93].

4.1 Dimensions of Metric Spaces

To discuss the many concepts of dimension, the notions of coverings and pack-
ings are crucial. These concepts will also appear in algorithms, as discussed in
§5.2 below.

Coverings and packings. We will consider bounded metric spaces Z =
(U, D), so that there is some r with D(x, y) < r for all x, y ∈ U. Given ε > 0, an
ε-cover (by balls) of Z is a set Y ⊂ U with the property that for every x ∈ U,
there is some y ∈ Y with D(x, y) < ε. Put another way, let

B(y, ε) := {x ∈ U | D(x, y) < ε}.

Then Y is an ε-cover if and only if U = ∪y∈Y B(y, ε). Put still another way, Y
is an ε-cover of U if and only if the Hausdorff distance (cf. §2.1) of U to Y is
less than ε.

The covering number C(U, ε) is the size of the smallest ε-covering of U. (Here
the dependence of the covering number on the distance function D is implicit.)
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For example, if U is the unit square in the plane, the covering number is Θ(1/ε2)
as ε → 0, since a disk of radius ε can cover only an area proportional to ε2. In
general, the covering number of a unit hypercube in <d is Θ(1/εd), for similar
reasons.

The quantity log2 C(U, ε) is called the ε-entropy or metric entropy, a function
of ε. This measures the number of bits needed to identify an element of the space,
up to distortion ε. Referring to Subsection 1.3, the elements of the cover could
constitute a codebook for an n-quantizer with n = C(U, ε). Such a quantizer
would need log2 n bits to transmit an approximation to a member x ∈ U, such
that the worst-case (not expected) distortion D(x, f(x)) is no more than ε.

A subset Y ⊂ U is an ε-packing if and only if D(x, y) > 2ε for every x, y ∈ Y .
That is, the set of balls {B(y, ε) | y ∈ Y } are disjoint.

The packing number P(U, ε) is the size of the largest ε-packing. The packing
number is closely related to the covering number, as shown in the following
lemma.

Lemma 4.1 [KT61] For given ε > 0 and metric space (U, D), if P(U, ε) and
C(U, ε) are finite, then

P(U, ε) ≤ C(U, ε) ≤ P(U, ε/2).

Proof: A maximal (ε/2)-packing P has the property that no point s ∈ U has
D(s, P ) > ε; otherwise such a site could be added to P . That is, a maximal
(ε/2)-packing P is an ε-cover, and so the smallest ε-cover can be no larger.

On the other hand, for a given ε-cover Y , and ε-packing P , every point in
P must be in B(y, ε) for some y ∈ Y . However, no two p, p′ ∈ P can be in the
same such ball: then D(p, p′) < 2ε by the triangle inequality, contradicting the
assumption that P is an ε-packing. So every ε-packing is no larger than any
ε-cover.

Nets and the Greedy Algorithm. The close relation of packing and covering
is illuminated by the fundamental concept of ε-nets. A set Y ⊂ U is an ε-net of
(U, D) if it is both an ε-cover and an (ε/2)-packing.

An ε-net can be constructed by the following greedy algorithm, whose input
is ε ≥ 0 and maximum allowed size k, as well as the metric space (U, D). The
algorithm: pick s ∈ U arbitrarily, and set Y := {s}. Repeat the following: pick
an s ∈ U that maximizes D(s, Y ) = min{D(s, y) | y ∈ Y }. If D(s, Y ) < ε or
|Y | ≥ k, stop. Otherwise, set Y := Y ∪ {s}, and continue.

The returned Y is an ε′-cover for some ε′, with ε′ < ε if k is large enough.
Let the ith site added to Y be denoted si, and let Yi denote the set Y before
si is added. Since the sequence D(si, Yi), for i = 2 . . . , |Y |, is nonincreasing,
every member of Y is at least ε′ from every other member, and so Y is an (ε′/2)-
packing, and hence an ε′-net. Since Y is an (ε′/2)-packing, by the Lemma above,
any (ε′/2)-cover must have at least |Y | members. If this greedy algorithm is run
with input ε = 0, then the output Y will have size k, and any (ε′/2)-cover must
have at least k members; that is, the algorithm gives a cover distance ε′ no more
than twice the best possible for k sites: it is an approximation algorithm for
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the k-center problem, of finding the k points whose maximum distance to any
point in U is minimized. Gonzalez [Gon85], and, independently, Hochbaum and
Shmoys [HS85], showed that this is the best possible approximation factor for
a polynomial-time algorithm on a general metric space, unless P = NP .

As mentioned, this algorithm has been used in building nearest-neighbor
data structures [Bri95, Woj03, Cla03, HPM05]. It has also been used in com-
putational chemistry[Wil96], where it is one version of the Bawden-Lajiness
algorithm.

Box Dimension. The box dimension dimB(Z) of Z = (U, D) can be defined
as follows: it is the d such that the covering number satisfies

C(U, ε) = 1/εd+o(1) (2)

as ε → 0, if such a d exists. That is, the covering (and packing) numbers depend
roughly polynomially on the scale of measurement ε, and dimB(Z) is the limiting
degree of that polynomial. The above condition on d is often expressed as

d = lim
ε→0

log C(U, ε)
log(1/ε)

.

The box dimension need not be an integer; sets with nonintegral dimen-
sion are often called fractals. A set can also have zero measure but be fully
dimensioned; for example, space-filling curves in the plane have box dimension
two, but area zero. The rational numbers have box dimension one, but length
zero. (This last property is generally viewed, mathematically, as “bad” in that
for other dimensions, the dimension of a countable union ∪iUi is no more than
supi dim Ui, so the rationals “should” have dimension zero. This can be patched
up, resulting in the modified box dimension, which turns out to be equal to the
packing dimension.)

Another view of the box dimension is that it is the critical value for the
box t-content C(U, ε)εt. That is, suppose each ball in the cover has volume
proportional to at most εt, as would be true in <t. Then the box t-content is
a rough overestimate of the volume of U, since it is the sum of volumes of a
small collection of sets whose union contains U. Suppose the covering number
is 1/εd+o(1); then the t-content is εt−d+o(1), as ε → 0, which goes to 0 for t > d,
and ∞ for t < d. That is, d is the supremum of the t for which the t-content is
infinite, or the infinum of the t for which the t-content is zero.

Hausdorff and Packing Dimensions. A similar relationship holds for some
other concepts of dimension: the dimension is the critical value for a t-content
function. For example, generalizing on ε-covers slightly, suppose we call a col-
lection E of balls an ε-cover when U ⊂ ∪B∈EB, and diam(B) ≤ ε for all B ∈ E,
where diam(B) := supx,y∈B D(x, y). Now consider the t-content

inf{
∑
B∈E

diam(B)t | E an ε-cover of U}.

This is a Hausdorff t-measure, and the corresponding critical value is the Haus-
dorff dimension dimH Z. (Really, this is the Hausdorff ball t-measure, as dis-
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cussed below.) Note that a cover E could contain many more balls than C(Z, ε),
but balls smaller than ε count less in the sum.

A similar construction as for Hausdorff measure, but with covers E replaced
with packings, and the infinum replaced with a supremum, leads to the packing t-
measure, and the packing dimension[Tri82, Sul84]. (The Hausdorff and packing
t-measures are better behaved mathematically than the box t-content, since
they are outer measures, hence the different names.)

Variations. There are many variations of these constructions; for example,
the limit may not always exist, so lim sup or lim inf are used instead, leading to
upper or lower versions of these dimensions, respectively. These are denoted as
dimH(Z) for the upper Hausdorff dimension, and dimH(Z) for the lower Haus-
dorff dimension, and similarly for other dimensions. The Hausdorff dimension,
and other dimensions, exist if and only if the upper and lower versions are equal.

The Hausdorff measure is usually defined with the covers E allowed to include
arbitrary subsets; this changes the t-measure by some factor, but not the basic
dependence on ε, and so the dimension is the same. In <d, the covering or
packing can be done with, for example, boxes for all three versions of dimension,
and similarly the measures change by a factor but the dimension remains the
same.

Furthermore, it is not necessary to consider boxes of all possible sizes and
shapes. For Z = (U, D) with U ⊂ <d, and D an `p distance, an equivalent
definition of box dimension can be made using quadtrees (also known as hy-
peroctrees, dyadic cubes, or Besicovitch nets), as follows: put the set U in a
cube; divide the cube into 2d equal-sized subcubes, divide those into equal sized
cubes, and so on, so that at the kth step, there are 2kd equal-sized cubes. Let
B2−k(U) denote the minimum number of such cubes at step k needed to contain
U. Then the upper box dimension dim Z is the d′ such that B2−k(U) = 2kd′+o(k)

as k →∞. The occupied cubes in this description correspond to the nodes of a
quadtree data structure for U.

Assouad dimension, a.k.a. Uniform Metric Dimension, Doubling Con-

stant. The Assouad dimension dimA(Z), for space Z = (U, D) is related to the
box dimension, but satisfies a stronger, more uniform condition: it is the value
d, if it exists, such that

sup
x∈U,r>0

C(B(x, r), εr) = 1/εd+o(1) (3)

as ε → 0 [Lar67, Ass83].
So dimA(Z) is at least as large as the box dimension of any ball from the

space. This dimension is bounded if and only if Z = (U, D) is a doubling
space, meaning that there is a constant C so that that any ball B(x, 2r) is
contained in the union of at most 2C balls of radius r; that is, any 2r-ball has
an r-cover. Sometimes C itself is termed the doubling dimension, and 2C the
doubling constant. Let doubA(Z) denote this version of the doubling dimension.
The numbers are related by dimA(Z) ≤ doubA(Z); in fact we can say that the
cover size in (3) above is bounded by O(1/εdoubA(Z)).
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From the close relation of packings and coverings, another way to express
the doubling condition is that no ball B(x, r) contains an (r/2)-packing with
more than 2C members.

Coping with Finiteness. If U is finite, then (U, D) has dimension zero for
any of these dimensions except doubA Z, since C(Z, ε) ≤ n for any ε. However,
the box dimension can be estimated by considering the covering number as a
function of ε, over some range of ε values, and fitting log C(Z, ε) to log ε within
that range. Moreover, if S ⊂ U, then dimS ≤ dim U for any of these dimensions,
and doubA S ≤ doubA U, that is, a bound on the dimension of U gives a bound
on the dimension of its subsets.

4.2 Dimensions of Metric Measure Spaces

Another category of dimensions applies to metric measure spaces (U, d, µ), where
a set U is equipped with both a metric D and a measure µ. (We will assume
that µ(U) = 1, so µ defines a probability distribution, and the measure of a set
is the probability mass that it contains.)

Recall that a measure µ is a nonnegatively valued function on subsets of U,
with at least the following properties: the empty set φ has µ(φ) = 0; if A ⊂ B,
then µ(A) ≤ µ(B); and µ(∪iAi) ≤

∑
i µ(Ai), for A1, A2, · · · ⊂ U.

The metric spaces that are input for nearest-neighbors problems are of course
finite, and a given finite set has measure zero for many measures of interest.
However, the counting measure µc can be used, for which µc(A) = |A|, the
number of elements of A. A common input of interest is a random sample
from µ, with the sites independently generated with distribution µ. Moreover,
often we consider such sets of independently identically distributed sites S =
{x1, x2, . . . , xn} as n →∞. Since the empirical measure µS(A) := µc(A ∩ S)/n
satisfies

lim
n→∞

µS(A) = µ(A)

with probability one, for any given A ⊂ U, various properties of µ can be
estimated using S. Also, some properties of metric measure spaces can be
defined also for finite spaces, for example, the doubling measure property.

Doubling Measure. A metric measure space Z = (U, D, µ) with a dou-
bling measure[Hei03] is one for which there is a number doubM (Z) such that
µ(B(x, 2r)) ≤ µ(B(x, r))2doubM (Z) for all x and r. Such a space is also called
a growth-restricted metric[KR02] or Federer measure or a diametrically regular
measure [Fed69]. The definition is sometimes relaxed, so that only balls B(x, r)
with µ(B(x, r)) sufficiently large need satisfy the doubling condition.

For such a space there is a smallest number dimD(Z) such that

sup
x∈U,r>0

µ(B(x, r))/µ(B(x, εr)) = 1/εdimD(Z)+o(1),

as ε → 0. (cf. (3).) It is not hard to show that doubA(Z) ≤ 4 doubM (Z)[KL04]
and that dimA(Z) ≤ dimD(Z).
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If the inputs to a nearest-neighbor searching problem are such that (S ∪
{q}, D, µc) is a doubling measure, then several provably good data structures
exist for searching S, as discussed below (§5.2). Note that it is not the case
that any subset of a growth-restricted space is growth-restricted. However, this
relation can hold approximately for random subsets.

Rènyi Spectrum and Dimensions. For a metric measure space (U, D, µ),
and a value ε ≥ 0, define µε by µε(x) = µ(B(x, ε)), and for a value v, let

‖µε‖v :=
[∫

U
µv

ε dµ

]1/v

=
[∫

U
µ(B(y, ε))vdµ(y)

]1/v

.

That is, µε is a “smoothed” version of µ, and ‖µε‖v is its Lv norm with respect
to µ. For integral v ≥ 1, it is not too hard to see that for random points
X1 . . . Xv+1 with distribution µ, ‖µε‖v

v is the probability that X2 . . . Xv+1 are
all within distance ε of X1. So ‖µε‖v

v is the probability distribution (as a function
of ε) for the vth nearest-neighbor distance of v + 1 points.

In particular, ‖µε‖1 is the probability that X1 and X2 are within distance
ε of each other. Since this is a kind of spatial correlation, ‖µε‖1 is also known
as the correlation integral. For S a random sample with distribution µ, the
correlation integral can be estimated by the number of pairs of sites in S at
distance less than ε, divided by

(
n
2

)
. The expectation of this estimate is ‖µε‖1.

The generalized Rènyi dimension dimv(µ) is the value d, if it exists, such
that

‖µε‖v−1 = εd+o(1),

as ε → 0. The Rènyi entropy of order v is log‖µε‖v−1, and so the Rènyi dimen-
sion is the limit of the ratio of the Rènyi entropy to log ε, as ε → 0 [R7̀0, Cut93].

The Rènyi dimension can be defined even for v = 1, by considering the
limiting value of ‖µε‖v as v → 0. If the limit exists, the result is equal to the
information dimension of µ, which will be denoted as dim1(µ), and equal to the
d such that ∫

U
µε(y) log(µε(y))dµ(y) = εd+o(1), (4)

as ε → 0.
The family of values dimv(µ), for v ∈ <, is called the Rènyi spectrum.
Pointwise Dimension, fµ(α). The information dimension is closely related

to the pointwise dimension αµ(x) for x ∈ U, also known as the local dimension
or Hölder exponent. It is defined as the d, if it exists, such that

µ(B(x, ε)) = εd+o(1),

as ε → 0. That is,

αµ(x) = lim
ε→0

log µ(B(x, ε))
log ε

, (5)

with a lower version αµ(x) defined using lim inf instead of lim, and similarly an
upper version. The definition of information dimension suggests that dim1(µ) =
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E[αµ(x))], taking the expectation with respect to µ, and indeed for bounded
measures the equality holds, under some general conditions [Cut93].

The pointwise dimension is also related to the Hausdorff and packing di-
mensions of µ: the upper Hausdorff dimension dimH(µ) is the infinum of the
Hausdorff dimensions of all subsets of U with measure 1, that is,

dimH(µ) := inf{dimH A | A ⊂ U, µ(A) = 1}.

(Recalling here our assumption that µ is a probability distribution, so µ(U) = 1.)
The packing dimension of a measure can be defined analogously. The upper
Hausdorff dimension can also be expressed in terms of the pointwise dimension:

dimH(µ) = inf{β | αµ(x) ≤ β, almost all x}

So the upper Hausdorff dimension is an upper bound for the pointwise dimension
of all points, except for a set of measure zero. (See Edgar [Edg98],3.3.14.) The
lower Hausdorff dimension, and upper and lower packing dimensions, also can
be expressed as bounds for the pointwise dimension.

Some spaces are exact-dimensional, meaning that all points have the same
pointwise dimension, except for a set of measure zero. For (U, D, µ), let fµ(α)
denote the Hausdorff dimension of the subset of U comprising those points
with pointwise dimension α. (Sometimes the box dimension is used instead
here.) For exact-dimensional spaces, fµ(α) is zero for all but one value of α, but
other spaces have a more elaborate structure under this multifractal analysis.
Moreover, the values of fµ(α) can be computed from the Rènyi spectrum, using
the Legendre transform.

Box-Counting Versions. Just as with the dimensions of metric spaces, for
subsets of <d these dimensions are also readily defined in a box-counting, or
“quadtree” form: the level i cubes of the quadtree are those cubes of size 2−i

that have nonzero measure. Then the value
∑

c level i µ(c)v is within a constant
factor of ‖µ2−i‖v−1

v−1, and yields the same dimension value. (The difference in
exponents, that is, v vs. v − 1, is due to the implicit additional factor of µ(x)
in the integral defining ‖µε‖v.)

In this formulation, the set function for the information dimension becomes∑
c at level i

µ(c) log µ(c),

an estimate of the Shannon information, while the set function for the correlation
dimension is ∑

c at level i

µ(c)2,

and dim0(Z) is seen to equal the box dimension of the support of µ.
Again, a given finite or countable metric space (S, D, µ) will have dimension

zero, according to the above definitions, but under the assumption that S is i.i.d.
with distribution µ, the empirical measure using S gives a way of estimating the
dimension of µ. The quadtree cells of interest for estimating the information
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dimension are those that contain at least one site, and the estimator for the
information dimension set function becomes∑

c at level i

µS(c) log µS(c).

We would like to use the limit, as ε → 0, of the limit of this function as n →∞,
but instead the value for given ε = 2−i is estimated using “sufficiently large”
n. (Using such estimates for a range of ε scales leads to a dimension estimate
via line-fitting, as mentioned for metric space dimension.) It is the complica-
tion of relating ε and n that has led to consideration of nearest-neighbor-based
estimators, where the scale of measurement is set by the sample size n itself.

Relations Among the Dimensions. As noted above, there are some basic
inequalities among these notions of dimension. If dimT (Z) denotes the topolog-
ical dimension, we have

dimT (Z) ≤ dimH(Z) ≤ dim0(Z) = dimB(Z) ≤ dimA(Z) ≤ dimD(Z),

when the given values exist. The inequalities can be strict. Also for metric
measure space Z, dimq(Z) < dimq′(Z) if q > q′, so in particular dim2(Z) ≤
dim1(Z) ≤ dim0(Z).

Some of these inequalities are clear intuitively. The Assouad dimension is
roughly a uniform, homogeneous, worst-case version of the box dimension, so
it is not surprising that dimB(Z) ≤ dimA(Z). The box dimension is based
on a t-content that is a restricted form of that for the Hausdorff measure, so
dimH(Z) ≤ dimB(Z) is intuitively clear. The existence of a doubling measure
implies the existence of a doubling constant, implying dimA(Z) ≤ dimD(Z).

4.3 Quantization and Energy Dimensions

For completeness, we note yet two more concepts of dimension for measures.
Each is equal to the box dimension in a limiting case. The quantization dimen-
sion is related to the ability to apply the procedure of vector quantization. Let
X denote a random variable in U, with distribution µ. As discussed in §1.3, an
n-quantizer for µ is a function f on U that takes a point X to one of at most
n points in U. Also Fn is the set of all such n-quantizer functions, and the nth
quantization error for U of order v is

Vn,v(µ) := inf
f∈Fn

ED(X, f(X))v, (6)

the cheapest expected cost of representing X by f(X), where the cost is the vth
power of the distance of X to f(X). The quantization dimension of order v of
Z = (U, D, µ) is

dimQ(Z) := lim
n→∞

−v
log n

log Vn,v(µ)
,

that is,
Vn,v(µ) = n−v/ dimQ(Z)+o(1) (7)
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as n →∞.
The quantization dimension can also be defined for v = ∞, and with “upper”

and “lower” versions, and these are equal to the upper and lower box dimension
of the support of µ.

Graf and Luschgy [GL00] discuss the quantization dimension in detail.
The energy dimension is defined as follows. The Riesz t-energy of a measure

is
It(µ) :=

∫ ∫
1

D(x, y)t
dµ(x)dµ(y),

and the energy dimension is sup{t | It(µ) < ∞}.
This energy is related to the pointwise dimension: for given x, it can be

shown [Mat95] that∫
1

D(x, y)t
dµ(y) = t

∫ ∞

0

r−t−1µ(B(x, r))dr.

If µ(U) is bounded, and the upper pointwise dimension is bounded everywhere
by some v > t, that is, for all x ∈ U, µ(B(x, r)) = O(rv), then It(µ) is bounded.

A discrete version of the energy is, for S = {x1 . . . xn} with distribution µ,

It(S) =
1
n2

∑
i 6=j

1
D(xi, xj)t

.

Minimizing this energy is a way to produce “well-distributed” points [HS04].
Note that for large t, the small distances will dominate, and a minimizer will
be approximately a packing. The results of Hardin and Saff [HS04] imply that
the minimum energy It(S) for n points in a d-manifold contained in <d′ is

nt/d−1+o(1) (8)

as n →∞, for t > d.

5 Dimensions and Nearest-Neighbor Searching

5.1 Dimension Estimation

Dimension measures and nearest-neighbor searching are related in both direc-
tions: the computation of some dimensional measures can be done using nearest-
neighbor searching, and spaces with bounded dimension can have faster nearest-
neighbor searching data structures, both theoretically and empirically.

Nearest-neighbor Searching for Dimension Estimation. In the former
direction, we have already seen that the correlation integral can be estimated
using a fixed-radius all-sites query. Historically, the quadtree-based view was
proposed first, and the distance-based version was proposed as a more accurate
empirical estimator [GP83].

For a given set of sample points, the quadtree estimate is easier to com-
pute than the correlation integral, and so Belussi and Faloutsos[BF98] use the
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quadtree estimator in the context of database spatial joins. One kind of spatial
join is the set of pairs of sites within distance ε of each other, for some given ε.
That is, its size is exactly the distance-based estimate of the correlation integral,
times

(
n
2

)
. Belussi and Faloutsos propose the quadtree estimator (together with

a line fit) to help estimate the answer size for spatial joins.
Pointwise Dimension. So far, estimators based on quadtrees and fixed-

radius queries have been considered; a class of estimators even more directly
related to nearest-neighbor search are those based on k-NN search. For ex-
ample, Cutler and Dawson [CD89] showed that the pointwise dimension (5),
related to the information dimension, has the kth nearest-neighbor distance as
an estimator:

αµ(x) = lim
n→∞

log(k/n)
log δk:n(x)

, (9)

with probability 1, where n is the sample size and δk:n(x) is the distance of x
to its kth nearest neighbor in the sample. In other words,

δ1:n(x) = n−1/αµ(x)+o(1) (10)

as n →∞. Similar observations were made by Pettis et al. [KTAD79], Verveer
and Duin [VD95], and van de Water and Schram [vdWS88]. A derivation of
a similar estimator via maximum likelihood was given by Levina and Bickel
[LB05].

Heuristically, (9) can be understood by considering εk such that the ball
B(x, εk) has probability mass µ(B(x, εk)) = k/n. The expected number of
points in the sample falling in B(x, εk) is k, and so δk:n(x) ≈ εk, and therefore

k/n = µ(B(x, εk)) ≈ ε
αµ(x)
k ≈ δk:n(x)αµ(x),

using the definition of pointwise dimension, and (9) follows after taking loga-
rithms and dividing. This relation to pointwise dimension suggests that nearest-
neighbor distances might be helpful in estimating other related dimensional
measures, such as the information, energy, and even Hausdorff dimension.

A paper of Tao et al. [TFP03], related to that of Belussi and Faloutsos
[BF98], uses estimates of the pointwise dimension for nearest-neighbor query
cost and size estimation; given (S, D), the pointwise dimension for each site in
a sample P ⊂ S is estimated, and then for a given query point, the pointwise
dimension estimate for a nearby sample site is used. The pointwise dimension
estimate is done with the counting measure, and is called a local power law.

A worst-case bound on the pointwise dimension of a graph metric is used
by Gao and Zhang [GZ04] in the context of routing. In view of the relation of
the Hausdorff and pointwise dimensions, perhaps their bound is a kind of graph
Hausdorff dimension.

Extremal Graphs as Dimensional Estimators. In the setting of Euclidean
manifolds, Costa and Hero [CH04] propose the use as dimension estimators of
the minimum spanning tree, matching, k-NN graph, or other extremal graphs.
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Suppose G is such a graph for a set of n sites independently, identically dis-
tributed on a d-manifold. For v with 0 < v < d, let

L(G, v) :=
∑

e an edge of G

`(e)v,

an edge length power sum of G. Costa and Hero use the fact, going back to the
celebrated results of Beardwood et al. [BHH59], that

L(G, v)/n = n−v/d+o(1)

as n → ∞, for the extremal graphs just mentioned, and others. (cf. (7), (8),
(10)) Yukich’s monograph [Yuk98] surveys results in this setting.) This allows
the topological dimension d of a manifold to be estimated as a function of L(G, v)
and n, so for example,

d = lim
n→∞

log(1/n)
log(L(G, 1)/n)

with probability one.
This expression matches (9) for the case of the 1-nearest-neighbor graph in a

d-manifold, since L(G, 1)/n is the mean nearest-neighbor distance in the graph,
and all points in the manifold have pointwise dimension d. Moreover, algorithms
to find the extremal graphs involve nearest-neighbor queries. These estimators
also provide their own scaling: there is no ε to go to zero, as in the definitions
of the dimensions, but rather the scale of measurement 1/n is a consequence of
the nearest-neighbor relations involved.

Kozma et al.[KLS] have shown a somewhat similar relation between the
minimum spanning tree and the upper box dimension: for a bounded metric
space (U, D), let the minimum spanning tree dimension be the infinum of the
values t such that there is some δ with L(T (S), t) ≤ δ for all S ⊂ U, where T (S)
is the minimum spanning tree of S. That is, supS⊂U L(T (S), t) is a t-content
of U, and this minimum spanning tree dimension is its critical value. Kozma
et al. show that this dimension is equal to the upper box dimension of (U, D).
They do this by way of a series of packings implicitly constructed in the course
of building a minimum spanning tree.

A further, heuristic, relation with box dimension: if we change the greedy
ε-net algorithm of Subsection 4.1 only “slightly,” to take at each step the point
whose minimum distance is smallest, instead of largest, then the minimum span-
ning tree results by connecting each newly added point to its nearest neighbor
in the current set.

Kégl[K0́3] proposes using an upper bound on the packing number and a
simple form of line-fitting as an estimate of the box dimension, although not
using the greedy ε-net algorithm discussed in Subsection 4.1.
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5.2 Constant Dimension and Nearest-Neighbors Search

5.2.1 Basic Properties, Spread

Some basic properties of metric spaces Z = (S, D) with bounded Assouad di-
mension, that is, constant doubling dimension, are useful in nearest neighbor
searching. Recall that for Z with constant doubling dimension, there is a value
d = doubA(Z) so that any ball of radius r has an (rε)-cover of size at most
O(1/εd), as ε → 0. As shown below, this implies a reverse nearest-neighbor
condition: every site s ∈ S is nearest neighbor to O(2O(d) log ∆(S)) sites, where
∆(S) is the ratio of the distance between the farthest pair of sites to the distance
between the closest pair of sites.

Before that nearest-neighbor condition is shown, a brief digression on the
ratio ∆(S): it is known variously as the distance ratio, aspect ratio, and spread,
where the last seems to be most common. Algorithms for nearest-neighbor
searching problems that depend on the spread have been known for some time:
for example, algorithms for the all-nearest-neighbors or all-k-NN in <d that take
O(n log ∆(S)) time[Cla83, GBT84]. Less anciently, combinatorial properties of
point sets in <d with very low spread have also been described[EVW97, Eri02],
and bounds have been given for classical clustering algorithms in terms of the
spread [HPS05]. Note also that the spread gives a bound to the exponent of
Subsection 2.1 related to the “repair” of a distance measure for the triangle
inequality.

Although it is not as elegant to include a dependence on the spread in a
bound, often that dependence is only on the logarithm of the spread. Making
an algorithm more complicated to remove such dependence is unlikely to be
worth the trouble in practice.

Here is the reverse nearest-neighbor condition mentioned. It holds not just
for nearest neighbors, but in the more general setting of “kth (γ)-nearest” neigh-
bors. A site a is kth (γ)-nearest to a site b, with respect to S, if there are at
most k − 1 sites in S whose distance to b is within a factor of γ of the distance
of the nearest to b in S \ {b}.

Lemma 5.1 For a metric space Z = (S, D) with doubling dimension d =
dimA(Z), and any site s ∈ S, the number of sites s′ ∈ S for which s is k-
th (γ)-near in S to s′ is O((2γ)dk log ∆(S)), as 1/γ → 0.

Proof: First consider k = 1, that is, (γ)-near neighbors, and a ball B(s, 2r)
for some r > 0. As discussed in §4.1, there is an (r/γ)-cover of B(s, 2r) of size
O((2r/(r/γ))d) = O((2γ)d). Therefore any site s′ with r < D(s, s′) ≤ 2r has
some site in the (r/γ)-cover that is closer to s′ than D(s, s′) by a factor of at
least r/(r/γ) = γ, and the number of sites s′ with r < D(s, s′) ≤ 2r that have
s (γ)-near is O((2γ)d).

If p is the closest point in S to s, at distance r′, then consideration of
r = 2r′, 4r′, 8r′, . . ., shows that at most log ∆(S) values of r need be considered,
each contributing at most O((2γ)d) sites with s (γ)-near in S.

For k = 2, all sites of the covers in the above construction are removed from
S; this leaves a metric space with fewer sites but the same doubling constant.
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New covers can be constructed using the remaining sites, showing that there
two sites that are closer to a given site s′ than D(s, s′)/γ.

For k > 2, build such nets k times.
Doubling Constant Spaces vs. Euclidean. For Euclidean spaces, there is

a sharper form of the above bound, as applied to kth nearest neighbors: for
S ⊂ <d, a site is kth nearest to at most k2O(d) other sites. It is not clear if this
condition alone makes searching in Euclidean spaces much easier.

Another condition satisfied by subsets of Euclidean spaces is that for any site
s and query q, if s is nearest neighbor to q, then it is possible to prove this using
the Delaunay neighbors of s. (Sites a and b are Delaunay neighbors if there is
some ball with a and b on its boundary sphere, and no sites in its interior.) If s is
closer to q than any Delaunay neighbor of s is to q, then s is closest to q in S. A
site may have many Delaunay neighbors, even in the plane, but for random sites
under many probability distributions, a site may have O(1) expected Delaunay
neighbors. If the nearest neighbor to the query can be “guessed,” then in such
cases its status can be proven in constant expected time. Any similar condition
for metric spaces seems to include a dependence on the spread.

Note that conversely, if s is not nearest to q, then one of its Delaunay
neighbors is closer, suggesting a walk from Delaunay neighbor to Delaunay
neighbor toward q; analogs of such an approach are discussed in Subsection 5.2.3.

5.2.2 Divide and Conquer

We next consider applying a divide-and-conquer approach to building a data
structure and answering a query. Under some conditions, it is possible to split
the searching problem into subproblems: the set of sites S is expressed as the
union of sets S1, S2, . . ., so that for any query point q, the nearest in S to q is
in one of the sets Si, and there is an efficient test to verify that condition. A
natural tree data structure T (S) could be found in this setting by recursively
finding T (Si) for all Si, and making each of these a child of the root of the tree.
The search algorithm is then: apply this “effective test” to choose Si, and then
recursively search T (Si).

Such a data structure is appealing, in that it requires no “back-tracking,”
that is, it is a tree structure for which the search proceeds from the root, along
a single path, to a leaf.

Key properties of such an approach are a bound on maxi |Si|, and on the
total

∑
i |Si|. The former determines the number of levels in the data structure,

and the latter is needed to determine the size of the data structure.
One example of such a scheme is an algorithm by Clarkson for the Euclidean

case [Cla88].
In the examples below, the divide-and-conquer scheme is based on finding

the nearest neighbor to q in a subset P ⊂ S. To motivate such approaches, we
return to some basic considerations regarding nearest-neighbor search.

Bounds Using the Nearest in a Subset. The task of nearest-neighbor
searching can be viewed as having two parts: finding the nearest neighbor, and
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proving that all other sites are not the nearest neighbor. Moreover, any nearest-
neighbor algorithm, at any given time while processing a query, has computed
the distance from the query point q to some subset P of the sites. So the
algorithm needs to use the distance evaluations from q to P to prove that some
sites cannot be the answer to the query. What is the most effective way to do
this?

Looking at Lemma 3.1(1), to show that s ∈ S \ P is far from q, given that
the distance from some p ∈ P to q is known, the lower bound of

|D(p, q)−D(p, s)|

for D(q, s) can be used. It is hard to tell, considering different members p of P ,
which p would maximize this expression. However, to maximize the difference
of the two distances in the expression, one might try to make one distance or
the other as small as possible. The p ∈ P that minimizes D(p, q) is of course
the nearest in P to q, while the p ∈ P that minimizes D(p, s) is the nearest in
P to s. So if some p ∈ P is close to q and far from s, or close to s and far from
q, then it gives a proof that s cannot be close to q.

These considerations suggest that one major piece of information for a query
point q is the closest site in P . Next we will consider how such information can be
used, together with the doubling constant and doubling measure conditions, to
suggest some data structures for nearest-neighbor searching that have provable
properties. These data structures will be inefficient in their resource bounds,
but will illustrate the relations involved.

In each of the three examples below, a subset P of S of size m will be found,
together with a ball Bp for each p ∈ P . (Bp is typically, but not always, centered
at p.) These will have the property that for query point q, if p is nearest to q
in P , then up to some conditions, the nearest neighbor to q in S is contained in
Bp. Moreover, some progress will be made by this, either because Bp is small,
or there are not too many sites in it. The three cases considered are:

• The space has a doubling constant, P is an ε-net, and either q is far
enough away from p that p itself is approximately nearest, or Bp contains
the nearest to q in S. Each ball Bp is smaller by a constant factor than a
ball containing S.

• The space is an (empirical) doubling measure, P is a random subset, and
Bp contains the nearest to q in S with very high probability. Moreover,
Bp contains O(n(log n)/m) sites.

• The space has a doubling constant and the queries are exchangeable with
the sites. Here P is a random subset, and Bp contains the nearest to q in
S with controllably high probability 1− 1/K, for given K. Moreover, Bp

is expected to contain O((Kn/m) log2 ∆(S)) sites.

A direct approach for using these constructions is, again, to apply them
recursively: to build T (S), find the subset P and balls Bp for each p ∈ P , then
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recursively build T (S ∩Bp) for each p ∈ P . To search for the nearest neighbor
in S to query point q, find p ∈ P closest to q, then recursively search T (S∩Bp).

The first approach we consider uses ε-nets, which were defined in Subsec-
tion 4.1.

Divide and Conquer: Doubling Constant Spaces. Consider a metric space
Z = (U, D) with bounded doubling dimension d = doubA(Z), input sites S ⊂ U,
and the problem of building a data structure for approximate nearest-neighbor
search. Suppose we scale the distance measure so that the sites fit in a ball of
radius one, and suppose the subset P is a δ2-net, for a parameter δ > 0. That
means, in particular, that any site in S is within δ2 of a site in P . Moreover, the
doubling dimension condition means that there is a limit on how many sites are
in a δ2-net, namely, O(1/δ2d). Now suppose a query point q has p as nearest
neighbor in P , and a as nearest neighbor in S, and also the nearest neighbor of
a in P is pa ∈ P . Then D(a, pa) ≤ δ2, and so

D(q, p) ≤ D(q, pa) ≤ D(q, a) + D(a, pa) ≤ D(q, a) + δ2.

That is, if D(q, a) > δ, then p is (1 + δ)-near to q in S. Otherwise, with
D(q, a) ≤ δ, we have

D(p, a) ≤ D(p, q) + D(q, a) ≤ 2δ + δ2 ≤ 3δ, (11)

for δ < 1. At the cost of searching the sites of P , we have confined the answer
to the query to a ball Bp := B(p, 3δ), unless p itself is an acceptable answer.
Suppose we recursively build a data structure, for each p ∈ P , for S ∩B(p, 3δ),
with δ < 1/6. Then at depth t in such a data structure, the sites are in a ball
of radius 1/2t.

The building of such a data structure must stop when there is only one
site in the current set S. Thus the depth of this data structure, and the cost
of searching it for a nearest neighbor, is proportional to log ∆(S). The data
structure sketched above can answer an approximate nearest neighbor query in
time O(2O(d) log ∆(S)), if δ and so m = |P | = O(1/δ2d) are constants.

Divide and Conquer: Doubling Measure Spaces. Consider now a metric
space (U, D) for which the empirical measure µC is doubling for S ⊂ U and
q ∈ U. Recall from Subsection 4.2 that such a space has the property that
|S ∩B(x, r)| ≥ |S ∩B(x, 2r)|/2C for a value C, for all x ∈ S ∪ {q} and r > 0.

Hereafter, we may abbreviate |S ∩B(x, r)| as |B(x, r)|.
Fix a query point q, and let P be a random subset of S, obtained by choosing

each site of S independently, with probability m/n, for a parameter m. The
expected size of P is m. For p ∈ P , consider εp chosen so that |B(p, εp)| =
Kn(log n)/m, where n := |S| and the values of K and m are to be determined.
For p ∈ P , suppose D(q, p) ≤ εp/2, and p is nearest to q in P . Then the nearest
site to q in S is contained in B(p, εp), by Lemma 3.1(4). On the other hand, if
β := D(q, p) > εp/2, then

|B(q, β)| ≥ |B(q, 3β)|/4C ≥ |B(p, εp)|/4C ≥ Kn(log n)/m4C .
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where the second inequality follows from B(p, εp) ⊂ B(q, 3β), which follows, for
x ∈ B(p, εp), from

D(q, x) ≤ D(q, p) + D(p, x) ≤ β + εp ≤ 3β.

The probability that p is nearest to q in P is no more than the probability that
B(q, β) has no points of P , which is no more than

(1−m/n)Kn(log n)/m4C

≤ e−K(log n)/4C

= 1/nK/4C

.

If K/4C > 10, for example, then q will have p nearest in P with probability no
more than 1/n10.

We have the following lemma.

Lemma 5.2 Suppose (U, D) is a metric space, S ⊂ U, and q ∈ U, such that
there is some constant C for which

|S ∩B(x, r)| ≥ |S ∩B(x, 2r)|/2C

for all x ∈ S ∪ {q} and r. Suppose P is a random subset of S, where p ∈ S is
chosen independently for P with probability m/n. Then with probability at least
1 − 1/nK/4C

, the nearest neighbor to q in S will be contained in a subset of S
of size Kn(log n)/m.

If m := 10K log n, that size is n/10, so if a data structure is built for each
subset recursively, the depth will be log n. Choosing K := 10(log n)4C then
means that the probability that any step in a search for a given q will fail is no
more than about 1/n9.

Divide and Conquer: Exchangeable Queries. We have seen that for metric
spaces with a doubling constant, it is possible to build a data structure for
approximate nearest-neighbor searching, and for doubling measure spaces, it
is possible to build a data structure for exact searching. While the schemes
given above are crude, the best data structures known for metric spaces under
these conditions have a similar behavior: approximate for doubling constant,
exact for doubling measure. This is dissatisfying, because the doubling measure
condition seems very fragile. The doubling constant condition is more robust,
but approximation algorithms have the difficulty that for some metric spaces,
and some applications, they may have poor precision: for points uniformly
distributed in high dimension, every site is not much more distant, relatively
speaking, than the nearest site. An approximation algorithm might return any
site at all.

A better goal, then, would be a data structure for exact queries that is prov-
ably good for doubling constant spaces. Unfortunately, no such data structure
is known, so it is worth asking for additional conditions under which provably
good data structures can be built.

One such condition is known: when the queries have the same distribution as
the sites, that is, they are exchangeable. The assumption here is of some random
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generator of sites and queries, such that the following is true: for a presented
query point q, the sets P ∪ {q} and P ′ have the same distribution, when P
and P ′ are random subsets of S, and P has one less site than P ′. This would
hold, for example, when the sites and queries are independently, identically
distributed random variables, or if the sites and queries were chosen at random
from some large discrete set. Such conditions roughly hold, for example, for
vector quantization, where the sites are specifically chosen to be representative
of the distribution of the queries.

This condition, together with constant doubling dimension, imply some use-
ful bounds. In particular, a divide-and-conquer construction analogous to those
previously given is as follows: pick a random subset P ⊂ S of size m, then pick
a random subset P̂ ⊂ S of size Km, where K and m will be determined. For
each p ∈ P , consider the site qp ∈ P̂ that has p nearest in P , but is farthest away
among all such sites in P̂ . We will show that the ball Bp := B(qp, 3D(p, qp)) is
likely to contain the answer site, for exchangeable query points q with p nearest
in P . We will also show that there are not too many sites expected in Bp.

Lemma 5.3 Under the conditions just above, for s ∈ P̂ with p nearest to s in
P and a nearest to s in S, it holds that D(a, qp) ≤ 3D(p, qp).

Proof: Since qp is farther from p than s, D(s, a) ≤ D(s, p) ≤ D(qp, p), and
so

D(qp, a) ≤ D(qp, p) + D(p, s) + D(s, a) ≤ 3D(p, qp),

using the triangle inequality and assumptions.

Lemma 5.4 Under the conditions of the previous lemma, if q is an exchange-
able query point with p nearest in P , then with probability 1− 1/K, the nearest
neighbor to q in S is contained in B(qp, 3D(p, qp)).

Proof: If D(q, p) ≤ D(qp, p), the previous lemma shows that the nearest
neighbor of q in S is contained in B(qp, 3D(p, qp)), as desired. So the construc-
tion fails only if D(q, p) > D(qp, p), that is, if q is the point in Pq := {q}∪P̂ that
is farthest from p, among all points in Pq that have p nearest in P ; that is q is
the “qp” of Pq. There are m such points in Pq, and since q is exchangeable, the
probability that it is chosen to be one of those m points is m/(Km+1) < 1/K.
The lemma follows.

So the probability is at least 1 − 1/K that the nearest neighbor to q is in
Bp := B(qp, 3D(qp, p)), that is, is a (3)-near neighbor of qp. The next lemma
bounds the expected number of such (3)-near neighbors.

Lemma 5.5 For P ⊂ S a random subset of size m, P̂ ⊂ S a random subset of
size Km, and q an exchangeable query, there are an expected

2O(d)O(Kn/m) log2 ∆(S)

sites x such that: there is some q′ in P̂ with x a (3)-near site with respect to P ,
and some p ∈ P that is nearest in P to q and q′.
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We really only need to bound the expected number of sites x in such a
configuration with q′ = qp. It seems easier, however, to bound the number with
a weaker condition on q′. The set of such sites x, for a given p ∈ P , contains
B(qp, 3D(qp, p)) ∩ S.

Proof: Let P ′ be any subset of S with m + 2 sites. Consider any x ∈ S \P ′.
The number of sites q̂′ ∈ P ′ with x (3)-near in P ′ is at most 2O(d) log ∆(S),
from Lemma 5.1. (Here we apply the lemma to P ′ ∪ {x} with γ = 3, and use
the fact that the spread of that set is no more than ∆(S).) Let p ∈ P ′ be the
nearest to q̂′ in P ′. The number of sites q̂ ∈ P ′ with p as nearest or second
nearest is 2O(d) log ∆(S). (It is possible that q̂′ is nearest to q̂ in P ′, and we
want to be able to discount that, so second nearest p is considered.)

That is, at most 2O(d) log2 ∆(S) configurations of sites q̂′, p, and q̂ in P ′

satisfy the conditions:

1. q̂′ has x (3)-nearest in P ′,

2. q̂′ has p nearest in P ′, and

3. q̂ has p nearest or second nearest in P ′.

Consider now an exchangeable query q, and q′ a random member of P̂ . We
have that q and q′ are random members of P ∪{q, q′}. Therefore the probability
there are also p ∈ P ′ and x ∈ S\P ′ such that q, q′, p, and x satisfy conditions 1-3,
with q in the role of q̂ and q′ in the role of q̂′, is the number of such configurations
divided by (m+1)(m+2), namely (2O(d) log2 ∆(S))/(m+2)(m+1). The result
follows by multiplying by Km, to account for averaging over the members of P̂
by picking random q′ ∈ P̂ , and also multiplying by n − m, to account for all
choices of x.

Nearly-Linear Data Structures. The above claims were not proposed in the
literature exactly as given, since their direct application to divide and conquer
does not result in the most efficient data structures. However, the ε-net scheme
roughly follows the ideas of Krauthgamer and Lee[KL04], while the empirical
doubling measure (growth-restricted) scheme follows ideas of an earlier paper
by Karger and Ruehl[KR02]. Finally, the “exchangeable queries” model follows
a still earlier paper [Cla99].

The problem with applying the direct approach, as described in Subsec-
tion 5.2.2, is that the sizes of the subproblems are too big: ideally, the sum of
the subproblem sizes |Bp∩S|, over p ∈ P , would be n, but it can be much larger
than that. As a result, the resulting data structures, if built with small P , use
superlinear storage.

However, for the two approaches described above that employ a random
subset, it is possible to use a sample size αn, where α is a fixed fraction; applying
this approach recursively to P , the resulting data structure needs storage close
to linear in n, although exponential in the doubling dimension. The M(S, Q)
algorithm of [Cla99] uses a scheme like this.

Applying this approach to the divide-and-conquer scheme for doubling mea-
sure would yield, in the course of construction, a sequence of nested random
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subsets,
S = P0 ⊃ P1 ⊃ P2 ⊃ . . . ⊃ Ph, (12)

where |Pi| ≈ αin, and h ≈ log1/α n. Each Pi is a random subset of Pi−1, for
i > 0, and a random subset of S.

Another way to build nested random subsets is via random permutations: if
p1, p2, . . . , pn is a random permutation of S, then any prefix {p1, p2, . . . , pm} is
a random subset. Random permutations, and subsets, can be built one site at
a time, picking pm+1 as a random element of S \ {p1, p2, . . . , pm}.

A roughly analogous idea for the ε-net scheme would be to use the ε-net P to
divide and conquer, not the searching problem in S, but instead the searching
problem for a larger ε-net P ′ (that is, one with smaller ε). There is a nested
sequence of subsets as in (12) above, but (assuming S is in a ball of radius 1/2),
each Pi is (1/2h−i)-net, and h ≈ ∆(S). This is roughly the approach taken
by Krauthgamer and Lee[KL04], with additional refinements; they obtain also
dynamic data structures that support insertion and deletion of sites.

The ε-net divide-and-conquer approach can also use a permutation: the one
that arises from the greedy ε-net construction procedure described in Subsec-
tion 4.1. This permutation is used in [Cla03] and [HPM05].

5.2.3 Traversal Data Structures and Skip Lists

Four ways of generating a nested sequence of subsets of the sites were just
described, two for the random approaches, and two for the ε-net approaches.

The first way could also be described as follows: each site is given a level
number i ≥ 0, and the level is chosen independently for each site, where the
probability that level i is assigned is 1/2i+1. Starting at the highest level, the
search algorithm finds the closest site at level i, and then must consider a small
number of sites to determine the closest site at level i − 1 or higher, repeating
until the closest site at level 0 is found.

This description shows that the data structure is similar to a skip list[Pug90],
which is a way to accelerate searching in a linear list of ordered values; such
searching is the one-dimensional version of nearest-neighbor searching.

The skip list approach can be applied to a broader set of methods for nearest-
neighbor searching, which could be characterized as graph-searching or traversal
methods.

Orchard’s method (see Subsection 3.2.1) is an example: recall that for Or-
chard’s method, each site s has a corresponding list Ls, sorted by increasing
distance from s. The search algorithm maintains a candidate closest site c, and
repeats the following steps:

1. walk down Lc, until a site c′ closer to q than c is found, or the distance of
the list entry to c exceeds 2d(c, q);

2. if no such site is found, return c as nearest; otherwise c := c′.

In Subsection 5.2, a way of searching in Euclidean spaces was described,
using Delaunay neighbors: each site s has a list Ns of its Delaunay neighbors.
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For every point q and site s, recall that either some Delaunay neighbor site
s′ ∈ Ns is closer to q than s, or else s is the closest site. That is, the same
traversal procedure as in Orchard’s algorithm can be applied to the Delaunay
neighbor lists, in the Euclidean case.

While the Delaunay method can be very expensive, because the total number
of Delaunay neighbors can be large, in the Euclidean case there are some traver-
sal approximation algorithms. Given ε > 0, Arya and Mount[AM93] found an
easily computed list Ls of size independent of the number of sites, such that for
any q, if s is closer to q than any member of Ls, then s is (1 + ε)-near to q in s.
This yields a traversal approximation algorithm. In this setting, it is possible
to find a list with the same properties as described for Arya and Mount, and
whose size is within a provably small factor of the smallest possible for such a
list[Cla94].

In the metric-space setting, Navarro [Nav02] proposed a heuristic data struc-
ture with a similar but somewhat more complicated searching method. His
construction is very similar to one of those of Arya and Mount.

Even when the sizes of the lists Ls are small, it may be that the query time is
large, because the path from the starting site to the answer must hop over many
sites. However, the skip list technique can be applied to accelerate any traversal
method; it was first applied in the nearest-neighbor setting by Arya and Mount.
It was expressed above in terms of a nested sequence of random subsets, but it
could also be described as follows: assign the sites to levels probabilistically, as
above, and for a site s at level i, build the search lists Ls,j with respect to Pj ,
for each j ≤ i. (As before, Pj is the set of sites at level j or lower.) Starting
at some site at the highest level h, perform the traversal procedure using lists
Ls,h, until the nearest site at level h is found, then use the level h− 1 lists, and
so on, until the nearest at level 0 is found. In some cases the same effect can
be achieved as follows: for s at level i, concatenate its lists Ls,i, Ls,i−1, . . . , Ls,0,
and search this grand concatenated list using the basic traversal method. This
might be called a skip-list-accelerated traversal method.

Although it was not derived in the same way, the M(S, Q) data structure
of [Cla99] behaves something like such a data structure: the data structure
comprises, for each site, a list of sites, the searching method is the traversal
above, and the search is provably fast. However, the nested sequence of subsets
was generated using a random permutation.

Note that Orchard’s algorithm might be accelerated in this way, and in the
doubling measure setting, each list Ls for Orchard’s method need not include all
the sites, by an analysis similar to that for the divide-and-conquer construction.

5.2.4 Voronoi Grouping

The storage requirements of data structures are often their critical limitation,
and for nearest-neighbor searching that limitation is particularly acute. Even
with storage that is O(n), as in some of the data structures cited above, a
dependence in the storage on the doubling constant, or other large constant,
makes the data structures unsuitable for many applications.
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One way to make a data structure that uses less space is to give up on pure
divide and conquer. In the examples above, the condition that p is nearest to
the query q in P constitutes a certificate that the nearest site a to q in S is
contained in Bp, up to the various additional caveats given. One less “greedy”
approach is the following: view each p ∈ P as the “leader” of a “group” of sites,
those sites in S for which p is nearest in P . The set of points that has a given
site closest is called its Voronoi region, and so this approach might be called
Voronoi grouping.

A key value associated with a leader p ∈ P is its covering radius rp, the
distance to the farthest site in its group. Thus each leader p ∈ P has an
associated ball B(p, rp) that contains all the sites in its group, although not all
sites in B(p, rp) are in the group led by p. However, if at some point the nearest
distance to a query q is bounded above by some δ, and D(q, p) > δ + rp, then
none of the sites led by p can be nearest. So the covering radius gives a way of
ruling out groups, even if it does not give a way to “rule them in,” as in divide
and conquer.

An early proposal for Voronoi grouping, called “bisector trees”[KM83] had
|P | = 2; that is, the sites would be split according to which of two sites was
closer, and child subtrees built for each set. To search the tree, the closest site
currently known is maintained, and a subtree need not be searched if its sites
can be ruled out using the covering radius, as above.

(A very early proposal by Fukunaga and Narendra [FN75] for nearest-neighbor
searching uses Voronoi grouping with a large branching factor, that is, |P | is
large. Their method does not apply to general metric spaces.)

Another data structure that uses Voronoi grouping is GNAT[Bri95], where
|P | is typically a large constant, and one proposed way to choose P is find an
ε-net of a random sample. There are no proven results about its performance,
however.

We turn now to sketching data structures related to those for which provable
bounds have been found. Here the approach is generally something like that for
divide and conquer: when answering a query, a sequence of larger and larger
subsets is considered, and for each subset, the sites that cannot be ruled out as
the leaders of the answer a are maintained.

To apply this idea to the ε-net approach, consider the nested sequence of εi-
nets Pi described above, with εi := 1/2h−i, for ε-net divide and conquer. (Recall
that D has been scaled to have maximum value 1.) For each p ∈ Pi, suppose
its leader in Pi+1, the closest p′ ∈ Pi+1, has been found in preprocessing, and
stored. A way to answer a query is to find, for i = h, h − 1, . . . , 0, the set Qi

containing all sites in Pi that are at a distance from the query point q no more
than D(q, Pi) + 2εi. Let Qh := Ph, the coarsest net. Suppose inductively that
Qi ⊂ Pi satisfies the distance condition. Then Qi−1 can be found from Qi,
because if p′ ∈ Pi is the leader of a site p ∈ Pi−1 with

D(q, p) ≤ D(q, Pi−1) + 2εi−1 ≤ D(q, Pi) + εi,
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then the distance of q to p′ is at most

D(q, p′) ≤ D(q, p) + D(p′, p) ≤ D(q, Pi) + 2εi,

and so p′ ∈ Qi.
This is roughly the technique of Beygelzimer et al. [BKL04], who prove

resource bounds for it in the doubling measure model.
The following lemma gives a slightly different way of applying this idea.

Lemma 5.6 For query point q, and P ⊂ S, suppose p′ ∈ P is nearest to q in
P , and a ∈ S \ P is nearest to q in S. If p ∈ P is nearest to a in P , then

D(a, p) ≤ D(a, p′) ≤ 2D(q, p′),

and
D(q, p) ≤ 3D(q, p′),

and
D(p, p′) ≤ 4D(q, p′).

So any leader in P of a is a (3)-near neighbor of q in P .
Proof: We have

D(a, p) ≤ D(a, p′) ≤ D(a, q) + D(q, p′) ≤ 2D(q, p′),

using the triangle inequality and the assumptions. So

D(q, p) ≤ D(q, a) + D(a, p) ≤ D(q, p′) + 2D(q, p′) = 3D(q, p′).

Finally, D(p, p′) ≤ D(q, p′) + D(q, p) ≤ 4D(q, p′).
This lemma was used by Hildrum et al. [HKMR04] to prove bounds for a

randomized data structure along generally similar lines: an increasing nested
sequence of random subsets Ph ⊂ Ph−1 ⊂ ... ⊂ P0 = S is considered, generated
with the skip-list technique; each p ∈ Pi has a link to its leader in Pi+1; to
answer a query, a subset Qi is maintained such that Qi contains the (3)-near
neighbors of q in Pi.

The same lemma was used in a previous paper for doubling constant spaces
in the exchangeable queries model[Cla99], to obtain a provably efficient data
structure, and it also figures in an algorithm for approximate distance oracles
[BS04].

Recently Har-Peled and Mendel [HPM05] have shown, among many other
things, that the greedy permutation can be computed using the Voronoi group-
ing approach, with a near-linear time bound for constant doubling dimen-
sion spaces. Clarkson [Cla03] proposed and implemented a roughly similar
algorithm, but without analysis. These algorithms proceed site by site, for
j = 1 . . . n, processing a site pj and making it a leader. Each leader, that is,
each site in Pj := {p1, . . . , pj}, has maintained for it the set of sites in S for
which it is nearest in Pj . Such a set for each pi is maintained in a heap, ordered
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by distance to pi, with the largest distance on top. The top of each such heap is
itself kept in a heap, so that the site p ∈ S \Pj for which D(p, Pj) is largest can
found, and chosen to be pj+1. When pj+1 is processed, a key operation is to
find the set of sites that it leads, those for which it is closest in Pj+1. In other
words, a reverse nearest-neighbor query is done for pj+1. Such queries can be
answered quickly, using some information acquired while building Pj .

6 Concluding Remarks

The problem of nearest-neighbor searching and various concepts of metric space
dimension have been seen to be related in a variety of interesting ways.

A few obvious questions arise: Does constant doubling dimension allow a
data structure for exact queries, without the exchangeability condition? Can
efficiency be proven for algorithms under weaker dimensional conditions than
doubling measure or doubling constant? Can extremal graphs be used to es-
timate metric measure space dimensions in a broader setting than Euclidean
d-manifolds?
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