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Abstract

This paper shows that the i-level of an arrangement of hyperplanes
in Ed has at most

(
i+d−1

d−1

)
local minima. This bound follows from ideas

previously used to prove bounds on (≤k)-sets. Using linear programming
duality, the Upper Bound Theorem is obtained as a corollary, giving yet
another proof of this celebrated bound on the number of vertices of a
simple polytope in Ed with n facets.

1 Introduction

We will need some terminology for arrangements, similar to that in Edelsbrun-
ner’s text[3]. Let A(H) be a simple arrangement of a set H of n hyperplanes
in Ed. For h ∈ H, let the upper halfspace h+ be the open halfspace bounded
by h that contains (∞, 0, . . . , 0), and let the lower halfspace h− be the other
open halfspace bounded by h. Say that x ∈ Ed is above h ∈ H if x ∈ h+, and
below h if x ∈ h−. The i-level of A(H) is the boundary of the set of points
that are below no more than i hyperplanes of H. Thus for example the 0-level
of A(H) is the boundary of the convex polytope P(H) =

⋂
h∈H(h+ ∪ h). The

maximum number of vertices of A(H) on its i-level is a combinatorial problem
of long standing. While some results have long been known for d = 2 [4], and re-
cently sharpened slightly[8], only relatively recently have nontrivial bounds been
known for the general problem in higher dimensions. These results are stated
in a dual form, concerning k-sets of sets of points. One related result is that the
maximum total number of vertices on all i-levels, for i ≤ k, is Θ(nbd/2ckdd/2e),
a (≤k)-set bound[2].

Using similar techniques, Mulmuley then showed that the number of local
minima on levels i ≤ k is O(kd), where a local minimum is point of the i-level
such that all points on the i-level in a neighborhood of the point have a larger
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x1 coordinate. Call a local minimum on the i-level an i-minimum, or an (≤k)-
minimum if i ≤ k. An i-minimum is a vertex, and so Mulmuley’s result is a
bound on a class of vertices of the i-level. Note that the 0-minimum of H is
the solution x∗(H) of the linear programming problem min{x1 | x ∈ P(H)}.
In addition to bounding the number of (≤k)-minima, Mulmuley showed some
bounds on related quantities, and conjectured that the number of i-minima is
O(id−1) for every i [7]. This conjecture is confirmed here by the bound

(
i+d−1
d−1

)
,

proven in the next section using the same technique as for bounds on (≤k)-sets
and (≤k)-minima.

This i-minima bound is of course not new for i = 0 and i = 1, and it isn’t
even new for i = n/2: using (projective or polar) duality, it is equivalent to
the preliminary observation for d = 2 that forms the basis of a bound on the
number of vertices on the n/2-level in E2 [4]. Thus the contribution here is
mostly one of observed connections and new proofs, and not new theorems.

Section 3 uses ideas of linear programming duality to show that the bound
on i-minima readily implies the celebrated Upper Bound Theorem for convex
polytopes[6, 1]. Here we mean only the upper bound of that theorem, and do
not characterize the polytopes for which the bound is tight.

2 The bound for i-minima

Some preliminary notation: for a set S, let
(
S
k

)
denote the collection of subsets

of S of size k, so |
(
S
k

)
| =

(|S|
k

)
. We will sometimes use the coordinate-wise partial

order on Ed where x, y ∈ Ed have x > y if xi > yi for i = 1 . . . d.
The bound for i-minima follows from the following well-known properties of

solutions of linear programming problems.

Lemma 2.1 Any arrangement A(H) has at most one 0-minimum x∗(H), and
if it exists, there is B ⊂ H of size d with x∗(B) = x∗(H).

Proof. Omitted; the second statement follows from Helly’s theorem, as ap-
plied to the upper halfspaces of H and the halfspaces {x1 ≤ q}, for all q smaller
than the first coordinate of x∗(H).

Call the set B promised by the lemma a basis b(H) of H. We can extend
the notations P(H), x∗(H), and b(H) to subsets of H in the obvious way;
however, for many G ⊆ H, the linear programming problem LP(G), of finding
min{x1 | x ∈ P(G)}, may be unbounded, or have many solutions, and even if
x∗(G) is unique, there may not be a unique basis b(G). To apply the lemma
and bound i-minima, the definitions of x∗(G) and b(G) are extended below to
all G ⊆ H, using lexicographic orders, such that every G ⊆ H has a unique
basis.

A point x = (x1, . . . , xd) is lexicographically (lex) smaller than point y =
(y1, . . . , yd), written x ≺ y, if xi < yi for the smallest i at which their coordinates
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differ. For sufficiently small ε > 0 we have x ≺ y if and only if x · bε < y · bε,
where bε = (1, ε, ε2, . . . , εd−1).

We broaden the definition of local minimum to include vertices that have
lexicographically minimal (lexmin) coordinates in a neighborhood of the i-level.
Thus for G ⊂ H, if the associated linear programming problem LP(G) has
a bounded solution, then x∗(G) exists and is unique. Note that a basis b(G)
yielding x∗(G) also exists.

Extend the definition of x∗(G) to the unbounded case as follows: choose a
sufficiently small value K so that all vertices v of A(H) have all coordinates
larger than K. Define x∗(G) as the lexmin point in P(G) with all coordinates
no smaller than K.

With these definitions, all G ⊆ H have a 0-minimum x∗(G), which is the
same as the initial definition when LP(G) has a unique vertex with minimum x1

coordinate. It remains to appropriately extend the notion of basis b(G). Here
again lexicography is useful.

Given a set S of integers {i | 1 ≤ i ≤ n}, the lexicographic order on
(
S
k

)
is as follows: for A,B ∈

(
S
k

)
, order A and B so that A = {a1 . . . , ak} and

a1 < a2 · · · < ak and similarly order B = {b1 . . . , bk}. Now A ≺ B if and only if
ai < bi at the smallest index i at which they differ.

We impose a lexicographic order on
(
H
d

)
by numbering the hyperplanes of

H arbitrarily from 1 to n and then saying A,B ∈
(
H
d

)
have A ≺ B if and only

if the associated sets of numbers A′ and B′ have A′ ≺ B′.
To define the basis b(G) for G ⊂ H, let b(G) denote the lexmin B ∈

(
G
d

)
so that x∗(B) = x∗(G). Note that some of the hyperplanes determining x∗(G)
may be of the form xi ≥ K, if LP(G) if unbounded and x∗(G) does not exist;
they are replaced in b(G) by the smallest-numbered elements of G that are not
above x∗(G).

An i-basis is defined as follows. For B ∈
(
H
d

)
, note that b(B) = B, and

define
IB ≡ {h ∈ H | b(B ∪ {h}) 6= B}.

That is, an element hj ∈ IB is either above x∗(B), or there is some hk ∈ B with
j < k and

x∗(B \ {hk} ∪ {hj}) = x∗(B),

so a lexicographically smaller subset with the same minimum can be obtained.
If IB has i members, call B an i-basis. Note that every i-minimum has a
corresponding i-basis. We will count the i-minima by counting the i-bases.

Let gi(H) denote the number of i-minima of H, and let g′i(H) denote the
number of i-bases. We have the following theorem.

Theorem 2.2 If A(H) is an arrangement of n hyperplanes in Ed, then gi(H) ≤
g′i(H) =

(
i+d−1
d−1

)
.
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Proof. As discussed above, each i-minimum of A(H) has a corresponding i-
basis, and each i-basis determines at most one i-minimum, so gi(H) ≤ g′i(H) and
it suffices to count the i-bases. Consider a random R ∈

(
H
r

)
, where d ≤ r ≤ n.

Here each element of
(
H
r

)
is equally likely. Any subset has exactly one basis.

On the other hand, we can express the expected number of bases of R as∑
B∈(H

d)
Prob{B ⊂ R,R ⊆ H \ IB},

since B ∈
(
H
d

)
is the basis of R if and only if B ⊂ R and no elements of IB

appear in R. If B is an i-basis, the number of subsets R ∈
(
H
r

)
with b(R) = B

is
(
n−i−d

r−d

)
, since B must be in R, and the remaining r − d choices of elements

of R must be from H \ B \ IB . Therefore the probability that i-basis B is the
basis of R is

(
n−i−d

r−d

)
/
(
n
r

)
, and we have

1 =
∑

0≤i≤n−d

(
n−i−d

r−d

)(
n
r

) g′i(H), (1)

for d ≤ r ≤ n. This equation is a special case of Lemma 2.1 of [2]. Since the
matrix corresponding to this system of n − d + 1 linear equations in n − d + 1
unknowns can be rearranged to be triangular with positive diagonal elements,
the system can be solved, and the reader can verify that the solution is

(
i+d−1
d−1

)
.

This bound for gi(H) is not very good for large i, since there is at most one
(n − d)-minimum, while there are

(
n−1
d−1

)
(n − d)-bases. However, it is easy to

show that a set B of d hyperplanes yields a minimum point x if and only x is a
maximum point in ∩h∈B(h− ∪ h). Hence gi(H) = gn−d−i(H), and we have the
following theorem.

Theorem 2.3 For any simple arrangement A(H) of n hyperplanes in Ed, the
number of i-minima gi(H) satisfies gi ≤ min{

(
i+d−1
d−1

)
,
(
n−i−1

d−1

)
}.

3 The Upper Bound Theorem

The g-vector of a polytope. Suppose P is a simple d-polytope with at most
n facets, and is the set of points {x ∈ Ed | Ax ≤ b}, where A is an n × d
matrix, x and b are an column n-vectors, and b ≥ 0. Since all entries of b are
nonnegative, the origin is in P. We will also write the inequalities as ajx ≤ bj ,
for j = 1 . . . n. Suppose w is an admissible row n-vector for P, meaning that
wv 6= wv′ for any two distinct vertices v and v′ of P. Orient the edges of the
P in the direction of increasing w (upward) and let gi(P) denote the number of
vertices with outdegree i, so that i of their incident edges point up. If fk(P) is
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the number of k-faces of P, then

fk(P) =
∑

i

(
i

k

)
gi(P), (2)

since each k-face F has a unique bottom vertex v, with all k edges in F incident
to v pointing up. To bound the quantities fk(P) it is enough to bound gi(P).
(The above condenses the discussion in Brøndsted’s text of McMullen’s proof
of the Upper Bound Theorem[6, 1].)

The LP-dual arrangement. The linear programming problem

max{wx | x ∈ P}

has the dual problem
min{yb | y ∈ P ′},

where
P ′ = {y ∈ En | y ∈ F , y ≥ 0},

and
F = {y ∈ En | yA = w}

is an (n − d)-flat. Letting d′ = n − d, the d′-polytope P ′ is one cell in the
arrangement A(H) induced by the collection H of n hyperplanes hj ≡ {y |
yj = 0}, j = 1 . . . n, restricted to F . (Note that while the previous section
discussed arrangements in Ed, here we consider one in a d′-flat.) We can define
local minima for this arrangement where we seek minima of yb. We have the
following lemma. It is standard [5, §8.2], but for completeness a proof appears
below (neglecting some issues of degeneracy).

Lemma 3.1 There is a one-to-one correspondence between i-minima of A(H)
and vertices of P with outdegree i, and so gi(P) = gi(H).

Proof. If v is a vertex of P, then v is the solution of Âv = b̂, a subsystem
of d rows of Ax ≤ b. Suppose v′ ∈ F has zero coordinates for all but those
corresponding to the rows giving Â. Thus v′ is a vertex of A(H): it is the
intersection of d′ hyperplanes of H with F . The nonzero coordinates of v′ are
determined by v′A = w.

First observe that v′ is a local minimum x∗(G) for G = {hj | v′j = 0}:
note that if y ∈ F , so yA = w, then yb − wx = yb − yAx = y(b − Ax).
Thus v′b − wv = v′(b − Av) = 0 since v′j = 0 if and only if ajv 6= 0. (So v′

and v has the same objective function values in the dual linear programming
problems.) On the other hand, if yA = w and yj ≥ 0 when v′j = 0, we have
yb − wv = y(b − Av) ≥ 0 since b − Av ≥ 0 and ajv = bj when v′j 6= 0. Thus if
y ∈ P ′(G) then yb ≥ v′b. Note that the inequality is strict if yj > 0 for some j
with ajv < bj .
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Next to show that if v has outdegree i then v′ is an i-minimum. Since
v′j < 0 if and only if v′ is below hj , we need to show that a coordinate v′j 6= 0
corresponds to an oriented edge (v, q) where wv − wq = w(v − q) has the same
sign as v′j . Suppose (v, q) is an edge of P. Then Âv = b̂ ≥ Âq, with one strict
inequality ajv = bj > ajq, and with equality for the other rows of Â. This
implies that w(v − q) = v′A(v − q) = v′jaj(v − q), and since aj(v − q) > 0, v′j
and w(v − q) have the same sign.

We have the Upper Bound Theorem, missing the proof that the given bound
is tight for dual neighborly polytopes.

Theorem 3.2 The number of k-faces of a simple polytope in Ed with n facets
is at most ∑

i

(
i

k

)
min{

(
i + n− d− 1

n− d− 1

)
,

(
n− i− 1
n− d− 1

)
}.

Proof. The bound follows by applying the previous lemma, Equation (2),
and Theorem 2.3

4 Concluding remarks

It is curious that the (≤k)-set bounds of [2] both rely on the Upper Bound The-
orem and are proven using an argument like the proof of Lemma 2.2. Perhaps
some more direct argument for them exists.
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