A Bound on Local Minima of Arrangements that implies the Upper Bound Theorem

Kenneth L. Clarkson
AT\&T Bell Laboratories
Murray Hill, New Jersey 07974
e-mail: clarkson@research.att.com

Abstract

This paper shows that the i-level of an arrangement of hyperplanes in E^{d} has at most $\binom{i+d-1}{d-1}$ local minima. This bound follows from ideas previously used to prove bounds on ($\leq k$)-sets. Using linear programming duality, the Upper Bound Theorem is obtained as a corollary, giving yet another proof of this celebrated bound on the number of vertices of a simple polytope in E^{d} with n facets.

1 Introduction

We will need some terminology for arrangements, similar to that in Edelsbrunner's text[3]. Let $\mathcal{A}(H)$ be a simple arrangement of a set H of n hyperplanes in E^{d}. For $h \in H$, let the upper halfspace h^{+}be the open halfspace bounded by h that contains $(\infty, 0, \ldots, 0)$, and let the lower halfspace h^{-}be the other open halfspace bounded by h. Say that $x \in E^{d}$ is above $h \in H$ if $x \in h^{+}$, and below h if $x \in h^{-}$. The i-level of $\mathcal{A}(H)$ is the boundary of the set of points that are below no more than i hyperplanes of H. Thus for example the 0 -level of $\mathcal{A}(H)$ is the boundary of the convex polytope $\mathcal{P}(H)=\bigcap_{h \in H}\left(h^{+} \cup h\right)$. The maximum number of vertices of $\mathcal{A}(H)$ on its i-level is a combinatorial problem of long standing. While some results have long been known for $d=2$ [4], and recently sharpened slightly [8], only relatively recently have nontrivial bounds been known for the general problem in higher dimensions. These results are stated in a dual form, concerning k-sets of sets of points. One related result is that the maximum total number of vertices on all i-levels, for $i \leq k$, is $\Theta\left(n^{\lfloor d / 2\rfloor} k^{\lceil d / 2\rceil}\right)$, a $(\leq k)$-set bound [2].

Using similar techniques, Mulmuley then showed that the number of local minima on levels $i \leq k$ is $O\left(k^{d}\right)$, where a local minimum is point of the i-level such that all points on the i-level in a neighborhood of the point have a larger
x_{1} coordinate. Call a local minimum on the i-level an i-minimum, or an $(\leq k)$ minimum if $i \leq k$. An i-minimum is a vertex, and so Mulmuley's result is a bound on a class of vertices of the i-level. Note that the 0 -minimum of H is the solution $x^{*}(H)$ of the linear programming problem $\min \left\{x_{1} \mid x \in \mathcal{P}(H)\right\}$. In addition to bounding the number of $(\leq k)$-minima, Mulmuley showed some bounds on related quantities, and conjectured that the number of i-minima is $O\left(i^{d-1}\right)$ for every $i[7]$. This conjecture is confirmed here by the bound $\binom{i+d-1}{d-1}$, proven in the next section using the same technique as for bounds on $(\leq k)$-sets and $(\leq k)$-minima.

This i-minima bound is of course not new for $i=0$ and $i=1$, and it isn't even new for $i=n / 2$: using (projective or polar) duality, it is equivalent to the preliminary observation for $d=2$ that forms the basis of a bound on the number of vertices on the $n / 2$-level in E^{2} [4]. Thus the contribution here is mostly one of observed connections and new proofs, and not new theorems.

Section 3 uses ideas of linear programming duality to show that the bound on i-minima readily implies the celebrated Upper Bound Theorem for convex polytopes $[6,1]$. Here we mean only the upper bound of that theorem, and do not characterize the polytopes for which the bound is tight.

2 The bound for i-minima

Some preliminary notation: for a set S, let $\binom{S}{k}$ denote the collection of subsets
 order on E^{d} where $x, y \in E^{d}$ have $x>y$ if $x_{i}>y_{i}$ for $i=1 \ldots d$.

The bound for i-minima follows from the following well-known properties of solutions of linear programming problems.

Lemma 2.1 Any arrangement $\mathcal{A}(H)$ has at most one 0-minimum $x^{*}(H)$, and if it exists, there is $B \subset H$ of size d with $x^{*}(B)=x^{*}(H)$.

Proof. Omitted; the second statement follows from Helly's theorem, as applied to the upper halfspaces of H and the halfspaces $\left\{x_{1} \leq q\right\}$, for all q smaller than the first coordinate of $x^{*}(H)$.

Call the set B promised by the lemma a basis $b(H)$ of H. We can extend the notations $\mathcal{P}(H), x^{*}(H)$, and $b(H)$ to subsets of H in the obvious way; however, for many $G \subseteq H$, the linear programming problem $\mathcal{L P}(G)$, of finding $\min \left\{x_{1} \mid x \in \mathcal{P}(G)\right\}$, may be unbounded, or have many solutions, and even if $x^{*}(G)$ is unique, there may not be a unique basis $b(G)$. To apply the lemma and bound i-minima, the definitions of $x^{*}(G)$ and $b(G)$ are extended below to all $G \subseteq H$, using lexicographic orders, such that every $G \subseteq H$ has a unique basis.

A point $x=\left(x_{1}, \ldots, x_{d}\right)$ is lexicographically (lex) smaller than point $y=$ $\left(y_{1}, \ldots, y_{d}\right)$, written $x \prec y$, if $x_{i}<y_{i}$ for the smallest i at which their coordinates
differ. For sufficiently small $\epsilon>0$ we have $x \prec y$ if and only if $x \cdot b_{\epsilon}<y \cdot b_{\epsilon}$, where $b_{\epsilon}=\left(1, \epsilon, \epsilon^{2}, \ldots, \epsilon^{d-1}\right)$.

We broaden the definition of local minimum to include vertices that have lexicographically minimal (lexmin) coordinates in a neighborhood of the i-level. Thus for $G \subset H$, if the associated linear programming problem $\mathcal{L P}(G)$ has a bounded solution, then $x^{*}(G)$ exists and is unique. Note that a basis $b(G)$ yielding $x^{*}(G)$ also exists.

Extend the definition of $x^{*}(G)$ to the unbounded case as follows: choose a sufficiently small value K so that all vertices v of $\mathcal{A}(H)$ have all coordinates larger than K. Define $\underline{x}^{*}(G)$ as the lexmin point in $\mathcal{P}(G)$ with all coordinates no smaller than K.

With these definitions, all $G \subseteq H$ have a 0 -minimum $\underline{x}^{*}(G)$, which is the same as the initial definition when $\mathcal{L P}(G)$ has a unique vertex with minimum x_{1} coordinate. It remains to appropriately extend the notion of basis $b(G)$. Here again lexicography is useful.

Given a set S of integers $\{i \mid 1 \leq i \leq n\}$, the lexicographic order on $\binom{S}{k}$ is as follows: for $A, B \in\binom{S}{k}$, order A and B so that $A=\left\{a_{1} \ldots, a_{k}\right\}$ and $a_{1}<a_{2} \cdots<a_{k}$ and similarly order $B=\left\{b_{1} \ldots, b_{k}\right\}$. Now $A \prec B$ if and only if $a_{i}<b_{i}$ at the smallest index i at which they differ.

We impose a lexicographic order on $\binom{H}{d}$ by numbering the hyperplanes of H arbitrarily from 1 to n and then saying $A, B \in\binom{H}{d}$ have $A \prec B$ if and only if the associated sets of numbers A^{\prime} and B^{\prime} have $A^{\prime} \prec B^{\prime}$.

To define the basis $b(G)$ for $G \subset H$, let $b(G)$ denote the lexmin $B \in\binom{G}{d}$ so that $\underline{x}^{*}(B)=\underline{x}^{*}(G)$. Note that some of the hyperplanes determining $\underline{x}^{*}(G)$ may be of the form $x_{i} \geq K$, if $\mathcal{L P}(G)$ if unbounded and $x^{*}(G)$ does not exist; they are replaced in $b(G)$ by the smallest-numbered elements of G that are not above $\underline{x}^{*}(G)$.

An i-basis is defined as follows. For $B \in\binom{H}{d}$, note that $b(B)=B$, and define

$$
I_{B} \equiv\{h \in H \mid b(B \cup\{h\}) \neq B\}
$$

That is, an element $h_{j} \in I_{B}$ is either above $\underline{x}^{*}(B)$, or there is some $h_{k} \in B$ with $j<k$ and

$$
\underline{x}^{*}\left(B \backslash\left\{h_{k}\right\} \cup\left\{h_{j}\right\}\right)=\underline{x}^{*}(B)
$$

so a lexicographically smaller subset with the same minimum can be obtained. If I_{B} has i members, call B an i-basis. Note that every i-minimum has a corresponding i-basis. We will count the i-minima by counting the i-bases.

Let $g_{i}(H)$ denote the number of i-minima of H, and let $g_{i}^{\prime}(H)$ denote the number of i-bases. We have the following theorem.

Theorem 2.2 If $\mathcal{A}(H)$ is an arrangement of n hyperplanes in E^{d}, then $g_{i}(H) \leq$ $g_{i}^{\prime}(H)=\binom{i+d-1}{d-1}$.

Proof. As discussed above, each i-minimum of $\mathcal{A}(H)$ has a corresponding i basis, and each i-basis determines at most one i-minimum, so $g_{i}(H) \leq g_{i}^{\prime}(H)$ and it suffices to count the i-bases. Consider a random $R \in\binom{H}{r}$, where $d \leq r \leq n$. Here each element of $\binom{H}{r}$ is equally likely. Any subset has exactly one basis. On the other hand, we can express the expected number of bases of R as

$$
\sum_{B \in\binom{H}{d}} \operatorname{Prob}\left\{B \subset R, R \subseteq H \backslash I_{B}\right\}
$$

since $B \in\binom{H}{d}$ is the basis of R if and only if $B \subset R$ and no elements of I_{B} appear in R. If B is an i-basis, the number of subsets $R \in\binom{H}{r}$ with $b(R)=B$ is $\binom{n-i-d}{r-d}$, since B must be in R, and the remaining $r-d$ choices of elements of R must be from $H \backslash B \backslash I_{B}$. Therefore the probability that i-basis B is the basis of R is $\binom{n-i-d}{r-d} /\binom{n}{r}$, and we have

$$
\begin{equation*}
1=\sum_{0 \leq i \leq n-d} \frac{\binom{n-i-d}{r-d}}{\binom{n}{r}} g_{i}^{\prime}(H) \tag{1}
\end{equation*}
$$

for $d \leq r \leq n$. This equation is a special case of Lemma 2.1 of [2]. Since the matrix corresponding to this system of $n-d+1$ linear equations in $n-d+1$ unknowns can be rearranged to be triangular with positive diagonal elements, the system can be solved, and the reader can verify that the solution is $\binom{i+d-1}{d-1}$. \square

This bound for $g_{i}(H)$ is not very good for large i, since there is at most one $(n-d)$-minimum, while there are $\binom{n-1}{d-1}(n-d)$-bases. However, it is easy to show that a set B of d hyperplanes yields a minimum point x if and only x is a maximum point in $\cap_{h \in B}\left(h^{-} \cup h\right)$. Hence $g_{i}(H)=g_{n-d-i}(H)$, and we have the following theorem.

Theorem 2.3 For any simple arrangement $\mathcal{A}(H)$ of n hyperplanes in E^{d}, the number of i-minima $g_{i}(H)$ satisfies $g_{i} \leq \min \left\{\binom{i+d-1}{d-1},\binom{n-i-1}{d-1}\right\}$.

3 The Upper Bound Theorem

The g-vector of a polytope. Suppose \mathcal{P} is a simple d-polytope with at most n facets, and is the set of points $\left\{x \in E^{d} \mid A x \leq b\right\}$, where A is an $n \times d$ matrix, x and b are an column n-vectors, and $b \geq 0$. Since all entries of b are nonnegative, the origin is in \mathcal{P}. We will also write the inequalities as $a_{j} x \leq b_{j}$, for $j=1 \ldots n$. Suppose w is an admissible row n-vector for \mathcal{P}, meaning that $w v \neq w v^{\prime}$ for any two distinct vertices v and v^{\prime} of \mathcal{P}. Orient the edges of the \mathcal{P} in the direction of increasing $w($ upward $)$ and let $g_{i}(\mathcal{P})$ denote the number of vertices with outdegree i, so that i of their incident edges point up. If $f_{k}(\mathcal{P})$ is
the number of k-faces of \mathcal{P}, then

$$
\begin{equation*}
f_{k}(\mathcal{P})=\sum_{i}\binom{i}{k} g_{i}(\mathcal{P}) \tag{2}
\end{equation*}
$$

since each k-face F has a unique bottom vertex v, with all k edges in F incident to v pointing up. To bound the quantities $f_{k}(\mathcal{P})$ it is enough to bound $g_{i}(\mathcal{P})$. (The above condenses the discussion in Brøndsted's text of McMullen's proof of the Upper Bound Theorem $[6,1]$.)

The LP-dual arrangement. The linear programming problem

$$
\max \{w x \mid x \in \mathcal{P}\}
$$

has the dual problem

$$
\min \left\{y b \mid y \in \mathcal{P}^{\prime}\right\}
$$

where

$$
\mathcal{P}^{\prime}=\left\{y \in E^{n} \mid y \in \mathcal{F}, y \geq 0\right\}
$$

and

$$
\mathcal{F}=\left\{y \in E^{n} \mid y A=w\right\}
$$

is an $(n-d)$-flat. Letting $d^{\prime}=n-d$, the d^{\prime}-polytope \mathcal{P}^{\prime} is one cell in the arrangement $\mathcal{A}(H)$ induced by the collection H of n hyperplanes $h_{j} \equiv\{y \mid$ $\left.y_{j}=0\right\}, j=1 \ldots n$, restricted to \mathcal{F}. (Note that while the previous section discussed arrangements in E^{d}, here we consider one in a d^{\prime}-flat.) We can define local minima for this arrangement where we seek minima of $y b$. We have the following lemma. It is standard $[5, \S 8.2]$, but for completeness a proof appears below (neglecting some issues of degeneracy).

Lemma 3.1 There is a one-to-one correspondence between i-minima of $\mathcal{A}(H)$ and vertices of \mathcal{P} with outdegree i, and so $g_{i}(\mathcal{P})=g_{i}(H)$.

Proof. If v is a vertex of \mathcal{P}, then v is the solution of $\hat{A} v=\hat{b}$, a subsystem of d rows of $A x \leq b$. Suppose $v^{\prime} \in \mathcal{F}$ has zero coordinates for all but those corresponding to the rows giving \hat{A}. Thus v^{\prime} is a vertex of $\mathcal{A}(H)$: it is the intersection of d^{\prime} hyperplanes of H with \mathcal{F}. The nonzero coordinates of v^{\prime} are determined by $v^{\prime} A=w$.

First observe that v^{\prime} is a local minimum $x^{*}(G)$ for $G=\left\{h_{j} \mid v_{j}^{\prime}=0\right\}$: note that if $y \in \mathcal{F}$, so $y A=w$, then $y b-w x=y b-y A x=y(b-A x)$. Thus $v^{\prime} b-w v=v^{\prime}(b-A v)=0$ since $v_{j}^{\prime}=0$ if and only if $a_{j} v \neq 0$. (So v^{\prime} and v has the same objective function values in the dual linear programming problems.) On the other hand, if $y A=w$ and $y_{j} \geq 0$ when $v_{j}^{\prime}=0$, we have $y b-w v=y(b-A v) \geq 0$ since $b-A v \geq 0$ and $a_{j} v=b_{j}$ when $v_{j}^{\prime} \neq 0$. Thus if $y \in \mathcal{P}^{\prime}(G)$ then $y b \geq v^{\prime} b$. Note that the inequality is strict if $y_{j}>0$ for some j with $a_{j} v<b_{j}$.

Next to show that if v has outdegree i then v^{\prime} is an i-minimum. Since $v_{j}^{\prime}<0$ if and only if v^{\prime} is below h_{j}, we need to show that a coordinate $v_{j}^{\prime} \neq 0$ corresponds to an oriented edge (v, q) where $w v-w q=w(v-q)$ has the same sign as v_{j}^{\prime}. Suppose (v, q) is an edge of \mathcal{P}. Then $\hat{A} v=\hat{b} \geq \hat{A} q$, with one strict inequality $a_{j} v=b_{j}>a_{j} q$, and with equality for the other rows of \hat{A}. This implies that $w(v-q)=v^{\prime} A(v-q)=v_{j}^{\prime} a_{j}(v-q)$, and since $a_{j}(v-q)>0, v_{j}^{\prime}$ and $w(v-q)$ have the same sign.

We have the Upper Bound Theorem, missing the proof that the given bound is tight for dual neighborly polytopes.

Theorem 3.2 The number of k-faces of a simple polytope in E^{d} with n facets is at most

$$
\sum_{i}\binom{i}{k} \min \left\{\binom{i+n-d-1}{n-d-1},\binom{n-i-1}{n-d-1}\right\} .
$$

Proof. The bound follows by applying the previous lemma, Equation (2), and Theorem 2.3

4 Concluding remarks

It is curious that the $(\leq k)$-set bounds of [2] both rely on the Upper Bound Theorem and are proven using an argument like the proof of Lemma 2.2. Perhaps some more direct argument for them exists.

References

[1] A. Brøndsted. An Introduction to Convex Polytopes. Springer-Verlag, Berlin, 1983.
[2] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete and Computational Geometry, 4:387-421, 1989.
[3] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.
[4] P. Erdős, L. Lovasz, A. Simmons, and E. G. Straus. Dissection graphs of planar point sets. In J. N. Srivastava et al, editor, A Survey of Combinatorial Theory. North-Holland, Amsterdam, 1973.
[5] P. E. Gill, W. Murray, and M. H. Wright. Numerical linear algebra and optimization, volume 1. Addison-Wesley, New York, 1991.
[6] P. McMullen. The maximum number of faces of a convex polytope. Mathematika, 17:179-184, 1970.
[7] K. Mulmuley. Output sensitive construction of levels and Voronoi diagrams in R^{d} of order 1 to k. In Proc. 22nd Annual SIGACT Symp., pages 322-330, 1990.
[8] J. Pach, W. Steiger, and E. Szemeredi. An upper bound on the number of planar k-sets. In Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 72-79, 1989.

