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Abstract
We prove four results on randomized incremental constructions (RICs):

e an analysis of the expected behavior under insertion and deletions,

a fully dynamic data structure for convex hull maintenance in arbi-
trary dimensions,

a tail estimate for the space complexity of RICs,

a lower bound on the complexity of a game related to RICs.

1 Introduction

Randomized incremental construction (RIC) is a powerful paradigm for geomet-
ric algorithms [CS89, Mul88, BDS*]. It leads to simple and efficient algorithms
for a wide range of geometric problems: line segment intersection [CS89, Mul88],
convex hulls [CS89, Sei90], Voronoi diagrams [CS89, MMO91, GKS90, Dev], tri-
angulation of simple polygons [Sei91], and many others. In this paper we make
four contributions to the study of RICs.

o We give a simple analysis of the expected behavior of RICs; cf. § 2. We deal
with insertions and deletions and derive bounds for the expected number
of regions constructed and the expected number of conflicts encountered
in the construction. In the case of deletions our bounds are new, but
compare [DMT91, Mul91a, Mul91b, Mul91c, Sch91] for related results, in
the case of insertions the results were known, but our proofs are simpler.
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o We apply the general results on RIC to the problem of maintaining convex
hulls in d-dimensional space; cf. § 3. We show that random insertions and
deletions take expected time O(logn) for d < 3 and time O(nl%/21-1)
otherwise. If the points are in convex position, which is, e.g., the case
when Voronoi diagrams are transformed into convex hulls of one higher
dimension, the deletion time becomes loglogn for d < 3. Schwarzkopf
[Sch91] has obtained the same bounds for all d > 6, Mulmuley [Mul91c] has
obtained the same bound for all d but with a more complex construction,
and Devillers et al [DMT91] have previoulsy obtained the result for 2-
dimensional Voronoi-diagrams.

e We derive a tail estimate for the number of regions constructed in RICs;
cf. § 4.

e We study the complexity of a game related to the O(nlog®n) RICs of
[Sei91] and [Dev] and show that the complexity of the game is ©(n log* n);
cf. § 5.

2 Randomized Incremental Constructions:
General Theorems

Let S be a set with |S| = n elements, which we will sometimes call objects. Let
F(S) be a multiset whose elements are nonempty subsets of S, and let b be the
size of the largest element of F(S). We will call the elements of F(S) regions
or ranges. If all the regions have size b, we will say that F(S) is uniform. For
a region F' € F(S) and an object z, if z € F we say that F relies on x or x
supports F. For R C S, define F(R) = {F € F(S) | F C R}. (That is, the
multiplicity of F' in F(R) is the same as in F(S).) We also assume a conflict
relation C C S x F(S) between objects and regions. We postulate that for all
z € Sand F € F(S),if (z,F) € C then F does not rely on z.

For a subset R C S, Fo(R) will denote the set of F' € F(R) havingnoz € R
with (z, F) € C; that is, Fo(R) is the set of regions over R which do not conflict
with any object in R.

Clarkson and Shor [CS89] analyzed the incremental computation of Fy(S).
In the general step, Fo(R) for some subset R C S is already available, a random
element z € S\ R is chosen, and Fo(R U {z}) is constructed from Fy(R).

Let (z1,...,z;) be a sequence of pairwise distinct elements of S, and R; the
set {z1,...,z;}. Let Ry = {}, the empty set. The history H = H(z1,...,%,)
for insertion sequence (z1,...,%,) is defined as H = |J Fo(R;). Let IIg be

1<ir
the set of permutations of S. For 7 = (z1,...,2,) € llg, H.(w) or simply H,
denotes the history H(z1,...,2,).

First, some simple facts about random permutations, whose proofs we leave
to the reader:



Lemma 1 If 7 = (@1,...,%y,) is a random permutation of S, then R; is a
random subset of S of size j, (x1,...,2;) is a random permutation of R;, x; is
a random element of R;, and if 0 is a (fived) permutation, then wo is a random
permutation.

We are now ready for an average case analysis of randomized incremental
constructions. All expected values are computed with respect to a random
ordering (x1,---,%,) € IIg of the objects in S.

For subset R C S, r = |R|, and distinct objects z,y € R, let

deg(z,R) = |{F € Fo(R);x supports F}|
pdeg(z,y,R) = [{F € Fo(R);z and y support F'}|
1
¢(R) = " Z deg(z, R)
z€ER
1

pR) = oy > pdeg(z,y,R) .

(zy)ER?

We call deg(z, R) the degree of z in R, pdeg(z,y, R) the degree of the ordered
pair (z,y) in R, c(R) the average degree of a random object in R and p(R) the
average pair degree of a random pair of objects in R. Of course, p(R) is only
defined for r > 2.

For integer r, 1 < r < n, let

and
pe=rpel= Y w(7)
RCS,|R|=r

be the expected average degree and pair degree for random R, C S, and let

= Y mwi(")

RCS,|R|=r

be the expected number of conflict-free regions of F(R), with respect to random
R,.. Note that ¢; = f;. It will be convenient to adopt the convention that
¢j=pj=f; =0for j <1orj>n,and (almost always) convenient to adopt
the convention that p; = fi.

Lemma 2 The expectations cy, pr, and f, satisfy ¢, < bf./r, and for r > 1,

pr <b(b—1)fr/r(r — 1), with equality if F(S) is uniform.



Proof: For every region F' € F(S) there are at most b objects and at most
b(b — 1) ordered pairs of objects which support F', and exactly as many if F(S)
is uniform. 1

Theorem 3 Let C,. be the expected size of history H.. Then C, = qu cj-

Proof: Hj is empty and hence Cy = 0. For r > 1 the number of elements of
H, which are not already elements of H,._; is equal to deg(z, R,). Since R, is
a random subset of S of size r and z, is a random object in R, we have

Eldeg(z,, R,)] = E[c(R)] = c.

In §4 we will strengthen Theorem 3 and prove a tail estimate for |H,|.

Theorem 4 The expected number of regions in H._y which are in conflict with
Ty i8S —Cp + stij.
Proof: Let X be the number of regions F € H,_; with (z,,F) € C. Let

H =H,; = Hx,...,2—1) and H = H(xp,21,...,%r_1), i.€., in H we
“pretend” that z, was put in first. We have

[H|+ [H'\H| = |H'| + |[H\H'|,

which holds for any two finite sets. Now X = |H\H'| since H\H' is the set of
regions in H which conflict with z,.. On the other hand, H'\ H comprises regions
supported by z,; to count these regions, we count the number that appear when
z; is inserted. That is, letting R} = R; U {z,}, for each region F' € H'\H there
is exactly one j > 1 such that F' € Fo(R}) and z; supports F. Such a region
is also supported by x,, and so for given j the number of regions we count is
pdeg(z,, 7, R}). Putting these observations together,

X =|H| - [H+|Fo{z: )|+ > pdeg(zr,zj, R)),
1<j<r—1
and so
EX = E|H| - E|H'| + E|Fo({z,})| + Y_ Elpdeg(z,,z;, R})]
1<j<r—1

We have E|H| = Cr—1 by Theorem 3, and E|H'| = C, by Theorem 3 and
Lemma 1. Also E|Fo({z-})| = fi = p1 by convention, and E[pdeg(z,,z;, R})] =
pj+1, since R} = R; U {z,} is a random subset of S of size j + 1 and z, and =;
are random elements of this subset. 1

The following estimates are also useful.



Lemma 5 For j <r the following holds:
(a) The expected number of regions in Fo(R;—1) in conflict with x, is f;_1 —
fj +cj.

(b) The expected number of regions in Fo(R;_1) supported by x; 1 and in
conflict with x, is at most b(f;_1 — f; +¢;)/(j — 1), with equality if F(S)
is uniform.

Proof:
(a) We have

fo(Rj_l U {ZL'T}) = fo(Rj_l)\{F € fo(Rj_l); (Z'T,F) € C}
U {F € Fo(Rj—1 U{z,});z, supports F'}

and hence the desired quantity is
E|Fo(Rj-1)|-E|Fo(Rj-1U{z, })[+E{F € Fo(R;j—1U{z,}); z, supports F}|
=fi-i=fite

(b) zj_; is a random element of R;_;. Hence a region considered in part (a)
is supported by x;_1 with probability at most b/(j — 1).

Summation of the bound in Lemma 5b for j from 1 to r — 1 gives an alter-
native bound on the expected number of regions in H,_; which conflict with
Ty

The conflict history G = G,, = G(x) for insertion sequence © = (1, ,Zn)
is the relation C'N (S x H,). We may also describe this relation as a bipartite
graph, with an edge between object z € S and region F' € H,, when z and F
conflict. The conflict history corresponds to the union (over time) of the conflict
graphs in [CS89]. We use |G| to denote the size of the conflict history, i.e., the
number of pairs in it.

Theorem 6 The expected size of the conflict history is

E|G|=-Cn+ Y (n—j+1)p;
J

Proof: Theorem 4 counts the expected number of edges incident to node
z, € S. The claim follows by summation over r. ]



We next turn to random deletions. For m# = (x1,...,2,) € g and r €
[1..n], let
T\" = (1, ey Tre1, Tpgly -y Ln),
and 7\r = 7 for r ¢ [1..n]. We bound the expected size of the difference

between H(w) and H(w\r) and between G(w) and G(w\r) for random = € IIg
and random r € [1..n].

Theorem 7
1
nln

> N |H(m) @ H(m\r)| < Qb% — ¢y,

mells T
with equality if F(S) is uniform.
Proof: For finite sets A and B,
|B@ Al = |A] - |B|+2|B\A],
and so for H = H(w) and H(w\r),
|H & H(r\r)| = [H(\r)| — |H| + 2[H\H (7\r)|.

The set H\H(w\r) comprises the regions in H supported by z,. By Theo-
rem 3, E|H| = C,, and any F' € H is supported by no more than b objects,
with equality if F(S) is uniform. Therefore on average the random z, € S
supports no more than bC),/n regions of H. By Theorem 3 and Lemma 1, we
have E|H (mw\r)| = Cp—_1, and the theorem follows since Cp,—; — C, = —¢, by
definition. 1

Theorem 8

EGENGE| = — 3 S IGEiNGH)

wn€lls @

en— (b+1)Cn/n+Y_ bp; = > (b+1)(G — pj/n,

J

IN

with equality if F(S) is uniform.
Proof: Letting G = G(x), we have

IG(m\i\G| = |G(m\i)| — |G| + |G\G(x\i)],
and by linearity of expectation,

E|G(n\i)\G| = E|G(m\i)| - E|G| + E|G\G(r\i)|.



Theorem 6 gives an expression for E|G/|, and together with Lemma 1 it gives a
similar expression for E|G(w\7)|, yielding

E|G(m\i)\G| = E|G\G(m\i)| + ¢ — ij-

J

(Alternatively, note that E|G| — E|G(w\i)| is the expected number of regions of
H,, conflicting with z;, and use Theorem 4.) We need to find E|G\G(w\i)|. A
pair (z, F) isin G\G(w\i) if it is in G and either z; = z or z; € F. At most b+1
choices of z; allow this, for any (z, F) € G, and so E|G\G(7\i)| < (b+1)E|G|/n,
with equality if F(S) is uniform. The result follows using Theorem 6 and easy
manipulations. ]

In the convex hull algorithm of §3, the conflicts of G(7\i)\G(w) are not quite
all those examined when deleting z;. The following bound will also be useful.

Lemma 9 Let I be the set of conflicts of the form (z;,F) with j > i and
F € Fo(Ri 1) \ Fo(R;). Then for random m € Ilg and random i € [1..n],
E|lI| = (E|G| — E|H| + fn)/n.

Proof: Let I; denote the set I for x;. Then E|I| = ), E|I;|/n, and since
the I; are disjoint, E|I| = E|U; I;|/n. For any conflict (z;,F) € G, either
F € Fy(R;_1), or there is exactly one ¢ < j such that F' € Fo(R;—1)\Fo(R;). In
the latter case, (z;, F) € I;. To count the conflicts (x;, F') with F' € Fo(R;_1),
note that each F € H\F(S) appears this way exactly once. Thus E|G| =
E|U; I;| + E|H| — |Fo(S)|, from which the Lemma follows. 1

3 Dynamic Convex Hulls

We apply the results of §2 to the problem of maintaining the convex hull in
d-dimensional space under insertions and deletions of points. Let X C IR¢ be a
set of points, which we assume to be in nondegenerate position: no d + 1 lie in
a common hyperplane. For R C X, let conv R denote the convex hull of R. We
let 1,2, ..., x, denote the points in X in the order of their insertion, and let
R; denote {z1,...,z;}.

3.1 The Insertion Algorithm

To maintain the convex hull of R under insertions, we maintain a triangulation
T of the hull: a simplicial complex whose union is conv R. (A simplicial complex
is a collection of simplices such that the intersection of any two is a face of each.)
The vertices of the simplices of T" are points of R. The triangulation is updated



as follows when a point z is added to R: if x € conv R, and so is in some simplex
S of T, leave T as it was. If z ¢ conv R, then for every facet F' of the hull of
R visible to z, add to T the simplex S(F,z) = conv(F U {z}). Call F the base
facet and x the peak vertex of the simplex. A facet is visible to = or x-visible just
when S(F,x) meets the hull only at F. We may also say, for z-visible F', that
x is visible to F', and they see each other. Use T, to denote the triangulation
after the insertion of z1,s,. .., x,.

This process is called triangulation by “placing” [Ede87]. It should be clear
that the stated conditions on the triangulation are preserved. (When r < d+1,
we simply maintain a single (r — 1)—dimensional simplex.) It will be convenient
to extend the triangulation so that facets of the current hull are also base facets
of simplices; this gives a uniform representation. The peak vertex of these
simplices is a “dummy” that in effect is visible to all current facets; we use O
to denote this dummy vertex and we use O to denote a point inside the first
full-dimensional simplex created, when r = d + 1. (Here we use the assumption
of nondegenerate position.) Call the first full-dimensional simplex the origin
simplez. (In the terminology of ”two-sided space” [Sto87] O and O could be
called the origin and anti-origin respectively: while the origin sees no facets
of the current hull of R, the anti-origin sees all of them.) We use T to also
denote the extended triangulation. To carry the uniformity even further, we
designate the vertex z441 the peak of the origin simplex and call its opposite
facet the base of the origin simplex. In this way, there are d+ 2 simplices in the
(extended) triangulation when the first full-dimensional simplex is created: the
origin simplex and d + 1 simplices with peak O. One facet of the origin simplex
(better: its two sides) is base facet of two simplices and all other facets of the
origin simplex are base facet of one simplex.

Two simplices of T are neighbors if they share a facet. The neighbor relation
defines the neighborhood graph on the set of simplices. Call a neighbor of some
simplex S and a vertex z of S opposite to each other, if the common facet does
not contain z. In an implementation, we propose to store the directed version of
the neighborhood graph augmented by information which supports the following
operations in constant time: identification of the neighbor of a simplex sharing
the base facet, identification of the peak vertex of a simplex, and identification
of the vertex opposite to a facet. We also store for each simplex the equation
of the hyperplane supporting the base facet of the simplex. The equation is
normalized such that the peak lies in the positive half-space.

We discuss next two search methods for finding the z-visible current facets
of conv R.

Here is one method: locate z in T by walking along the segment Oz begin-
ning at O. If this walk enters a simplex whose peak vertex is the anti-origin,
then an z-visible current facet has been found. Otherwise, a simplex of T' con-
taining x has been found, showing that z € conv R. In the former case, find
all z-visible hull facets by a search of the simplices incident to the anti-origin.
These simplices form a connected set in the neighborhood graph. We call this



search method the segment-walking method.

Another search method is the following: starting at the origin simplex and
the simplex sharing its base facet explore simplices according to the rule: if
a simplex has an z-visible base facet, search its neighbors (not including the
neighbor that shares the base facet). Here we say that a base facet F is z-
visible if that was true (in the previous sense) at the time that F was a current
hull facet. This search procedure reaches all z-visible current hull facets, i.e.,
all simplices S(F,0) with z-visible base facet F, since the base facets of all
simplices traversed in the segment-walking search method are x-visible. We call
this search scheme the all-visibilities method.

We finally turn to the update procedure. At this point, we have found the
current hull facets seeing z, in the form of the simplices whose base facets see x
and with the anti-origin as their peak vertex. Let V be the set of such simplices.
Now we update T by altering these simplices, and creating some others. The
alteration is simply to replace the anti-origin with z in every simplex in V.

The new simplices correspond to new hull facets. Such facets are the hull of
z and a horizon ridge f; a horizon ridge is a (d — 2)-dimensional face of conv R
with the property that exactly one of the two incident hull facets sees z. Each
horizon ridge f gives rise to a new simplex Ay with base facet conv(f U {z})
and peak O. For each horizon ridge of conv R there is a non-base facet G of
a simplex in V such that z does not see the base facet of the other simplex
incident to the facet G. Thus the set of horizon ridges is easily determined.

It remains to update the neighbor relationship. Let A = S(conv(fu{z}),O)
be a new simplex corresponding to horizon ridge f. In the old triangulation
(before adding x) there were two simplices V and N incident to the facet
conv(f U{0}); V €V and N ¢ V. In the updated triangulation V has peak z.
The neighbor of Ay opposite to z is N and the neighbor opposite to O is (the
updated version) of V. Now consider any vertex ¢ € f and let S = Sy 4 be the
set of simplices with peak z and including vertex(f) \ {¢} U {z} in their vertex
set; for a face f we use vertex(f) to denote the set of vertices contained in f.
We will show that the neighbor of Ay opposite to ¢ can be determined by a
simple walk through S. This walk amounts to a rotation about the (d — 2)—face
conv(vertex(f) \ {¢} U {z}). Note first that V € S. Consider next any simplex
S=S8(F,z) € S. Th

3.2 Analysis of Insertions

The cost of adding a point to set R is the time needed to locate the point z in
the triangulation 7', plus the time needed to update the triangulation.

We need some additional notation. Let tg be the number of simplices visited
by the walk along segment Oz, let ¢; be the set of simplices with z-visible base
facet, let ¢t be the set of simplices visited by the all-visibilites method, let ¢3
be the number of simplices with peak x, and let ¢4 be the number of new hull
facets. Then ty < t;, since the base facets of all simplices traversed by the



segment-walking method see z, and t2 < (d + 1) - t1 since a simplex has d + 1
neighbors.

In the segment-walking method the time spent on the walk is O(d?) - ¢,
since given the entry point of segment Oz into a simplex S the exit point can
be found in time O(d?); it takes time O(d) per facet to compute the point of
intersection, i.e., O(d?) altogether, and O(d) time to select the first intersection
following the entry point. The segment-walk determines the simplex containing
2. All visible hull facets can then be determined in time O(d?)-t3, since visiblity
can be checked in time O(d) per base facet and since a visible facet has at most
d invisible neighbors. We define the search time of the segment-walking method
to be O(d?) -ty = O(d?) - t; and include the O(d?) - t3 term in the update time.

The search time for the all-visibilities method is O(d) - to = O(d2) - t;, since
O(d) per simplex is needed for the visibility check and since the degree of the
neighborhood graph is d + 1.

Let’s turn to the update time next. We need to alter t3 simplices; this takes
time O(1) - t3. For each new simplex we have to compute the equation of the
hyperplane supporting the base facet. This takes time O(d?) - t4, since solving
the linear systems for the normal vectors requires O(d®) time per simplex (A
factor of d can be removed using complicated rank-one updating techniques, if
desired.). Finally, we need to update the neighbor relation. Let & = Sy, be
defined as in the previous section. The walk through S takes time O(d - |S|),
since the neighbors in S of a simplex in S can be determined in time O(d). Next
observe, that a simplex S = S(F,z) € V can belong to at most d(d— 1) different
sets Sy,q, since f \ {g} can be obtained from F by deleting two vertices ((£)
choices) and since there are only two choices for ¢ once f\ {¢} is fixed (Note
that there are only two horizon ridges containing f \ {¢}.). Thus the time to
update the neighbor relation is O(d®)-t; and total update time is O(d®)- (t3+14).

We next establish the connection to § 2. Our regions are half spaces.
More formally, we have b = d and F(X) contains two copies of each subset
{z1,...,24} C X of cardinality d. These two copies are identified with the
two open half-spaces defined by the hyperplane through points z1, 2, ..., z4.
A point z is said to conflict with a half-space if it is contained in the half-space.
In this way, for |R| > d + 1 the regions in Fy(R) correspond precisely to the
facets of the convex hull of R (recall that we assume our points to be in general
position) and a facet F' of conv R is visible from x ¢ R if = conflicts with the
half-space supporting the facet. Also |Fo(R)| = 2 if |R| = d, Fo(R) = 0 for
|R| < d, and F(X) is uniform. Using the notation of §2, we therefore have
fr=0forr <dand fg =2; for r > d, f. is the expected number of facets of
conv R for random subset R C X with |R| =r.

Theorem 10 (a) The ezpected number of simplices of Ty is Cr = 3_; ., df;/J.

10



(b) The expected search time for ., using either search method, is O(d?) times

d dld—1
—cr + Z Pj=_;fr+ Z (71;)"]

2<j<r 252, 10—

(c) The expected time to construct the convex hull of n points using either
search method is

o)X 41y +0@) Y S0 =i+ 1)1 = o) X 5

G- 1) GG -1y

Proof:

(a) Each simplex has a base facet, and so the bound follows from Theorem 3
and Lemma 2.

(b) ;From the above discussion, we need to find ¢, the expected number
of facets that are x,—visible. The expected number of visible facets is
—¢r + X<, Pj, by Theorem 4.

(c) The work per simplex of T}, is O(d®), as discussed above. The bound
follows, using (a) and summing the bound of (b) over r.

Since f, = O(rl%/2]) in the worst case, the running time is O(nlogn) for
d < 3, and O(nl4/2]) for d > 4. We note also that for many natural probability
distributions, the expected complexity of the hull of random points satisfies
fr = O(r) for fixed d. For such point sets, our algorithm requires O(nlogn)
expected time.

3.3 The Deletion Algorithm

The global plan is quite simple. When a point is deleted from R, we change
the triangulation 7" so that in effect  was never added. This is in the spirit of
§ 2. The effect of the deletion of z on the triangulation 7" is easy to describe.
All simplices having z as a vertex disappear (If z is not a vertex of T then T'
does not change). The new simplices of T resulting from the deletion of z all
have base facets visible to z, with peak vertices inserted after . These are the
simplices that would have been included had x not been inserted into R. Let
R(x) be the set of points of R that are contained simplices with vertex z, and
also inserted after . We will, in effect, reinsert the points of R(x) in the order
in which they were inserted into R, constructing only those simplices that have
bases visible to . On a superficial level, this describes the deletion process.
The details follow.

11



Let m = (21, ..., Tn) be the insertion order and assume that z = z; is deleted.
We first characterize the triangulation T'(w \ ).

Lemma 11 Assume that © = z; is a vertex of T. The triangulation T (7 \ i)
can be obtained from the triangulation T'(7) as follows:

1. Set T =T(m).
2. Remove all simplices having x; as a vertez.

S k+—i+1;

while k <n

do (x invariant A holds here *)
for all facets F' of conv(Ry_1 \ {z;}) visible to z; and zy,
do add S(F,z) to T od;
k+—k+1

od

(* invariant A holds here with k=n +1 %)

Proof: It suffices to show that the following statement A is an invariant of
the while-loop.

A: T = T(x1,.--,%i-1,Tit1,---,Tk—1) U {S;S = S(F,z;) is a simplex in T'(r \ 7)
with peak z;, j > k, and x;-invisible base facet F'}

Assume k = i + 1 first. All simplices in T(x1,...,2;_1) clearly belong to T.
Consider next a simplex S = S(F,z;) in T'(w \ i) with peak z;, j > k =i+ 1,
and base facet F' invisible to z;. Then F is a facet of conv(R;_1 \ {z;}) and,
since F is invisible to z;, also a facet of conv R; 1. Thus S belongs to T'(7) and
is not removed in step 2. Therefore, S € T'.

Conversely, let S = S(F,z;) be any simplex of T. If j < ¢ then clearly
S € T(x,...,x5-1). If j > i then F is a facet of convR;_; and z; is not a
vertex of F' (since S is not removed). Thus F is a facet of conv(R;_; \ {z;})
and hence S € T'(w \ 7). Also F is not visible from z;. This completes the case
k=i+1.

For k > i+ 1, we only have to observe that T'(z1,...,%i—1,Zit1,---,Lk—1)
can be obtained from T(z1,...,Ti—1,%it1,--.,Zk—2) by adding all simplices
S(F,zy_1) where F is a facet of conv(Ry_o \ {z;}) visible to 1. If F is also
visible to x; then the loop body adds S to T, if F' is not visible to z; then S is
already in T' by the induction hypothesis. ]

Lemma, 11 characterizes the new simplices added to T'. We show next that
only points in R(z) can contribute new simplices (Lemma 12) and that the set of
facets of conv(Ry—1\{z;}) visible from z; can be easlily maintained (Lemma 13).
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Lemma 12 Leti < k and assume that x = x; is a vertex of T. Theny =z €
R(x;) if some facet F' of conv(Ry—1 \ {z}) is visible to z and y.

Proof: The hyperplane supporting F' separates conv(Ry_1 \ {z}) from y and
2 and hence y is not the convex combination of points in Ry_q1 \ {z}. If y €
conv Ry_; then y is the convex combination of points in Ry _; and therefore
the simplex of T containing y must have = as a vertex. Thus y € R(z). If
y ¢ conv Ry, then some facet G of conv Ry, _; that contains z must be visible
from y (e.g. one that intersects the line segment joining y with some point of
F', which, being visible from z, is not a facet of conv Rx_1). But now S(G;z)
is a simplex of T, and hence y € R(x). |

Lemma 13 Fory € R(x) let B(y) = {conv(fU{y}); S(fU{z;:},y) is a simplex
of T}. Step 8 in Lemma 11 may be replaced by:

B « set of facets of conv R;_1 wvisible to x;
for ally € R(z) in ascending insertion order
do (x let y = xy; then B is the set of facets of conv(Ry_1 \ {z;}) visible from z; *);
VB « {F;F € B; F is y-visible }
NB « {F;F is a non-base facet of S(G,zy) with G € VB, F x;-visible and f = FNG
a horizon ridge of conv(Ry—1 \ {z:})}
B+ (B\VB)UNBUB(y)
od

Proof: We only need to verify the invariant. By Lemma 12 B changes only
when a point y = z, € R(z) is reinserted. Let B be the set of z;-visible facets
of conv(Ry_1 \ {z;}) and let B’ be the set of z;-visible facets of conv(Ry \ {z;}).
Then B' = (B'N B)U (B'\ B). Observe next that B'N B = B\ VB and that
each facet F € B'\ B is incident to z;. Thus f = conv(f U {z}) for some
horizon ridge f of conv(Ry_1 \ {z;}). Let G be the base facet of the simplex
having F as a facet. Then f = FNG. Also, if G is z;-visible then F' € NB and
if G is not x;-visible then F' € B(y). 1

We are now ready for the algorithmic details.

To handle deletions, we must augment our data structure slightly. We as-
sume that each point can access some simplex containing it in constant time
and that every simplex knows the set of points contained in it.

Check first, whether z is a vertex of the simplex pointed to by z. If not,
z is removed and we are done. If so, construct the set R(z) by inspection of
all simplices incident to z. This takes time proportional to d times |R(z)| plus
the number of simplices with peak z. (Note that a simplex which has z in its
base facet contributes its peak to R(z) and that a simplex has at most d + 1
neighboring simplices).
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Next, sort the points in R(z) by the time of insertion. This takes time
O(min{n, |R(z)|loglogn}), where the former bound is obtained by bucket sort
and the latter bound comes from the use of bounded ordered dictionaries
([vKZ77, MN90]). Also, collect for each point y € {p} U R(z) the set of sim-
plices S(y) with peak y and also having x as a vertex. Next remove all simplices
incident to = from T (cf. step 2 in Lemma 11). The set B (cf. Lemma 13) is
initialized to the set of base facets of simplices in S(x). The neighborhood graph
on the set B is given by the incidence information of the simplices in S(z). The
set B(y), for y € R(x), and its neighborhood graph is easily determined from
the set S(y).

The points in R(z) are now processed in the insertion order. Consider y =
zr € R(z). We first determine all facets in B visible from y. To do so we
distinquish cases.

Assume first that y is a vertex. For each simplex S € S(y) let f(S) be the
ridge with all the vertices of S but = and y. f(S) is a ridge of conv Ry_; not
incident to = and hence a ridge of conv(Ry_; \ {z}). Also, f(5) is visible from
z and y and hence a ridge of B. Thus if we maintain the correspondence (via a
dictionary for (d — 2)-tuples representing ridges) between the ridges of removed
simplices and ridges of B, we can find the set {f(S);S € S(y)} in B in time
proportional to d times the number of simplices in S(y). Starting in the facets
of B incident to these ridges a simple graph search of B’s neighborhood graph
determines all y-visible facets of B in time proportional to d times their number.
This is the content of

Lemma 14 Let y be a verter. Then all y-visible facets of B can be reached
from a ridge in {f(S); S € S(y)} in the neighborhood graph of B.

Proof: Let G be the facet graph of conv R;_; and let G, and G, be the parts
of G formed by the facets and ridges of conv Rj_1 that are visible from x and y,
respectively. Note that G, as well as G, is connected (in the topological sense
and in the graph theoretic sense). Moreover note that G, is nothing but B.
The set {f(5);S € S(y)} comprises exactly all ridges in G, for which exactly
one of the containing facets is in G,. Connectedness of G, now ensures that all
facets and ridges that are in G, and in G, can be reached from some ridge in

{7(5); S € S(y)}- I

For non—vertices y one has to work harder. We first show how to identify a
single facet in B visible from y and then argue that a graph seach determines
all y-visible facets in B. Assume first that y is contained in a simplex S € S(z).
Let S = (F,z), and let O be the intersection of F' with the line through z and
y. Locate y by a walk along Oy starting at O. Assume next that y is contained
in a simplex S € §(z) for some z € R(x). The ridge f(S) of S with all vertices
but z and y is a ridge of B when point z is reinserted and hence the facet
spanned by f(S) and z is added to T when point z is reinserted. Let O be the

14



intersection of that facet with the line through z and y. Locate y by a walk
along Oy starting at O.

Lemma 15 The walk along Oy traverses only newly constructed simplices
whose base facet is y—visible.

Proof: The line segment Oy is contained in the simplex S. This implies
that Oy traverses only new simplices. Let S’ with base facet G be a simplex
traversed. Then G is z—visible. Since S’ is intersected by Oy and G is visible
from every point in S’, G must be visible from either O or y. But O-visibility
and z-visibility of G and the fact that y € Oz implies y-visibility of G. Thus G

is y-visible. ]

At this point we have found one y-visible facet in B.

Lemma 16 Lety = zj be a non-vertex. Then all y-visible facets of conv(Ry—1\
{z;}) are also x;-visible.

Proof: Assume that there are y-visible facets of conv(Ry_; \ {z;}) and let F'
be one of them. Then z; & conv Rj_; and there is a facet G of conv(Ry_1\ {z;})
such that y € S(G, ;). Then the hyperplane supported by F' separates G and
y. Thus x; sees F. ]

The set of y-facets of conv(Ry_1\{z;}) is neighbor-connected and is identical
to the set of y-visible facets in B. Thus a graph search on B finds all y-visible
facets in B.

If the points in S are in convex position, as when computing Voronoi dia-
grams in one less dimension [Ede87, section 1.8], all points y are vertices and
hence the search time is well covered by the time to construct new simplices.

In either case we have now identified the set of y-vertices in B. We now
construct new simplices, add B(y) to B and update the neighborhood graph on
B.

Having reinserted the points in R(z) the cavity created by the removal of =
is filled. A traversal of the new simplices and the boundary of the cavity allows
to match (using a dictionary for facets) the new simplices with the old simplices
sharing a common facet. This completes the update step.

In summary, the cost of the removal of x is bounded by the sum of the
following quantities:

(1) min(n, |R(z)|loglogn),
(2) O(d?) times the number of removed and newly constructed simplices,

(3) O(d?) times the sum over all points y € R(z) of the number of y—visible
facets ever contained in B.
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If the points are in convex position, then the sum of the first two quantities
suffices.

3.4 Analysis of Deletions

We analyze the cost of a deletion under the assumption that the points were
inserted in random order and that a random point is deleted.

Lemma 17 The expected number of removed simplices is bounded by
> _dd+1)fi/(i-n)
i<n

and the expected number of new simplices is no larger.

Proof: The expected number of simplices in T'(7) is C,, and the expected
number of simplices in T'(w\¢) is Cp_1 according to Theorem 10 and Lemma
1. Also each simplex of T'(m) has d + 1 vertices and therefore the expected
number of removed simplices is (d + 1)(C,, — fn)/n. The expected number of
new simplices is thus (Cp_1 — fr—1) — (Cp — frn — (d+1)(Cy, — fn)/n) which is
no larger than the number of removed simplices. The bound now follows from
Theorem 3 and Lemma 2. 1

Lemma 18 The expected size of R(z) is bounded by

d+1){2+d)_ fi/(i-n)

i<n

Proof: Let R;(z) be the set of points y € R(x) which are vertices of T and
let Ry(z) = R(z) \ Ri(z). To bound |Ry(z)|, observe that |R;(x)| is at most d
plus the number of destroyed simplices. Thus

B[R (@) <d+ Y dd+1)fi/(i-n).
i<n

To bound |Rz(x)|, observe that each non—vertex y is incident to exactly one
simplex (recall that our points are in general position) and that z is the vertex
of such a simplex with probability (d + 1)/n. Thus

E[|R:(z)] < n(d+1)/n=(d+1).

We next bound the sum over y € R(z) of the number of y—visible facets
ever contained in B. Such a facet is either a y— and z—visible facet of conv R;_;
(recall that = = z;) or a newly constructed base facet visible to y and z.
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Lemma 19 (a) The exzpected number of facets of conv R;_y wvisible to x; and
z; summed over j > i and for random i is (E|G| — E|H| + fn)/n.

(b) The expected number of new base facets visible to x; summed over j > i and
for random i is

E|G(m\i) \ G(m)|.

Proof: Part (a) follows from Lemma 9 and part (b) is obvious. 1

Theorem 20 The expected time to delete a random point from the convex hull
of n points (constructed by random insertions) is

O (minSn, [d+d®> fi/(i-n) |loglogn 3 +d® > fi/(i-n)+d° Y fi/(i(i—1))

i<n i<n 2<i<n

If the points are in convex position, then time

O [mindn, [d+d®) fi/(i-n) | loglogn 3 +d® > fi/(i-n)

suffices.

Proof: This follows immediately from the summary at the end of § 3.3, Lem-
mas 17 to 19, and Theorems 3 and 8. ]

We have f; = O(il%/2]). A deletion from a convex hull in IR® therefore
takes time O(logn) and a deletion from a Voronoi diagram in IR? takes time
O(loglogn). For d > 4, a deletion from a convex hull in IR? and a Voronoi
diagram in IR?™" takes time O(nl4/2/=1). We note also that for many natural
probability distributions, the expected complexity of the hull of random points
satisfies f,. = O(r) for fixed d. For such point sets, a random deletion requires
O(logn) expected time.

4 A Tail Estimate for the Size of the History

In this section, we derive a tail estimate for the size of the history. We first
prove a general lemma and then apply one of its consequences to obtain a tail
estimate for the size of the history in randomized incremental constructions.

In the notation of §2, we want to study the random variable X =
>_;deg(y;, R;) for random permutations 7 = (y1,...,yn) of S, inducing the
subsets R; = {y1,...,y;}. Let p(z) = ps(x) be the generating function of this
random variable. By the following standard observation, we can use bounds on
p(z) to show that X is large only with low probability.
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Fact 21 If Z is a non—negative integer random variable with generating func-
tion p(x), then for any k >0

Pr[Z > k] < p(a)/a* for any a > 1.

Suppose for some function M (r) we have b- |Fo(R)| < M(r) when |R| = r.
Then we have the following bound on p(z).

Claim 22 For all x > 1 we have

pa) <pula) = [ (143" -1)).
1<i<n

Proof: We use induction on n, the size of S, looking at corresponding gener-
ating functions for subsets of S. The claim holds vacuously for n = 0.

For the random permutation 7 of S, we know that y,, is a random element
of S, and so

1
p(gj) = ps(x) = E Z mdeg(y’S)Ps\{y}(u'U)-
yeS

Applying the inductive assumption to every (n — 1)-element subset of S, we get

p(a:) — n—lrlL(x) Zmdeg(y,S)‘

yeS

Since

S deg(y, S) < blFo(S)] < M(n),

y€eS

the power sum is maximized for z > 1 when deg(y,S) = M(n) for some y € S
and the degrees of the other members of S are zero. Thus

—1(x 1
ple) < P (M) 4 1)) = (14 L@~ 1))pas (@) = pae)
1
Theorem 23 For any integer M > 0 and any real © > 1
; 1(gMG_y)
Hl<z’<n(1 + (@M — 1)) 621515" ol
Pr[X > M] < —== o < .

X > M] < oM = oM
Proof: This follows from Fact 21 and Claim 22, using the inequality 1+z < e®.
1
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Corollary 24 If M (i)/i is non—decreasing, then for all ¢ > 1
Pr[X > cM(n)] < (1/e) - (e/c)° .

Proof: If M(i)/i is non-decreasing, then for all z > 1 we have 1(zM(® —1) <
1 (zM(™ —1) for each i < n. (The polynomial L(zM(™ —1) — 1(zM( —1) has
aroot at z = 1 and nonnegative derivative for z > 1.) Therefore

1 M(i 1 M(n
e2ngica TEMO-D 0 BT REMS) My

Pr[X > cM(n)] < oM () < () = peM(n)

Now choose z such that (™ = ¢. 1

For many RICs, e.g., the construction of convex hulls (in any dimension)
([CS89] and this paper), Delauney triangulations ([GKS90]), abstract Voronoi
diagrams ([MMO91]), trapezoidal diagrams for non-intersecting line segments
([CS89, Sei91]), spherical intersections ([CS89]) and the construction of a single
face of an arrangement ([CEG*91]), there is a function M (r) such that M (r)/r
is non-decreasing, b|Fo(R)| < M(r) when |R| = r, and M(r) < dC, for some
small constant d. In these situations, Corollary 24 bounds the probability that
the size of the history exceeds its expected value by a constant factor.

The following Corollary of Theorem 23 may also be useful.

Corollary 25 If M (i) = mq for all i, then Pr[X > emoH,] < e~ Hn(1+clog(c/e))
for ¢ > 1, where Hy, is the n—th harmonic number.

Proof: From Theorem 23 we get

1m0 _ m
621§1’$n HC 1 eHn($ 0-1)

pemoHn = pemoHy

Pr[X > emoHy) <

Now choose x such that £° = ¢ to obtain the desired result. 1

5 A game related to some randomized incre-
mental constructions

Seidel [Sei91] gave a randomized O(nlog*n) algorithm for the triangulation
of simple polygons. Devillers [Dev] recently extended the approach to other
problems, e. g., the construction of the Voronoi—diagram for the edges of a
simple polygon. The idea behind the O(nlog* n) is as follows: When an object
z € S—Ris added to R in standard RIC, the object z traces through the history
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of the construction. This takes time O(logr) for the r—th object to be inserted
(apply Theorem 4 with f; = O(j)). On the other hand, in the two examples
mentioned above, all conflicts between objects in S— R and regions in Fo(R;) can
be computed in expected linear time. Seidel and Devillers therefore interrupt
the standard algorithm at suitable breakpoints , say after the i—th insertion,
and compute all conflicts between S — R; and Fo(R;). The crucial observation
is now that if object zx € S — R; knows its conflicts with the regions in Fo(R;)
then its conflicts with the regions in Fo(Rj_1) can be computed in additional
O(log(k/i)) expected time; sum the bound in Lemma 5 for j between ¢ and k
to see that only O(log(k/i)) additional conflicts exist on average. A suitable
choice of breakpoints yields an O(nlog” n) algorithm. Can this approach yield
linear time algorithms? The following game is supposed to shed some light on
this question.

The game is played on a sequence of n balls. Initially, all balls have label 1
and color white. There are two players A and B who take turns. The game stops
when all balls are black. In its 7—th turn player A selects a white ball, turns
it black and labels it . The cost of this move is log(r/r.4), where ryq is the
previous label of the ball. In its turn, B performs one or more of the following
moves: She selects an interval of balls and relabels all balls in the interval with
the highest label occurring in the interval. The cost of the move is the length
of the interval. A tries to maximize cost, B tries to minimize it.

The intended relationship to RIC is as follows: A ball is black if it belongs
to R. The label of a ball is i if the ball knows its conflicts with the regions in
Fo(R;). A move of player A moves a ball from time 7,4 in the history to time r
and a move of player B moves an interval of points to the latest time in history
occurring in the interval. In the algorithms mentioned above, the interval is
always the entire sequence of balls.

Let L = log* n = max{i;log¥ n > 1}, D; = log'? nfor1 <i < L,Dr41 = 1,
and Do =n+1. Let B; = |[n/D;] for 0 <i < L+ 1.

Lemma 26 Player B can keep the cost in O(nlog” n).
Proof: B plays the following simple strategy. In its B;—th turn, 1 < ¢ < L,

B relabels the complete sequence of balls. The total cost of B’s moves is nL =
nlog* n. The total cost of A’s moves is

S Z (Bz'+1 - Bz) IOg(BH_l /max{Bi, 1}) = O(TL IOg* n)
0<i<L

Lemma 27 Player A can force the cost into Q(nlog” n).
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Proof: We first describe the strategy of player A. A’s game is divided into
phases; the i—th phase, 1 < i < L + 1, consists of moves B;_1 + 1 to B;. In the
i—th phase, A labels all multiples of D; which are not multiples of D; ;. We
assume here that the balls are numbered 1 through n.

We show that the total cost of A’s and B’s moves in the i—th phase is Q(n).
Call a multiple of D; interesting if A labels it by one of the moves B;/2 + 1
to B;. If for more than 1/2 of the interesting balls the cost of A’s move is
log((B;/2)/ max(1, B;_1)), then the total cost of A’s moves in the i—th phase is
Q(Bz/2 . lOg(Dz_l/Dl)) = Q(B, . (D, - Di+1)) = Q(n) Otherwise, more than
half of the interesting points must have been relabeled in the i—th phase by a
move of B, since all interesting points have label at most B;_; at the beginning
of the i—th phase. Since an interesting point has distance D; from any point
touched by A in the i—th phase, the total cost of B’s moves must be at least
Q(B;/2- D;) = Q(n). In either case we have shown that the cost of a phase is
Q(n). Since there are log* n phases, the lower bound follows. 1

In Lemma 27, player A chooses balls so as to make the life for player B as
difficult as possible. In RIC’s objects are chosen randomly. Let us say that
player A plays randomly if he always chooses a random white ball.

Lemma 28 If A plays randomly, then the expected cost of the game is
Q(nlog* n).

Proof: Define the division into phases as in Lemma 27. At the end of the i—th
phase there are B; black balls. These balls from a random subset of [1..n]. In
order to lower bound the expected cost of the i—th phase we change the rules of
the game in B’s favor.

At the end of the i—th phase, player B selects B;/2 black balls and declares that
A’s moves in the i—th phase involving these balls are free of charge.

We now distinguish two cases. For the remaining B;/2 balls which are black
at the end of the i—th phase, either at least B;/4 were relabeled by B before A
selects the ball, or this is not the case. In the former case, the cost of B’s moves
is clearly lower bounded by the sum of the B smallest distances between black
balls. The expected value of this sum is Q(n). In the latter case, the cost of A’s
moves is Q(n). 1
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