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Abstract- The main contributions of this paper are two-fold. 
First, we prove fundamental, similarly behaving lower and upper 
bounds, and give an approximation based on the bounds, which 
is effective for analyzing ATM multiplexers, even when the traffic 
has many, possibly heterogeneous, sources and their models are 
of high dimension. Second, we apply our analytic approximation 
to statistical models of video teleconference traffic, obtain the 
multiplexing system’s capacity as determined by the number 
of admissible sources for given cell-loss probability, buffer size 
and trunk bandwidth, and, finally, compare with results from 
simulations, which are driven by actual data from coders. The 
results are surprisingly close. Our bounds are based on large 
deviations theory. The main assumption is that the sources are 
Markovian and time-reversible. Our approximation to the steady- 
state buffer distribution is called Chernoff-dominant eigenvalue 
since one parameter is obtained from Chernoffs theorem and 
the other is the system’s dominant eigenvalue. Fast, effective 
techniques are given for their computation. In our application we 
process the output of variable bit rate coders to obtain DAR(1) 
source models which, while of high dimension, require only 
knowledge of the mean, variance, and correlation. We require 
cell-loss probability not to exceed trunk bandwidth ranges 
from 45 to 150 Mb/s, buffer sizes are such that maximum delays 
range from 1 to 60 ms, and the number of coder-sources ranges 
from 15 to 150. Even for the largest systems, the time for analysis 
is a fraction of a second, while each simulation takes many hours. 
Thus, the real-time administration of admission control based on 
our analytic techniques is feasible. 

I. INTRODUCTION 
ESEARCH on the architecture and design of ATM sys- R tems has in recent times been stymied by the inabil- 

ity to effectively analyze multiplexers when the traffic has 
many, possibly heterogeneous, sources and the dimensions 
of their models are high. Secondly, there is a growing gap 
between measurements and models, more generally between 
real systems and their purported analyses; as a corollary, there 
are few checks on the efficacy of designs of real systems. 
The widespread acceptance of ATM and the accompanying 
richness of services and applications are accentuating these 
problems. 
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Fig. 1. Methodology. 

This paper provides some relief for both these troubling 
conditions. We prove fundamental upper and lower bounds 
on loss probabilities in buffered multiplexing systems with 
time-reversible Markovian sources, which provably mirror true 
behavior for the full spectrum of buffer sizes. We propose 
an approximation for all Markovian traffic sources which is 
based on the upper bound. We call this the Chernoff-dominant 
eigenvalue (CDE) method since it has only two parameters, 
one of which is obtained from Chernoffs theorem and the 
other is the multiplexing system’s dominant eigenvalue. Both 
these quantities have separately been studied extensively in the 
past. Fast, effective techniques are available for their computa- 
tion, even for heterogeneous, high-dimensioned source models. 
In the case of discrete-time systems, which are of particular 
importance here since video teleconference traffic is framed, 
we fill a gap in the literature by obtaining an explicit, scalar, 
monotonic function whose root, which is easily calculated, is 
the dominant eigenvalue. 

The complementary part of the paper starts with the mea- 
sured output of video teleconference coders. The study then 
proceeds along two paths, as sketched in Fig. 1. 

In the top “simulation” path, the output from several coders 
is supplied to a simulated finite multiplexing buffer, and the 
losses monitored. In the bottom “analytic” path the coders’ 
output is used to define a Markovian (DAR(1)) source model, 
which is both high order ( ~ 6 0  states for each source) and para- 
metrically parsimonious. Only the mean, variance, correlation 
of the data and the range of the number of cells per frame 
are required to define the source model, which can therefore 
be done quickly and easily. The CDE method is then used 
to analyze the multiplexer performance. The comparisons of 
the end results are in terms of system capacity. For an upper 
bound on the cell loss probability of about 10W6, buffer size 
B and trunk capacity or bandwidth C, we obtain for each 
of the two paths the capacity of the system as measured 
by the maximum number of admissible video teleconference 
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sources. The results are surprisingly close. It may therefore be 
reasonably inferred that our approximation technique is tight, 
and that our modeling of the available video teleconferencing 
traffic data by DAR(1) is effective. 

The systems investigated have a broad range. The trunk 
bandwidth C ranges from 45 to 300 Mbk, the buffer sizes 
are such that the corresponding maximum delays range from 
1 to 60 ms, and, importantly, the number of coder-sources 
ranges from 15 to 150. Even for the largest systems the time 
required on a standard workstation for analysis is a fraction 
of a second, while each simulation takes many hours. Thus, 
importantly, our analytic techniques can be implemented fast 
enough for real-time administration of admission control based 
on the techniques to be feasible. 

Our new mathematical results include upper and lower 
bounds on the probability of buffer overflow, which have 
similar behavior over the full range of buffer sizes B. The 
techniques used to arrive at these results are from Large 
Deviations theory. Specifically, the upper and lower bounds 
correspond to lower and upper bounds on the large deviations 
rate function related to buffer overflows. In the homogeneous 
model there are K identical Markovian traffic sources of 
arbitrary, but finite, dimensions. The results show that if b 
denotes the buffer capacity per source, i.e., b = B / K ,  and 
W ( t )  represents the buffer occupancy at time t ,  there exist 
easily calculated positive constants, C1 and C2, such that for 
every b > 0 

1 
lim logP(W(t)  2 Kb) 5 -Czb - 

K’CC 

It is also shown that the constants are the best possible since 
the inequality is tight at the two limits, b --f 0 and b + 00. 

Furthermore, the companion lower bound to (1) behaves as 
-Czb - C,, for all b 2 bo, where bo and C, are positive 
constants. The main assumption that is made in proving the 
above results is that the sources are Markovian and time- 
reversible. The sources in the video teleconference application 
are Markovian and time-reversible. 

Consider the following conventional estimate of the station- 
ary overflow probability of a buffer of size B derived from 
an infinite buffer analysis 

G ( B )  = lim IP(W(t) 2 B ) .  ( 2 )  
t-CC 

Based on our bounds and experience with numerical experi- 
ments, we propose the following approximation for systems 
with general Markovian sources 

Note the connection to (1). We have used this approximation 
for systems with high dimensional Markovian sources that are 
time-reversible and irreversible, and found it to be effective in 
both cases. In (3) we let L = e-KC1 and z = -C2, so that 

G ( B )  M LeZB.  (4) 

This form has considerable appeal since we can show that 
L is the loss in bufferless multiplexing as estimated from 
Chernoffs theorem, and z is the dominant eigenvalue in 
buffered multiplexers, which is known to determine the large 
buffer behavior in the logarithmic scale. We call the ap- 
proximation in (4) the CDE method of estimating overflow 
probability. 

In Section 11-B we give explicit procedures, which are 
simple and fast, for calculating z and L for stochastic fluid 
models. For discrete-time systems the procedure for calculat- 
ing L is unchanged, while the theory and numerical procedures 
for calculating the dominant eigenvalue are developed in 
Section 111. These procedures are used in Section V to cal- 
culate the CDE approximation for the video teleconference 
applications. 

Coffman et al. [3] considered on-off, 2-state sources and 
gave numerical evidence to support the claim G(0) = L. 
(It is easy to show that G(0) 2 L.) Simonian and Guib- 
ert [32] quote the observation in [ 3 ]  as partial basis for 
a related approximation. In [9] the approximation is used 
for the analysis and admission control of a multiservice 
multiplexing system in which the services are prioritized. 
The approximation refines the pure exponential form e z B  
used in effective bandwidth analyses [12], [13], [8], 1231, 
[37]. Prior studies [18], [20], [30] have noted that the loss 
in bufferless multiplexing is very well approximated by the 
Chernoff large deviations approximation. Note that in typical 
ATM applications where cell loss probabilities are in the 
range - 10W9, a substantial contribution is derived from 
the mechanism underlying bufferless multiplexing; it is not 
atypical for L to be in the range lo-, - lop5. Hence, the 
prefactor L typically adds significantly to the accuracy of 
the effective bandwidth approximation, which otherwise can 
sometimes be overly conservative [4]. It should also be noted 
that other approaches for improving the exponential bound 
are in [31], [4] and [6]. 

The paper is organized as follows. Section I1 gives the 
fundamental bounds from Large Deviations theory. Section I11 
considers discrete-time, discrete-state space systems. Section 
IV gives the statistical model of teleconference traffic. Section 
V reports on numerical results from simulations and analyses. 

11. BOUNDS AND APPROXIMATIONS FOR MULTIPLEXERS 

A.  Bounds for  Time-Reversible Buffered Systems 

In this section we obtain an upper bound on the probability 
of buffer overflow in a class of models of buffered multi- 
plexers. This upper bound is equivalent to a lower bound on 
the large deviations rate function related to buffer overflows. 
We concentrate here on the case of homogeneous sources; 
the extension of the main results to heterogeneous sources is 
straightforward and stated in a subsequent section. The models 
have K traffic sources, trunk capacity or bandwidth C ,  a 
constant, and a buffer of size B. Also, b and c are respectively 
the buffer and trunk capacity per source; i.e., B = bK and 
C = cK. Standard arguments for Markovian traffic sources 
show that there is a positive constant C, such that, if W ( t )  
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represents the total buffer occupancy at time t ,  for each 
fixed K 

1 
lim - logIP(W(t) 2 Kb) = -C2. 

b + w  Kb 

We show that there exists an easily calculated constant 
C1 > 0 such that for every b > 0 

1 
K-im K lim - logIP(W(t) 2 Kb) 5 -C2b - Cl. (6) 

The constants are the best possible, since we have 

(7) 
1 

lim lim -logIP(W(t) 2 Kb) = -C1 
bL0 K+oo K 

and also 

1 
lim lirn -llogIP(W(t) 2 Kb) = -C2. 

b - m K + m  Kb 

Furthermore, we derive a similar but less explicit lower bound 

1 
K-m K lim - logIP(W(t) 2 Kb) 2 - f ( b )  (9) 

where f ( b )  is given by a somewhat complicated formula, but 
for some fixed bo we have 

for all b L bo, where C, is a constant that is again given 
by a somewhat complicated formula. We can easily show the 
obvious bound C, > Cl. 

An individual source is characterized by (Q,R)  and has 
state space (1,2, . . . , d). The d x d matrix generator Q = 
{Q;,j}, where Qi,j (for i # j) is the rate at which a source in 
state i jumps to state j ,  and Q2,; = - Cjfi Q;,j. The vector 
R = (RI, R2, . . . , Rd), where R; is the rate at which a source 
in state i generates traffic. The K traffic sources are statistically 
identical and independent Markov jump processes. To describe 
the aggregate behavior of the sources we encode each state of 
an individual source in a different dimension as follows: the 
vector q(t)  E Z d ,  wherein the component q; ( t )  denotes the 
number of sources in state i at time t .  A source jumping from 
state i to state j causes a transition of q( t )  in direction ej - ei, 
where e; is the unit vector in direction i ( i  = 1,2 ,  . . . , d ) .  The 
rate of these jumps is g;Qi , j ,  because there are 9% sources in 
state i, each jumping at rate Q;,j. Therefore, q( t )  is a Markov 
process with infinitesimal generator 

L$(q) = qiQi,j(@(q + ej - ei) - $(q)). (11) 

L is an operator on functions $ : Rd -+ IR1. We make two 
assumptions on the process q( t )  : 

G j  

1) q( t )  is time-reversible. 
2) q( t )  is irreducible. 
In fact, we can eliminate Assumption 2, which we have 

included only to make a few arguments simpler. We do use 
Assumption 1 in crucial ways for our proof, though. We do 
not know whether or not this assumption is necessary for our 
results. 

The final part of the buffer model is the rate at which the 
buffer (whose content is denoted W ( t ) )  drains. We assume 
that the buffer drains with rate at most C 
d 
-W(t) dt 

( R , q ( t ) )  - C, if (R ,q ( t ) )  - C > O or W ( t )  > 0 

(12) 
= ( 0 ,  otherwise 

where (z, y) 4 xi x,yz. 

q( t )  as follows 
We make the standard large deviations scaling of the process 

Then Z K ( ~ )  is a Markov process whose components represent 
the fraction of sources in each state. The generator of z ~ ( t )  
is L K ,  given by 

L K $ ( ~ )  = KziQ;,j(4(z + (ej  - e i ) / K )  - 4(z)). (14) 

The generator is defined for points z E s d ,  where sd iS the 
set of probability vectors in Ed 

i,j 

a 

We now define the large deviations local rate function 
l ( z , g )  associated with the process z K ( t )  

\ 

l(z, y) is defined for x E Sd and for y with xi y; = 0, which 
is a condition satisfied by the difference of probability vectors. 
Intuitively, l(z, y) represents the negative logarithm of the 
local probability of the process z ~ ( t )  traveling in direction y. 
For example, we can show that as K + 00 

Here, IPz refers to sample paths Z K ( ~ )  that start at the point 
5. A more precise and general statement than (17), is the 
following statement of the large deviations principle. For any 
open set of paths 6 and for any closed set of paths F, we 
have the following limits 

1 
liminf - loglP(zK E G )  2 - inf I T ( r )  
K-X K r€G (18) 

1 
limsup-llogIP(zK E F) 5 - inf I T ( r )  (19) 

K-03 K r c F  
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The function I T ( r )  is called the rate function; C is the local 
rate function. For more information about the rate functions 
or the large deviations principle, see Varadhan [36], Dembo 
and Zeitouni [7], Freidlin and Wentzell [ 111, or Shwartz and 
Weiss [35]. 

We can also write the buffer content W ( t )  as an integral. Let 

(21) 

That is, s ( t )  is the last time before t that the buffer is empty 

(22) 

s ( t )  4 argsup J,’ ( (R ,  q( t ) )  - C )  d t .  
u<t 

s ( t )  A sup {U : U 5 t ,  W(U) = O}. 

Then, we have the following representation of W ( t )  

W ( t )  = ( (R ,  q ( t ) )  - C )  d t .  (23) 
L i t )  

We define the operator B(q)( t )  as the map giving the func- 
tion W ( t )  from a path q ( t ) ,  using either of the equivalent 
definitions (12) or (23). That is 

W ( t )  = B(q)( t ) .  (24) 

We also have a scaled buffer occupancy 

This can be obtained by a transformation on Z K ( ~ )  as follows 

We define the scaled operator B s ( z ~ )  by (26), namely, w(t) = 

The “center” of the process p is defined to be the unique 
limit of the solution of the fluid equation for the scaled process 

Bs ( Z K  ) ( t ) .  

2, ( t )  

where zm,%( t )  means the ith component of zm( t ) .  That is, we 
define 

p z,(Oo). (28) 

Assumption 2 assures the uniqueness of p .  In fact, for the 
class of models considered here, p is identical to x, where the 
component ri represents the unique stationary probability that 
a single source is in state i. That is, i E s d  and 

r Q  = 0. (29) 

We now prove 6 and give explicit expressions for the 
constants C1 and C2 

T 

c1 = r , & f ,  1 [(r,.’) d t ,  

(30) 
[ ( r ,  0) C2 = inf 

rEsd:(r,R)>c (r ,  R)  - c 

0 bo 

Fig. 2. The cost function I * ( b )  and our bounds. I * ( b )  was calculated 
numerically for a two state model. f ( b )  is linear and parallel to C1 + Czb 
for b > bo. 

where 

F A {r ,w,T : r (0)  = 7 r ,  ( w ,  R)  = C, r (T)  = w }  (31) 

and the function C is defined by (16). Furthermore, we have a 
much more explicit expression for C1 

where C,(z) is the rate function for a multinomial random 
variable 

(33) 

where 7ri is the steady-state probability that a source is in 
state i ,  and 

H ( c )  {z E s d  : (5 ,R)  = c}.  (34) 

Here is a precise statement of our main result (See Fig. 2) .  
Theorem 2.1: Suppose that the underlying process q( t )  is 

reversible and irreducible. Let C1 be defined by (32), let C2 

be defined by (30), and let p = i, which is defined by (29). 
Define 

(35) 

where 

G ( b )  = { r , T  : r(-m) = p ,  B , (r ) (T)  = b} .  (36) 

Then, for each b > 0 

I*(b)  2 C1 + C2b. (37) 

0 
The equivalence of C1 as defined by (30) and by (32) comes 

from the same calculations that show that Chernoff s theorem 
is equivalent to Sanov’s theorem; see, e.g., [35, ch. 21. 

IT(.) should be thought of as a cost. It is the cost for the 
process z ~ ( t )  to follow the path r ( t ) .  The cost is related to 
probability by the large deviations principle 

IP( sup I z ~ ( t )  - r(t)l < E )  = e - K r T ( r ) f o ( K ) .  (38) 

The probability of an event is related to the cheapest cost of 
the paths r that cause the event to occur. That is, to calculate 
the frequency of an unlikely event’s occurrence, think of all 
the different ways that it might occur, calculate the cost of 

O<t<T 
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7-2 
t 
\ I \ 

P Minimal cost path \ < 
\ 

fromp to the \ 

'\ 
hyperplane (z.  R ) =  c 

- -1  

Fig. 3. A path rb(t) for Theorem 2.3. 

each way, and take the cheapest cost I*.  Then the probability 
of the event is approximated by exp(-KI*). 

The idea behind the bound in Theorem 2.1 is the following. 
The quantity C1 represents the lowest cost for going from the 
point p to the point, say w * ,  where the buffer begins to fill. See 
Fig. 3. The quantity C, represents the lowest possible cost per 
unit buffer for a path that doesn't move. The lowest cost of 
achieving a buffer occupancy b should be larger than C1+ C2 b, 
since any path that makes the buffer occupancy reach b will 
have to cross to the place where the buffer begins to fill, and 
then will have to make the buffer fill to b, but will also have to 
be a nearly continuous path, so it can't be near all the minima 
all the time. 

We give a related result. Suppose that 

(39) 

Furthermore, there is a constant bo such that 

f (0) = c1 
f ( b )  = C3 + C2b for b 2 bo. (44) 

Compare the bounds on I*(b)  given by (44) and Theorem 1; 
0 

The proofs of these results are immediate consequences 
of the large deviations principle for the process z K ( t )  and 
of the Freidlin-Wentzell theory, plus some new lemmas. The 
Freidlin-Wentzell theory equates steady-state probabilities with 
upcrossing probabilities, The large deviations principle equates 
upcrossing probabilities with solutions to variational problems. 
The variational problems are integrals of the function t(z, y) 
as in (30). The bound in (37) and the result in (42) follow from 
some new lemmas, which bound the solutions to the variational 
problems. The bound (43) follows from a specific construction: 
consider a path that goes from p to the region ( Z K ,  R)  = c, 
and from there to a minimizing point w*, which is defined 
in (39). Then the minimum of the variational problem has to 
have lower cost than this particular path. The bound is then 
established, with the function f being the cost of the particular 
path. The path is depicted in Fig. 3. 

We use the following result in our analysis. It is essentially 
due to [lo]. (See also [34].) 

Theorem 2.4: If the process Z K ( ~ )  is reversible, and if 
Kurtz's theorem holds, then given any z # p the time reversed 
path r ( t )  = .",( -t)  from p to z is a minimal cost path from 
p to z. Therefore 

the discrepancy is bounded for all b. 

Given E > 0 and T ,  define The proofs of Theorems 2.1-2.3 are in the Appendix. 

1 [ ( Z K  ( t )  - w* 1 < E]  dt .  (41) B. Approximation, Numerical Procedures 
l T  

gE(b, T )  = bA L-bA 
As mentioned in Section I, see (2) ,  G ( B )  denotes the 

estimate of the stationary overflow probability of a buffer of 
size B. There the following approximation was also proposed 

Theorem 2.2: For each E > there is a 6 > 0 such that 
for any T 

lim IPss(g,(b,T) > 1 - E 1 W K ( T )  2 b)  = 1. (42) 

U 
This theorem states that, if there is a unique w* such that 

(39) holds, then we know exactly how the system behaves 
in order that the buffer occupancy reaches a high level -the 
system spends almost all the time just before overflow in a 
small neighborhood of w* . The proof of this theorem does not 
use either of the two assumptions; that is, the theorem holds 
for both reducible and irreversible systems. 

We have a lower bound on buffer overflow probability 
which is a bit harder to write explicitly, but has the same 
form and asymptotics as the upper bound of (6). 

Theorem 2.3: There is a function f (b )  such that for every 
b > O  

K,b+m 

(IF',, refers to steady-state probability.) 
This approximation was shown in Section 11-A to have at- 
tractive asymptotic properties; in our experience it is also 
both conservative and close to the true overflow probability 
in typical applications with both reversible and irreversible 
sources. In (46) we let L = e-KC1 and z = -C2, to obtain 
the CDE approximation to the overflow probability 

G ( B )  = LeZB.  (47) 

From the discussion below Theorem 1, L is the loss in 
bufferless multiplexing as estimated from either Chernoff s 
theorem or Sanov's theorem; z is the dominant eigenvalue 
of the buffered multiplexer, which is known to determine 
the large buffer behavior of the overflow probability. (The 
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dominant eigenvalue in stable irreducible Markovian models 
is always real and negative.) 

The dominant eigenvalue and its calculation have been 
topics of central importance in most studies of statistical mul- 
tiplexing based on stochastic fluid models [l], [21], [22], [271, 
[28], [31], [30]. Here are two results quoted from [81. Define 
the diagonal matrix Rd = diag( R I ,  R2, . . . , Rd). Observe that 
for z real and negative, [Rd - iQ] is an irreducible matrix 
with nonnegative off-diagonal elements. Such a matrix has a 
real eigenvalue, called the maximal real eigenvalue ( M E )  that 
is greater than the real part of all its other eigenvalues. Let 

Fact 1: The dominant eigenvalue z of the homogeneous 
system with K sources, each source described by (Q, R) ,  and 
channel capacity C is obtained by solving the equation 

Kg(z)  = C. (49) 

0 
Equation (49) is easily solved because g(z )  is monotonic 

decreasing for z < 0, and c lies between R A maxi R; = 
g(-m) ,  and R = xi 7riRi = lim,,og(z). Now suppose that 
there are J classes of sources, where each class j E [l, . . . , J ]  
is comprised of Kj sources characterized by (Q( j ) ,R( j ) ) .  
Then we have 

The dominant eigenvalue z of the heterogeneous 
system is obtained by solving 

Fact 2: 

where 

0 
We may now turn to the procedure for calculating L, the 

estimate from Chernoff‘s theorem of the loss in bufferless 
multiplexing. Let V,,,(t) denote the rate of traffic generation 
by source i of class j at time t ,  and let {V,,,} be a collection 
of independent random variables where Vj,% has the stationary 
distribution of V,,z(t) .  The total traffic generation has a station- 
ary distribution given by a random variable V = E, E, V,,z. 
Loss occurs when the total traffic generation exceeds the level 
C. Therefore we estimate IP(V 2 C). 

Let &) denote the stationary probability vector of a class 
j source. Then VJ,% has moment generating function 

M3(S) A IE(e”V..z ) = CTpeSRp) (52) 
k 

Chernoff s theorem states that 

logIP(V 2 C )  5 - F ( s * ) ,  

and logIP(V 2 C) = - F ( s * )  [ 1 + 0 ~ (53) 

where 

F ( s )  d. sC - Kj logM,(s) (54) 
i 

and F ( s * )  = siip,>oF(s).  Hence, the estimate of the loss 
L = exp(-F(s*)).  For C < maxi R, it is easy to check that 
F ( s )  is a strictly concave function with a unique maximum at 
s* > 0 that can be obtained by solving F’(s)  = 0. 

For our numerical procedures we use a refinement to the 
estimate of lP(V 2 C) given by (53) [291, [51. 

Fact 3: As C + m with KjIC = 0(1), j = l , . . .  , J 

P ( V  2 C )  = exp(-F(s*)) [ 1 + o( I)] ( 5 5 )  
s * a ( s * ) f i  

where 

0 
More specifically 

To summarize, we obtain L by calculating the leading term on 
the right hand side of the expression for P ( V  2 C) in (55) .  

111. DISCRETE-TIME MULTIPLEXING SYSTEMS 

In this section we obtain the CDE approximation to discrete- 
time Markov models. Specifically, we let the approximation 
for the buffer overflow be of the form (47), and we develop the 
theory and numerical procedures for computing the dominant 
eigenvalue, which here is given by e’. The bufferless multi- 
plexirig loss L is obtained from Chernoff s theorem exactly as 
described in Section 11-B, and hence is not considered further. 
Prior work on the analysis of related discrete-time Markov 
models are in [24], [38], [33], [23]. However, we did not find 
the specific result of interest here in the literature. 

Consider the homogeneous model in which an infinite buffer 
is supplied by K independent, identical sources and is serviced 
by a channel which transmits at most C cells in unit time. Here 
time is divided into units; the natural time unit in the system 
model in the sequel is the frame. Each source is described by 
an irreducible Markov chain with transition matrix P .  When 
the source is in state i (i = 1 , 2 , .  . . , d )  at a particular time 
unit, Ri cells are produced in that time unit. Thus each source 
is characterized by ( P ,  R ) .  The superposition of the K sources 
is characterized by A4 and A, where Rd = diag(R) 

M = P @ P @ . . . @ P  and A = Rd$Rd$.. .$Rd . ( 5 8 )  

Here K copies occur in the Kronecker product and sum, so that 
M and A are d K  x d K .  Note that the above representation, 
while not corresponding to the minimal state representation 
of the superposition process, is nonetheless essential for the 
derivation of the decomposition obtained below. We only 
consider stable systems for which 2 = Xi ~ i R i  < C / K ,  
where U E Sd and XP = a. 
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Let W ( t )  denote the number of cells in the buffer at the 
beginning of the tth time unit. Also, let L(s )  be the number 
of cells generated when the source state is s; hence, L ( s )  E 
{XI, X2, . . . , A,,}, where X i  is the ith diagonal element of A. 
The evolution of the buffer content is described by 

The above analysis easily extends to the case of heteroge- 
neous sources. In particular, if there are J classes of sources, 
where each class j E [l, 2 , .  . . , J ]  is comprised of Kj sources 
characterized by ( P ( j ) ,  R( j ) ) ,  then we have 

The dominant eigenvalue of the heterogeneous 
multiplexing system is given by e', where z is obtained by 

Fact 2: 

W ( t  + 1) = [W(t) + L(s( t ) )  - C]+ (59) solving 

where [.I+ = m u ( .  , O ) .  Let p ( n ,  k )  4 limt,w IP(W(t) = 
n , ~ ( s ( t ) )  = X k )  ( k  = 1,2,...,dK), and p ( n )  = 
[p(n, l)p(n, 2) . . . p ( n ,  d K ) ]  ( n  = 0, 1,2,. . .). The system's 
steady-state balance equations are 

where M m  is the matrix obtained from M by replacing every 
row except the mth by a row of zeros. 

Assume independent solutions of (60) of the form 

On substitution of (61) into (60), we obtain the following 
eigenvalue equation 

e - = q  z be-+ (62) 

where e" is an eigenvalue and 4 is the corres onding eigenvec- 
tor. Now, for real z ,  the matrix A ( z )  = e-']M is nonnegative 
and irreducible, hence its (Perron-Frobenius) eigenvalue of 
maximum modulus, which we denote by g(z ) ,  is real, positive 
and simple. Utilizing the structure of M and A in (58) ,  we 
obtain 

A(z )  = (e-"RdP) 8 (e-ZRdP) 8 . . . 8  ( e - zRdP) .  (63) 

From this structure we may infer [14] that 

where p ( z )  is the Perron-Frobenius eigenvalue of e-ZRdP.  
The dominant eigenvalue of the multiplexing system, which 

dominates the behavior of p ( n )  for large n, is the largest value 
of e' which satisfies (62). This quantity is real, positive and, 
for stable systems, less than unity, i.e., z < 0. From (62) and 
(64) we have, 

Fact 1: The dominant eigenvalue of the discrete-time, 
homogeneous multiplexing system is e', where z is obtained 
by solving 

0 
Since -(logp(z)}/z is monotonic decreasing for z < 0, 

and C is bounded by R = maxi Ri and R, and CIK lies 
between R and 3, (65) can be solved without difficulty. 

where p ( J )  ( z )  is the Perron-Frobenius eigenvalue of 
e - 'RI;" pb) ,  U 

IV. A STATISTICAL MODEL OF 
VBR-CODED TELECONFERENCE TRAFFIC 

To formulate statistical models of VBR-coded teleconfer- 
ence traffic, we analyzed traffic from three 30 min long video 
conference sequences coded using three different methods. 
All of the sequences show head-and-shoulders scenes with 
moderate motion and scene changes, and with very little 
camera zoom or pan. Let us call the three coding algorithms 
A, B, and C. Algorithm A uses intrafieldinterframe DPCM 
coding without DCT nor motion compensation. Algorithm B 
is a modified version of the H.261 video coding standard. 
H.261 is a hybrid DPCMDCT coding scheme with motion 
compensation. The modified version uses an open loop (no 
rate control) coding scheme with a fixed quantizer step size 
( Q  = 2). Algorithm C uses a hybrid DPCMDCT coding 
algorithm and is similar to algorithm B. However, it does not 
use motion compensation. The three algorithms also differ in 
some other aspects of coding, such as picture formats and 
entropy coding. The key differences to note are that A uses 
neither motion compensation nor DCT, B uses both motion 
compensation and DCT, and C uses DCT without motion 
compensation. The traffic data that we used gives the number 
of cells per frame. It does not specify how the cells arrive 
to the network within an interframe interval. Hence, we only 
model the number of cells per frame. 

Let X ,  be the number of cells in the nth frame of a 
VBR-coded video teleconference. In [ 161 and [17] we showed 
that X ,  has the following properties for all three coding 
schemes. 

1) The number of cells per frame is a stationary Markov 
chain. 

2 )  The marginal distribution of X ,  is negative-binomial. 
3) The correlation between x, and Xn+k has the form pk .  
The probability function for the negative-binomial distribu- 

tion is 
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Fig. 4. Comparison of number of celidframe (y-axis) for 2000 frame trace for one source using actual data and DAR(1) model. 

The mean and variance of this distribution are 

respectively. Here, 0 < p < 1, q = 1 - p and T > 0. The 
method of moments gives the estimates 

for p and T in terms of the observed values of mo and vO; 
uo > mo is required for the estimates to make sense. 

From properties ( 2 )  and (3) ,  the only parameters that are 
needed to specify the X ,  are the mean and variance of 
the marginal distribution, and the autocorrelation coefficient. 
From property (l) ,  the temporal evolution of the process 
is completely specified once a suitable transition matrix for 
the Markov chain is given. Estimating the transition matrix 
P = ( p i j )  for the Markov chain modeling X ,  (or some 
aggregation of the X,) using 

l i , ,  - number of transitions i to j 
(70) '' - number of transitions out of i 

is not practical since this has too many parameters. 
To be of practical use, we would like the model to be 

based only on parameters which are either known at call 
set-up time or can be measured without introducing too 
much complexity in the network. Hence, we use the discrete 
autoregressive process of order 1, or DAR(1) process [19], 
because it provides an easy and practical method to compute 
the transition matrix and gives us a model based only on three 
physically meaningful parameters, the mean, variance, and 
correlation of the offered traffic. Let Q be a square stochastic 
matrix where each row is f = ( f o ,  f i , .  . . , f i l l ) ,  where f i  

( i  = 0; 1, . . . , M - 1) are the negative binomial probabilities 
in (67), fhf = Cm>ill-l fm,  and M is the peak rate in cells 
per frame. If the peak rate is not known, any suitably large 
number M can be used. The matrix P given by 

where I is the identity matrix, has the desired properties. 
The rate vector R = (Ro, R I , . . . ,  R ~ , I ) ,  where Ri = i 
( i  = 0 ,1 ,  . . . , M ) .  Later we consider aggregating these states. 
The transition matrix in (71) has the property that if the current 
frame has i cells say, then the next frame will have i cells 
with probability p + (1 - p) f i ,  and will have IC cells, k # z, 
with probability (1 - p) fk .  This makes each sample path more 
regular than the data traces because the number of cells per 
frame stays constant for a mean of (( 1 - p ) (  1 - f , L ) ) - '  frames; 
this is about 100 frames with our data. This can be seen in 
Fig. 4 which plots a segment of the actual data trace and a 
trace of the same length produced by the DAR(1) model. 
However, this difference between the DAR and the actual 
trace attenuates for an ensemble of sources as more and more 
sources are superposed. This is evident from Fig. 5 which 
shows multiplexed traces produced using the actual traffic and 
using the DAR( 1) model. 

The stationary probability vector of the DAR( 1) process is f ,  
i.e., f = f P .  Also, detailed balance holds, i.e., fiPij = fjPji 

for all i and j .  Hence, 
Fact: The DAR(1) process with transition matrix P is 

reversible. 0 
Consequently, all eigenvalues of P are real. 
This DAR model was introduced in [16] and was shown to 

accurately predict the blocking probability for a superposition 
of several identical sources fed to a statistical multiplexer. 
Algorithm C was used in that study. This result was shown to 
hold for algorithms A and B in [ 171. Further evidence that the 
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different from those used in our studies. Sequence Mean Peak Variance Correlation 
Cells/frame Cells/frame 1-frame lag 

A 1506.4 4818.0 262827.1 0.9731 

quately model entertainment video sources using similar mod- C 130.3 630.0 5536.9 0.9846 

This three parameter model is restricted to video con- 
ferences because we have not so far been able to ade- B 104.8 220.0 882.5 0.9795 

Cell Size 
Bytes 

14 
48 
64 

v. ANALYTIC AND SIh4ULATION RESULTS 

We considered the following traffic engineering problem: 
How many simultaneous (statistically identical) video confer- 
ences can an ATM switch carry with a cell-loss rate (CLR) 
of about lop6? We computed this number using the CDE 
method and compared it to the number obtained by simulation. 
This was done for the different video sources (using the 
different coding schemes) described in Section IV. We found 
the agreement between the two numbers to be sufficiently 
accurate, for traffic engineering purposes, over a wide range 
of system characteristics. 

For the analytic approximation to the buffer overflow prob- 
ability with DAR(1) source models we use the expression in 
(47), where the loss in bufferless multiplexing, L, is obtained 
from the refinement to Chernoffs theorem, see (55), and the 
dominant eigenvalue e' is obtained by the following result. It 
is assumed here that Ro < RI < . . .  < RM.  

Theorem 5.1: The dominant eigenvalue of the multiplexing 
system with K homogeneous DAR( 1) sources, each described 
by ( P , R )  is e', where z is the unique solution to the scalar 
equation 

in the interval ( ( l o g p ) / ( R M - l  - C/K) , ( logp) / (RM - 
C / K ) ) .  The function in (72) in this interval is monotonic 

The proof, which is omitted, exploits the structure of P in 
(71). For a related result see [8, sect. VI]. 

To obtain the number of admitted sources by simulation, 
we used the actual traffic traces giving the number of cells 
per frame for video teleconferences of approximately 30 min 
duration. Here, we present results for sequences A and C which 
are the traffic traces generated by the coding schemes A and 
C described in Section IV. The relevant parameters for the 
different sequences are shown in Table I. 

For sequence A, the frame rate is 30 frames/& and the trace 
is 38 100 frames long. Sequence C is 45 000 frames long and 
the frame rate is 25 frameds. 

The switch is modeled as a multiplexer with a buffer whose 
size is determined by the maximum buffering delay. Cell 
arrivals from each individual source are equally spaced during 
the interframe interval (33.3 ms for sequence A, 40 ms for 
sequence B). The recorded data trace is used to generate traffic 
for each of the sources. Since we do not have hundreds of 
different 30 min long recorded traces to simulate the different 
admitted sources, we use the same sequence to generate traffic 
for all sources. This is done by using different starting points 
(indices) in the trace. We found by experimentation, that with 
a random choice of indices the variation of the number of 

decreasing. 0 
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TABLE I1 
COMPARISON OF NUMBER OF CODING SCHEME C SOURCES 

ADMITIED USING SIMULATION AND THE CDE METHOD 

TABLE 111 
COMPARISON OF NUMBER OF CODING SCHEME A SOURCES 

A D M ~ E D  USING SIMULATION AND USING THE CDE METHOD 

admitted sources with choice of indices is generally about 
10% (excluding clearly pathological choices such as several 
sources having the same indices).’ 

Another factor which can affect cell losses is the relative 
phase between frames arriving from different sources. We use 
the same relative phases in all experiments. Also, to minimize 
the effect of phases found in [16] we choose the phases such 
that the arrival instants of frames from different sources are 
equally spaced in the 40 ms or 33.3 ms interframe interval. 
(For a 40 ms interframe interval, if t\ere are 20 sources, the 
first cells belonging to a new frame from each source arrive 
at times 2 ms, 4 ms, . . . ,40 ms, and every 40 ms thereafter.) 

We use the following notation: 

C output rate [Mb/s] 
B buffer size [ms] (maximum delay at buffer served at 

Fig. 6. 
MByteIs. 

Log(CLR) versus buffer size for sequence C, 20 sources, C = 45 

I I I I I I I I  
I 

0.5 1.5 a.5 3.5 4.5 

auffmr =ism in ma 
rate C) Fig. 7. Log(CLR) versus buffer size for sequence C, 60 sources, c = 125 

K maximum number of sources that approximately MByteIs. 
achieve CLR = loW6. 

The subscripts sim and CDE denote results from simulation 
and results from computations using the CDE method. 

Table I1 compares the number of sources using coding 
scheme C admitted in simulation experiment to the number 
admitted using the CDE method. The number admitted by 
simulation was determined by adding sources until the loss 
rate exceeded the specified bound of approximately loW6. 
The CDE computation was done using the DAR(1) source 
model with the required three parameters of the model (mean, 
variance, and correlation) being estimated from the traffic 
trace. From the table, we see that KCDE < Ksim and their ratio 
gets monotonically closer to one as the correctly engineered 
maximum number of sources gets larger. The peak-to-mean 
ratio for this traffic is 5 ,  and the mean bit rate is 1.668 Mb/s. 

Hence, from the table it can be seen that the statistical 
multiplexing gain is in the 3 to 4 range. 

Table I11 presents results using traffic coded by scheme A. 
We see that the number admitted using the CDE method is 
a very close approximation to the “true” number obtained by 
simulation. 

We also tested by simulation one of the basic hypothesis 
underlying the use of the CDE method. The hypothesis is that 
log(CLR) l f z B ,  where C and z are constants. Figs. 6 and 7 
plot on a log-linear scale the buffer overflow probabilities for 
various buffer sizes. The overflow probabilities were obtained 
by simulation using sequence C for the parameters indicated in 
the figure. The plots shows that the hypothesis is well founded 
for this set of parameters. Similar results were obtained for 

‘The Cell loss probability is sensitive to choice of indices. However, this For 60 sources, the traffic 
does not translate to large variations in the number of admitted sources because 
of the relatively large increments in the offered traffic when new sources are in sequence us to 3.5 lo8 
admitted. 

many other 

cell arrivals to the switch. This does not permit us to reliably 
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Fig. 8. Log(CLR) versus buffer size for sequence A, 50 sources and 
C = 280 MByte/s. 

estimate CLR’s much lower than the ranges shown in the 
figure. 

Fig. 8 shows the results from experiments with sequence A. 
For the 50 source example shown in the figure, the information 
in sequence A allows us to simulate 2.8 x lo9 cell arrivals at 
the switch allowing us to obtain reliable estimates of CLR 
for the ranges shown in the figure. Again, we find that the 
buffer overflow probability decreases exponentially with buffer 
size. Beran et al. [2] state that our traffic data exhibit long- 
range dependence. The DAR( 1) model has a geometrically 
declining autocorrelation function. So it takes into accounts 
only short range dependence. Leland et al. [25] argue (in the 
context of Ethernet traffic) that when traffic is long range 
dependent “overall packet loss decreases very slowly with 
increasing buffer capacity.” If these assertions were both valid 
for the system we model, then the CDE method would not be 
applicable to video teleconference traffic. Results from our 
simulation studies using actual data traces (summarized in 
Figs. 6-8) do not conform to these assertions. Furthermore, 
the underlying hypothesis necessary for using the CDE method 
seems to hold for video teleconferences and the results in 
Tables I1 and I11 indicate that this method is accurate enough 
to be used for admission control and bandwidth allocation of 
video teleconferences. 

APPENDIX 
PROOFS OF THEOREMS 2.1 AND 2.3 

We need two lemmas. The proof of Lemma 1 is in [35, 

Lemma 1: For any path r(t)  and time T > 0 define 
ch. 131. 

(73) 

Then 

(75) 

U 

Lemma 2: 

ITm(r)  = IT,(s) = I-“,(.) = I-”,(s). (76) 

Pro08 The definition of reversibility is 

T,Q,,~ = T ~ Q ~ , ~  for every pair x, y. (77) 

Extending this by iteration we find that for any sequence of 
states ~ ( 1 ) ~ .  . . , ~ ( n )  we have 

Tz(l)Qz(l),z(P)Qz(2),z(3) . . Q z ( n - l ) , x ( n )  
- - ~ x ( n ) Q x ( n ) , x ( n - l ) Q z ( n - l ) , x ( n - 2 )  . Q 2 ( 2 ) , x ( 1 ) .  (78) 

This means that for cost functions we obtain 

P(r(0) )  exp ( -KIF(r ) )  =IP(r(T)) exp (-KI,T(r(T - t ) ) ) .  
(79) 

But for reversible systems it is easy to show (essentially from 
Theorem 2.4) that 

IP(r(0)) = exp ( - K I ! ! ~ ( ~ )  + o ( K ) )  
IP(r(T)) = exp ( -KP,(S)  + o ( K ) ) .  

This finishes the proof. 0 
Proof of Theorem 2.1: Recall the definition of 6 ( b )  in 

(36). Choose a b > 0. Suppose that ( r ,T )  E G ( b ) ,  and that r 
is a minimal cost trajectory. We can shift time by any amount 
T and keep (r(t + T ) ,  T + T )  E G ( b ) .  Therefore, we are free 
to state that 0 is the last time before T that B,r(t)  = 0. We 
can extend r to times larger than T by setting it equal to z,. 
It is easy to see that B,r(t) < b for every t > T ,  since the 
path z, + p and since otherwise we could achieve the buffer 
content b with lower cost. Therefore the path 

s ( t )  r(T - t )  (80) 

has the property that B,s(O) = 0. Now the reversibility of 
Z K ( ~ )  implies that the cheapest path from p to any point y is 
the time reversal of z,(t) starting at y; that is, the cheapest 
way to go from the center p to any point y is the time reversal 
of the most likely way to go from y to p .  

Thus, the path s ( t )  has the same properties as r: ( s , T )  
is a member of 6, and s has 0 as the last time before T 
when B,s(t) = 0. Note that since the cost of zm( t )  is zero, 
IF(r )  = IF(s)  = 0. 

Now, define 

P 2  = If(r) (81) P1 = IO,(r) 
P 3  = IOm(s) P4 = Io (3) ’ 

Lemma 2 states that P1 + P 2  = p3 + p4. Now use Lemma 
1 to obtain 

P2 2 WF(T) ,F’( ,m.  (82) 

Similarly 

P4 2 T W T ) ,  -F/(T)) (83) 

since the average of s’ over (0, T )  is -?(T), and the average 
of s over the same interval is t (T ) .  Now l (z ,y)  is convex 
in y, so 

(84) 
1 
2 - (P2 + P4) 2 T W T ) ,  0 ) .  
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(94) 

Furthermore, since P1 and P 3  are each costs of going from the 
point p to the hyperplane (R,  ZK) = e, each of them is larger 
than C1, which is defined to be the minimal cost of all paths 
to go from p to that hyperplane. Now we use Lemma 2 

E&-) = P1 + P 2  

P1 + P2 + P 3  + P4 P1 + P 3  P 2  + P4 +----- - - - - 
2 2 2 

2 C1 + T!(r(T) ,  0) 
L Ci + bC2 (85)  

since C2 was defined to be the minimum cost per unit buffer 
for a path that does not move. 0 

Proof of Theorem 2.2: By the lower semicontinuity of 
!(z,y) and the assumed uniqueness of w*, for any E > 0 
there is a S > 0 such that if 1% - w*l > 6 then 

Lemma 1 shows that any path has a cost that is lower bounded 
by a constant plus the cost of its center. As b -+ 00, the point 
f’ + 0, since the time tends to infinity and r ( t )  is bounded. 
Therefore 

(87) IF(r)/T 2 e(., T’ )  > e(w*, 0) + E 

unless Ir - w*l < 5 .  Now the inequality of Lemma 1 is strict 
unless r( t )  is a constant. This proves that the fraction of time 
over which r ( t )  is close to w* tends to one as T -+ 00 (that 
is, as b -+ 00). 0 

Proof of Theorem 2.3: There are many ways of arriving 
at a function f ( b )  such that (43) and (44) hold. We simply 
have to find a set of functions { r b ( t ) }  with associated T(b) 
satisfying the following conditions (see Fig. 3) 

T b ( 0 )  = V* = r b ( T ( b ) )  (88) LT(’) ( ( T b ( t ) ,  R)  - C )  dt = b. (89) 

Then, we take 

f ( b )  = I r ( b ) ( r b ) .  (90) 

It is not hard to show that there is a choice of the family 
{ r b ( t ) }  such that f ( b )  = I*(b).  However, for many models it 
is difficult to find I*(b) analytically. We therefore propose a 
set of paths that give only an approximation, but one that has 
bounded error as b -+ CO, and that is tight as b + 0. 

For every b > 0 we define r b ( t )  for t < 0 to be the minimal 
cost path from p to V* that reaches v* at time 0. This is, 
by the reversibility assumption, the time reversal of zm(t)  
starting at V* at time 0; see Theorem 4. Let w* represent any 

minimizing point of the fraction that defines C2, see (39). Then 
let w represent the denominator of that fraction 

w (W*,R) - e. (91) 

Now define bo = w, and define 

(u(b) is the first time when either T b ( t )  = w* or when the 
buffer reaches b / 2 ;  see (95) below.) Furthermore define 

u(b), if u(b) < 1 

, if u(b) = 1 (93) 

( U ( b )  is the time when the path r b ( t )  starts going back to 
w*.) We now define r b ( t )  for t > 0 as shown in (94), at the 
top of this page. In words, this makes T b ( t )  linear between 
V* and w* for time up to 1, then r b ( t )  is equal to w* for a 
while, then it goes linearly back to U* and from there follows 
zDO(t) back to p .  With these definitions it is easy to see that 

First we check that J : ‘ ” ( ( ( T b ( t ) , K )  - c ) d t  = b. For 
T(b)  = u(b) + U @ ) .  

O l S < l  

L ‘ ( ( r b ( t ) , R )  - c ) d t  = t w d t  = U-.  S 2  (95) I S  2 

This shows why we chose u(b) as we did. From here it is clear 
that J : ( ” ( ( r b ( t ) , R )  - c )  dt  = b. 

If b > bo then we have f ( b )  = f ( b o ) + C z ( b - b o )  (recall that 
we define f ( b )  via (90), since the integral of f ? ( r b , r t )  can be 
broken up into the pieces where r b  = w* and r b  # w*. Those 
portions where T b  # w* are just the times when T b  = n o ,  

and those where T b  = w* give c2 increase in I : ( r b )  per unit 
increase in b. 0 

REFERENCES 

[I]  D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of a data 
handling system with multiple sources,” Bell Syst. Tech. J . ,  vol. 61, pp. 
1871-1894, 1982. 

[2] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Variahle-hit rate 
video traffic and long-range dependence,” to he published. 

[3] E. G. Coffman, B. M. Igelnik, and Y. A. Kogan, “Controlled stochastic 
model of a communication system with multiple sources,” IEEE Trans. 
Inform. Theory, vol. 37, no. 5, pp. 1379-1387, 1991. 

[4] G. L. Choudhury, D. M. Lucantoni, and W. Whitt, “On the effectiveness 
for admission control in ATM networks,” in Proc. ITC14, pp. 41 1 4 2 0 .  

[5] N. R. Chaganty and J .  Sethuraman, “Strong large deviation and local 
limit theorems,” Ann. Probab., vol. 21, no. 3, pp. 1671-1690, 1993. 

[6] N. G. Duffield, “Exponential hounds for queues with Markovian ar- 
rivals,” Queueing Sysf., vol. 17, pp. 413-430, 1994. 

[7]  A. Demho and 0. Zeitouni, Large Deviations Techniques and Applica- 
tions. Boston, MA: Jones and Bartlett, 1993. 



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 6, AUGUST 1995 

A. I. Elwalid and D. Mitra, “Effective bandwidth of general Mar- 
kovian traffic sources and admission control of high speed networks,” 
IEEELACM Trans. Networking, vol. 1, no. 3, pp. 329-343, 1993. 
-, “Analysis, approximations and admission control of a multi- 
service multiplexing system with priorities,” in Proc. IEEE INFOCOM 
’95, pp. 463472.  
M. R. Frater, A. Kennedy, and B. D. 0. Anderson, “Reverse-time 
modeling, optimal control, and large deviations,” Syst. Contr. Lett., vol. 
12, pp. 351-356, 1989. 
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical 
Systems. New York: Springer-Verlag, 1984. 
R. Guerin, H. Ahmadi, and M. Naghshineh, “Equivalent capacity and 
its application to bandwidth allocation in high-speed networks,” IEEE 
J.  Select. Areas Contr., vol. 9, pp. 968-981, 1991. 
R. J. Gibbens and P. J. Hunt, “Effective bandwidths for the multi-type 
UAS channel,” Queueing Syst. vol. 9, pp. 17-28, 1991. 
A. Graham, Kronecker Products and Matrix Calculus with Applications. 
Chichester, U.K.: Ellis Harwood, 1981. 
D. P. Heyman and T. V. Lakshman, “Source models for VBR broadcast- 
video traffic,” in Proc. IEEE INFOCOM 1994, pp. 664471 .  
D. P. Heyman, Ali Tabatabai, and T. V. Lakshman, “Statistical analysis 
and simulation study of video teleconference traffic in ATM networks,” 
IEEE Trans. Circuits, Syst, video Technol., vol. 2, no. 1, pp. 49-59, 
Mar. 1992. 
D. P. Heyman, T. V. Lakshman, A. Tabatabai, and H. Heeke, “Modeling 
teleconference traffic from VBR video coders,” in Proc. ICC 1994, pp. 
1744-1 748. 
J. Y. Hui, Switching and TrafJic Theory for Integrated Broadband 
Networks. Boston: Kluwer, 1990. 

I P. Jacobs and P. Lewis, “Time series generated by mixtures,” J. Time 
Series Anal., vol. 4, no. 1, pp. 19-36, 1983. 

1 F. P. Kelly, “Effective bandwidths at multi-type queues,” Queueing Syst., 
vol. 9, pp. 5-15, 1991. 

[21] L. Kosten, “Stochastic theory of data-handling systems with groups of 
multiple sources,’’ in Performance of Computer Communication Systems, 
H. Rudin and W. Bux, Eds. New York: Elsevier, 1984, pp. 321-331. 

[22] L. Kosten, “Liquid models for a type of information buffer problem,” 
Delft Prog. Rep. 11, 1986, pp. 71-86. 

[23] G. Kesidis, J. Walrand, and C. S .  Chang, “Effective bandwidth for mul- 
ticlass fluids and other ATM sources,” ZEEELACM Trans. Networking, 
vol. 1, no. 4, pp. 424428,  1993. 

[24] S.-Q. Li, “A general solution technique for discrete queueing analysis 
of multimedia traffic on ATM,” IEEE Trans. Commun., vol. 39, no. 7, 
July 1991. 

[25] W. E. Leland, M. S .  Taqqu, W. Willinger, and D. V. Wilson, “On the 
self-similar nature of Ethernet traffic,” in Proc. ACM SIGCOMM Con$ 
Comput. Commun,, pp. 183-193, 1993. 

[26] D. Lucantoni, M. Neuts, and A. Reibman, “Methods for performance 
evaluation of VBR video traffic models,” IEEELACM Trans. Networking, 
vol. 3, no. 2, pp. 176-180, Apr. 1994. 

[27] D. Mitra, “Stochastic theory of a fluid model of producers and consumers 
coupled by a buffer,” Adv. Appl. Prob., vol. 20, pp. 646-676, 1988. 

[28] I. Norros, J. W. Roberts, A. Simonian, and J. T. Virtamo, “The 
superposition of variable bit rate sources in an ATM multiplexer,” IEEE 
J.  Select. Areas Commun., vol. 9, pp. 378-387, 1991. 

[29] V. V. Petrov, “On the probabilities of large deviations for sums of 
independent random variables,” Theory of Prob., Applicat., vol. X ,  no. 

[30] J. W. Roberts, “Performance evaluation and design of multiservice 
networks.” COST 224 Proiect, Commission Eurouean Communities. 

2, pp. 287-298, 1965. 

Final Rep., 1992. 
[31] T. E. Stem and A. I.  Elwalid, “Analysis of a separable Markov- 

modulated rate model for information-handling systems,” Adv. Appl. 
Prob., vol. 23, pp. 105-139, 1991. 

[32] A. Simonian and J. Guibert, “Large deviations approximation for fluid 
queues fed by a large number of odoff sources,” in Proc. ITC14, 1994, 
pp. 1013-1022. 

[33] K. Sohraby, “On the asymptotic behavior of heterogeneous statistical 
multiplexer with applications,” in Proc. IEEE INFOCOM ‘92, pp. 

[34] A. Shwartz and A. Weiss, “Induced rare events: Analysis via large 
deviations and time reversal,” Adv. App. Prob., vol. 25, pp. 667-689, 
1993. 

839-847. 

[35] -, Large Deviations for Performance Analysis. London, U.K.: 
Chapman & Hall, 1995. 

[36] S .  R. S. Varadhan, Large Deviations and Applications. Philadelphia, 
PA: SIAM, 1984. 

[37] W. Whitt, “Tail probabilities with statistical multiplexing and effective 
bandwidths for multi-class queues,’’ Telecommun. Syst., vol. 2, pp. 
71-107, 1993. 

[38] Z. Zhang, “Finite buffer discrete-time queues with multiple Markovian 
arrivals and services in ATM networks,” in Proc. IEEE INFOCOM ‘92, 
pp. 2026-2034. 

Anwar Elwalid (M’91) received the B.S. degree 
from Polytechnic Institute of New York, Brooklyn, 
and the M.S. and Ph D degrees from Columbia Uni- 
versity, New York, NY, all in electrical engineenng. 

Since 1991, he has been with the Mathematics 
of Networks and Systems Research Department, 
Bell Laboratories, Murray Hill, NJ His research 
areas include ATM networks, multimedia traffic and 
queueing, and stochastic systems 

Dr. Elwalid is a member of Tau Beta Pi and 
Sigma Xi. 

Daniel Heyman received the B S degree in in- 
dustrial and electrical engineering from Rensselaer 
Polytechnic Institute, Troy, NY, in  1960, the M I E. 
degree from Syracuse University, Syracuse, NY, in 
1962, and the Ph.D. degree in operations research 
from the University of California-Berkeley in 1966. 

He joined Bell Laboratories and then transfered 
to Bellcore His research areas include numerical 
analysis of stochastic processes, queueing theory, 
and performance models of data communications 
systems. 

T. V. Lakshman (M’86) received the M.S. degree 
from the Indian Institute of Science, Bangalore, 
India, and the M.S. and Ph.D. degrees in computer 
science from the University of Maryland, College 
Park, in 1984 and 1986, respectively. 

He joined Bellcore in 1986 and is currently a 
Senior Research Scientist in the Information Net- 
working Research Laboratory. He has been involved 
in research on several aspects of networks and 
distributed computing, such as issues related to 
provision of video services using ATM networks, 

end-to-end flow control problems in high-speed networks, ATM traffic shaping 
and policing, ATM switching, and parallel architectures for fast signaling 
and connection-management in high-speed networks. His current research 
interests are in the areas of high-speed networking, distributed computing, 
and multimedia systems. 

Dr. Lakshman is a member of the Association for Computing Machinery. 

Debasis Mitra (M’75-SM’82-F’89), for a photograph and biography, please 
see page 936 of this issue. 

Alan Weiss, for a photograph and biography, please see page 952 of this issue. 


