The Importance of Long-Range Dependence of VBR Video Traffic in
ATM Traffic Engineering: Myths and Realities

Bong K. Ryu
Center for Telecommunications Research, Columbia University, New York, NY 10027

ryu@ctr.columbia.edu

Anwar Elwalid
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974

anwar@research.att.com

Abstract

There has been a growing concern about the potential im-
pact of long-term correlations (second-order statistic) in
variable-bit-rate (VBR) video traffic on ATM buffer dimen-
sioning. Previous studies have shown that video traffic ex-
hibits long-range dependence (LRD) (Hurst parameter large
than 0.5). We investigate the practical implications of LRD
in the context of realistic ATM traffic engineering by study-
ing ATM multiplexers of VBR video sources over a range of
desirable cell loss rates and buffer sizes (maximum delays).
Using results based on large deviations theory, we introduce
the notion of Critical Time Scale (CTS). For a given buffer
size, link capacity, and the marginal distribution of frame
size, the CTS of a VBR video source is defined as the num-
ber of frame correlations that contribute to the cell loss rate.
In other words, second-order behavior at the time scale be-
yvond the CTS does not significantly affect the network per-
formance. We show that whether the video source model is
Markov or has LRD, its CTS is finite, attains a small value
for small buffer, and is a non-decreasing function of buffer
size. Numerical results show that (i) even in the presence
of LRD, long-term correlations do not have significant im-
pact on the cell loss rate; and (ii) short-term correlations
have dominant effect on cell loss rate, and therefore, well-
designed Markov traffic models are effective for predicting
Quality of Service (QOS) of LRD VBR video traffic. There-
fore, we conclude that it is unnecessary to capture the long-
term correlations of a real-time VBR video source under
realistic ATM buffer dimensioning scenarios as far as the
cell loss rates and maximum buffer delays are concerned.
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1 Introduction

There has been a growing concern about the potential im-
pact of long-term correlations of variable-bit-rate (VBR)
video traffic on ATM traffic engineering. This concern is
based on two recent findings: (i) VBR video traffic exhibits
long-range dependence (Hurst parameter larger than 0.5)
[2]; (ii) the buffer overflow probability (BOP)! of long-range
dependent (LRD) video traffic decays hyperbolically [14, 18]
or in a Weibull fashion [5, 17]. A direct implication of (ii)
is that the notion of effective bandwidth based on Markov
models of which the BOP decays exponentially does not ap-
ply to LRD traffic (see Section 4 for detail). This has led
many researchers and practitioners to believe that the LRD
property of VBR video traffic will have critical impact on
ATM traffic engineering in general.

Different, and perhaps opposing viewpoints about the
impact of the LRD property also exist, however. Heyman
and Lakshman [8] and Elwalid et al [6] analyzed several
traces of VBR videoconferencing traffic and modeled them
using the first-order Discrete Autoregressive processes
[DAR(1)] (see Section 3.1 for detail) by matching the mar-
ginal distribution of frame size and first-lag correlation. De-
spite the fact that these traces were shown to possess long-
range dependence by Beran et al [2], Elwalid et al showed
that for practical ranges of buffer size and cell loss rate
(CLR)!, the DAR(1) model, which is a short-range depen-
dent (SRD) process, provides an accurate prediction of CLRs
for the purpose of real-time connection acceptance control.
Later, we fully explain this result, which appears to contra-
dict the relevant results that appear in the literature (see
Section 4), by considering the realities that (i) the autocor-
relations of these traces drop quickly for small lags; and (ii)
the buffer size required for multiplexing many VBR video
sources is typically small due to the delay constraint im-
posed on real-time applications.

At least two claims have been made in the literature re-
garding the importance of the LRD property in ATM traffic

1Throughout this paper, we use buffer overflow probability (BOP)
to represent the probability that buffer content exceeds some amount
in an infinite buffer system, and cell loss rate (CLR) to represent the
fraction of lost cells in a finite buffer system.



engineering:
1. While long-term correlations of LRD processes are in-

dividually small, their cumulative effect on the CLR is
non-negligible [2].

2. The buffer behavior of LRD VBR video traffic can-
not be accurately predicted by simple, parsimonious
Markov-based (or SRD in general) models [2, 10, 23].

The focus of this study is two-fold: in a narrow sense,
we check the validity of the above two claims under realis-
tic scenarios of ATM buffer dimensioning; and in a broad
sense, we explore a general relationship between buffer size
and video frame correlations (with other system parame-
ters held fixed). We consider ATM multiplexers of real-time
VBR video sources over the following ranges: buffer size
(maximum delay) less than 20 — 30 msec, and CLR less than
107°. In other words, we choose a link capacity (or utiliza-
tion) such that the system operating point lies within the
above ranges of buffer size and CLR. We envision that the
total end-to-end delay (propagation + processing + network
queueing + others) allowed for typical real-time VBR video
applications is about 200 msec or so, or even smaller. Since
such applications are most likely to pass along several net-
work nodes, we believe that the delay at each node should
be kept within 20 — 30 msec at maximum. Using results
from large deviations theory, we show that: (i) long-term
correlations do not have significant impact on CLR; and
(ii) (ii) short-term correlations have dominant effect on cell
loss rate, and therefore, well-designed Markov traffic models
are effective for predicting Quality of Service (QOS) of LRD
VBR video traffic. These results, verified by simulation, dis-
prove the above claims under practical ranges of buffer size
and CLR.

Since the key issue of this study is to investigate the effect
of different types of autocorrelation structures (short-range
dependence or long-range dependence) on the multiplexer
performance, it is essential that we have models of which
the frame correlations can be easily and flexibly adjusted.
For this reason, we use stochastic VBR video models, unlike
the previous studies in which real video traces were used. In
particular, we construct LRD video models such that they
resemble real traces exhibiting LRD; see [8] for examples of
such traces. Further, in order to exclude the effect of the
marginal distribution (of frame size) on buffer behavior, we
set the marginal distributions of all models to be identical
so that the first-order statistics do not contribute to the dif-
ference in queueing behavior. We choose Gaussian frame
size distribution to simplify our analysis. It is noted that
the Gaussian frame size distribution may not be a univer-
sal characterization of video traces; some traces have been
found to possess heavier tails than that of the Gaussian dis-
tribution [7]. As discussed in Section 6, however, we believe
that our main results are unlikely to be affected by this as-
sumption.

Based on the results from large deviations theory, we
introduce the notion of Critical Time Scale (CTS) which

describes a relationship between buffer size and frame cor-
relations (with other system parameters such as link capac-
ity and marginal distribution of frame size held fixed). For
given buffer size, the CTS of a VBR video source is defined
as the number of frame correlations that contribute to the
CLR. For example, for VBR video sources with Gaussian
marginal distribution of frame size, knowledge of CTS im-
plies exactly how many frame correlations affect the cell loss
rate (CLR); correlations after such lag (CTS) do not con-
tribute to CLR. Later we show that whether the model is
Markov or has the LRD property, its C'T'S is finite, attains a
small value for small buffer, and is a non-decreasing function
of the buffer size. In other words, under realistic scenarios of
ATM buffer dimensioning, the number of frame correlations
which affect BOP is finite and small even in the presence of
the LRD property. As a result, it is unnecessary to capture
the long-term correlations of a real-time VBR video source
as far as the cell loss rates and maximum buffer delays are
concerned as QOS metrics.

The rest of this paper is organized as follows. Section 2
provides two definitions of an LRD process used in this pa-
per. Section 3 presents the details of two stochastic pro-
cesses: Discrete-AutoRegressive process of order p [DAR(p)]
[9] and Fractal-Binomial-Noise-Driven Poisson point process
(FBNDP) [19]. Four VBR traffic source models, V¥, Z¢ S,
and L, are constructed using the above processes and their
marginal distributions and autocorrelations are discussed.
Section 4 provides an overview of results from large devia-
tions theory on the BOP of ATM multiplexers. Using these
analytical tools, we examine the two claims by comparing
the C'TSs and BOPs of the four video models. Section 5.5
provides simulation results which verify the analytical re-
sults of Section 4. Finally, conclusions and discussions are
presented in Section 6.

2 Long-Range Dependence: Definitions

Let X = {X% : k > 1} be a wide-sense stationary (WSS)
process in the discrete-time domain with g = E[X}], vari-
ance o = E[(Xx — p)?], and autocorrelation function

r(k; Te) = E[(Xn — u)(Xntr — u)]/0”.

X represents the size of the k-th frame in cells with frame
duration of Ts sec. We call X an asymptotic LRD process if
the tail of its autocorrelation function r(k;Ts) is given by?
[10]:

r(k;Ts) ~ k_(2_2H), as k — oc. (1)

The quantity H is called the Hurst parameter and com-

pletely characterizes the relation (1). Fractional autoregres-

sive integrated moving average models , F-ARIMA(p,d,q),

are an example of asymptotic LRD processes [10].
Likewise, we call X an exact LRD process if

r(k;To) = %g(TS)Vz(sz) for k>0 2)

2The symbol ~ denotes an asymptotic relation.



with 0.5 < H < 1, 0 < g(-) < 1 independent of k, and
VQ(h(k)) = h(k +1) — 2h(k) + h(k — 1), the second central
difference operator. Due to the asymptotic equivalence of
differencing and differentiation, (2) can be approximated to

r(k; 1) m g(T)H(2H — 1)k~?=2H) 3)

for large k. The discrete-time fractional Gaussian Noise
(FGN) process has an autocorrelation function of the form
(2) with g(T:) =1 [21], and therefore is an exact LRD pro-
cess. A family of fractal stochastic point processes (FSPPs)
introduced in [19, 20] also yield exact LRD processes in the
sense of (2) with g(7s) = TfH_l/(TfH_l + TOQH_l). To is
called fractal onset time which is used to control the variance
of the frame size; see [20] for detail. We distinguish (1) and
(2) because we feel that the first claim seems to stem from
(1) which completely ignores the short-term correlations of

X.

3 LRD and SRD VBR Video Models

We check the validity of the two claims given in the intro-
duction by studying two relevant issues, one for each claim,
respectively:

I: Effect of short- and long-term (frame) correlations on

CLRs.

II: Efficacy of Markov models in predicting the loss char-
acteristic of LRD VBR video traffic.

The objective of studying the first issue is to examine
whether the long-term correlations have significant impact
on CLRs in the presence of the LRD property. For this pur-
pose, we use two asymptotic LRD models: V¥ and Z¢. The
long-term correlations of V¥ are controlled by v, while its
short-term correlations (at least the first-lag correlation) are
unchanged. On the other hand, the short-term correlations
of Z% are controlled by a, while its long-term correlations
(Hurst parameter) are unchanged; see Fig. 1. We use the
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Figure 1: Effect of the change of a and v on the autocorre-
lation function of the models Z* and V.

superposition of the Fractal-Binomial-Noise-Driven Poisson
point process (FBNDP) [20] and DAR(1) process [9] for con-

structing V¥ and Z“. Details on how we construct these

two models are given in Section 3.3. For the first claim to
be valid, we must observe, under practical scenarios of ATM
buffer dimensioning, that: (i) the CLRs of V¥ for different
values of v are significantly different; and (i) the CLRs of
Z ¢ for different values of a are close to each other. Later, we
show that what we observe is the opposite, indicating that
even n the presence of the LRD property, it is the short-
term correlations that have a dominant impact on CLRs
under realistic scenarios of ATM buffer dimensioning, not
the long-term correlations.

The objective of studying the second issue is to investi-
gate whether a simple, well designed Markov model can pro-
vide a good prediction of the CLRs of an LRD VBR video
source. For this purpose, we use two additional models: a
short-range dependent (SRD) model S, and an exact LRD
model L. For a given asymptotic LRD model Z¢, we con-
struct S such that the first p correlations of Z¢ are exactly
matched. Also, we use an exact LRD model L to match only
the long-term correlations of Z%. We use DAR(p) process
for S and the FBNDP process for L. In summary, Z* serves
the role of a real trace that exhibits the LRD property; S
[DAR(p)] captures only the short-term correlations of Z¢;
and L only the long-term correlations of Z¢; see [9] and [20,
chapter 6] on how DAR(p) processes capture the first p cor-
relations of Z“. For the second claim to be valid, we must
observe that L outperforms S in predicting the CLR of Z¢
over practical ranges of buffer sizes and CLRs. Later, we
show that when a system operating point is chosen within
practical ranges of buffer sizes and CLRs, DAR(p) models
perform superior to L even for small p (p = 1,2, 3).

The crucial feature of these four models (V¥, Z¢, S,
and L) is that their marginal distributions of frame size are
identical, implying that the first-order statistics do not con-
tribute to the difference in buffer behavior. As discussed in
the introduction, we choose the Gaussian distribution since
the marginal distribution is not the concern of this study.

3.1 DAR(p)

The DAR(p) process (discrete autoregressive process of or-
der p), constructed and analyzed by Jacobs and Lewis [9], is
a p-th order Markov chain with the physical and correlation
structure of a p-th order autoregressive process; S, depends
explicitly on Sy_1,...,Sn—p. The process is specified by the
stationary marginal distribution of {S.} and several other
chosen parameters which, independently of the marginal dis-
tribution, determine the correlation structure.

This DAR(p) process is defined as follows. Let {e,} be
a sequence of 1.i.d. random variables taking values in Z, the
set of integers, with distribution . Let {V,} be a sequence
of Bernoulli random variables with P(Vn = 1) =1- P(Vn =
0) = p for 0 < p < 1. For the DAR(1) process, p represents
the first-lag autocorrelation. Let {4y} be a sequence of i.i.d.
random variables taking values in {1,2,...,p} with P(A4, =
i)=a; >0, i=1,2,...,p with Ef:ﬂ“ = 1. Let



for n = 1,2,.... Then, the process S = {S,} is called the
DAR(p) process. Note that this process has p degrees of
freedom, and therefore has the capability to match up to
the first p autocorrelations. a

3.2 Fractal-Binomial-Noise-Driven Poisson Process (FB-
NDP)

The FBNDP model is described in [20] in detail. Hence,
only a brief description and relevant statistics of the model
is provided here. First, we obtain a fractal ON/OFF pro-
cess with ON/OFF periods independently and identically
distributed by the same heavy-tailed density function as

p(t) = { yATLeTEA fort < A,
ve YA for ¢ > A,

with ¥ = 2 —a (1 < v < 2). Then, M independent and
identical fractal ON/OFF processes are added, yielding a
fractal binomial process (FBN). This serves as a stationary
stochastic rate function for a Poisson process; the FBNDP
results [20].

This model has four parameters: o, A, M, and R (the
rate of a fractal ON/OFF process when it is ON) [20]. They
determine the relevant statistics of the FBNDP as

H = (a+1)/2
A = RM/2
Ty, = {a(a +1)(2 - oz)_1 [(1 — a)eQ_a + 1] R_lAa_l}

where H is the Hurst parameter, A the mean arrival rate
(cells/sec), and Tp the fractal onset time (sec).

Denote by N (t) the counting process (i.e., number of ar-
rivals up to time t) constructed from the FBNDP. If an exact
LRD process L = {Ly} is constructed from the FBNDP as

Ln = N[nT.] = N[(n — 1)T3],

then we have

pr = E[Ln] — AT,
o2 = Var[Ly] =N —Ti_a(TS/TO)a] AT,
r(k) = Cov(Ly, Ln+k)/cr% = W . %VQ(ka‘H)

where T\ is the frame duration and V? the second central
difference operator. Since M is an extra parameter, it is
used to control the marginal distribution of {L,}. In fact,
for large M and pr, the marginal distribution of {L,} ap-
proaches a Gaussian form with mean pz and variance o2 by

the central limit theorem [15].

3.3 {V', Z°} = FBNDP + DAR(1)

Many analyses of VBR real traces show that their short-term
correlations are characterized by geometric decay [8]. When
those traces exhibit the LRD property, mathematically it is
represented as power-law decaying long-term correlations;
see (1). In order to make V¥ and Z“ represent a wide range
of real LRD VBR traces in terms of frame correlations, we

1/a

use the superposition of the FBNDP and DAR(1) processes
for constructing Z* and V° for which the DAR(1) process
contributes to geometric decay for small lags and the FB-
NDP to power-law decay for large lags; see Figs. 3 (a) and
(b).

Let the process X = {X,,} be constructed from the FB-
NDP with a Gaussian marginal distribution with (ux, o%)
and Y = {¥,} from DAR(1) also with a Gaussian marginal
distribution with (uy, 0%), and assume X and Y are inde-
pendent. Then, both the Z¢ and V" also have a Gaussian
marginal distribution with

H = ux +uy
o0 = ox +o¥y
v 1
v T 12, at1 1 k
= . = - =V (k —_— 5
e v R A G g LS

with a the first-lag correlation of the DAR(1) component
and v = 0% /0% . Note that r(k) is expressed as a weighted
sum of rx (k) and ry (k). The fact that there exists ko < oo
such that rx(k) > ry (k) for £ > ko, regardless of the choice
of a, a, and v (> 0), makes Z* and V" asymptotic LRD
processes; see Fig. 1.

Indeed, @ and v in (5) are the same as in Z¢ and V7,
respectively. For V¥, we fix H (or «) and change a such that
for different values of v, the first-lag correlation is identical
and the next several correlations are very close to each other;
see Table 1 and Fig. 3-(a) for the resulting parameters and
autocorrelations. For Z¢, we again fix H and change a to
obtain diverse behavior of short-term correlations. In this
case, we set v = 1 (and thus 0% = 0%) and px = py so that
both the FBNDP and DAR(1) processes contribute equally

to the mean and variance of Z°.

4 Large Deviations Theory and Critical Time Scale

4.1 Brief history on large buffer asymptotics for LRD pro-
cesses

The first result on queueing analysis of self-similar traffic
seems to appear in Norros [17] in which the popular Weibull
(lower) bound on the BOP has been established using frac-
tional Brownian Motion. Also, using the techniques of large
deviations theory, Duffield et al [5] have shown that un-
der mild conditions, the BOP of LRD traffic, whether exact
or asymptotic, is again approximated by Weibull behavior
as the buffer size goes to infinity. While the above results
exhibit Weibull decays, Likhanov et al [14] and Parulekar
and Makowski [18] show that for the M/G/oo-type model
of Cox [4], the tail asymptotic of the BOP decays at most
hyperbolically. We provide another Weibull approximation
for statistically identical N Gaussian exact LRD processes,
which is given by

P(W > B) ~ exp |~ J(N,b,c) — %log “rI(N,b )| (6)



with

(C - H)QH 2—2H
2¢(Ts)o?k(H)?

where x(H) = HE(1 — HY' =5, g(T.) is from (2), N is the

number of homogeneous sources multiplexed, p is the mean

J(N,bc)= N*H!

frame size per source (cells/frame), o is the variance of
frame size, and c is the bandwidth per source (cells/frame).
Note that for
H =1/2 and large N, (6) is reduced to a familiar log-linear

The proof is provided in the Appendix. *

behavior as predicted by the well-known technique of effec-
tive bandwidth based on Markov models. Indeed, one may
think of (6) as the result of the first claim and the cause of
the second claim. Also, it serves as a basis for the argument
that the popular effective bandwidth scheme based on sim-
ple Markovian traffic models would consequently provide a
poor estimate of CLRs of LRD traffic.

4.2 Large buffer asymptotics and the Critical Time Scale
for Gaussian sources

Large deviations theory has served as a powerful tool for
analyzing the performance of communications networks [22,
references therein]. We use the Bahadur-Rao (B-R) Asymp-
totic of buffer overflow probability of an ATM multiplexer
with N sources [16].

We use the following notations [3, 16]. Denote by C the
constant service rate during the frame duration measured in
cells/frame and by {X,} the input process (i.e., the size of
n-th frame from N identical sources) in cells. The workload
at the start of n-th frame interval is denoted by W, and

Wyt = (min{(W, + X,, — C), B})*

where B is a buffer size (cells) and z7 = max(z,0). Let b
and ¢ denote respectively the amounts of buffer space and
bandwidth per source, so that B = Nb and C' = Nec. Sup-
pose {X,} is the superposition of N identical sources with
Gaussian marginal, each distributed as {Y,} with mean g,
variance o2, and autocorrelation function r(k). Then, the
BOP ¥(c, b, N) predicted by the B-R asymptotic takes the
following form [16]

U(c,b, N) = exp (—NI(c,b) + g1(c,b, N)) (7)

with
i) = il W (8)
gi1(c,b, N) = —1/2log[4wNI(c,b)] (9)

and
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3We note that similar expression (without the second term in the
exponent) has been obtained by Parulekar and Makowski [18] for
the discrete-time fractional Gaussian Noise (FGN) process (and thus
9(Ts) = 1) using the results of Duffield et al [5].

Note that ignoring g1(c, b, N) yields the Large N Asymptotic
given by Courcoubetis and Weber [3].

Let’s examine (8) and (10) with a closer look. Let
fle,b,m) = [b+ m(c — p)]* and denote by m} the value
of m at which the infimum of f(c,b, m)/2V (m) is obtained,
e, my =arginf o, f(c,b,m)/2V (m). Assuming that my is
unique [16], for fixed b, ¢, and u, m} represents the number
of frame correlations that completely determine ¥(c,b, N).
More importantly, it implies that the first m} frame corre-
lations are only meaningful in evaluating V(c,b, N) through
V(m3). For this reason, we call mj Critical Time Scale
(CTS). It follows that the LRD property described by (1)
and (2) must force mj to be (at least) very large even for
small b, in order to support the first claim.

We first show that mj is finite in most practical cases.
Assuming that the autocorrelation function r(k) is mono-
tonically decreasing, we note that both f(c,b, m) and V(m)
are increasing functions of m. Also, the increasing rate of

V(m) is slower than m?, i.e.,

_ | o*lm+0O(m?)]
Vim) = { ng(Ts)mgH )

for large m [4, 8]. It follows that for fixed b,

for SRD processes [8]
for exact LRD processes

lim f(c,b, m)/2V(m) = oo,

yielding m} < oco. This result immediately indicates that for
finite buffer size, the cumulative effect of autocorrelations is
bounded regardless of the presence of the LRD property,
disproving the first claim.

Second, our investigation further indicates that m} is ac-
tually an order of b, i.e., m}/b ~ K for some constant K.
For example, for a relatively large m}, it has been found
that K = 1/(c — p) for a Gaussian AR(1) process [3] and
K= m for a Gaussian exact LRD process (see Ap-
pendix). * Moreover, m$ is always equal to 1, indicating
that correlations do not affect the CLR at all when buffer
size is zero. [3, 6]. From this, we stipulate that for small b,
m} would be also small.

The following section provides numerical examples which
show that whether the model is SRD (Markov) or LRD, its
CTS (my) is finite, attains a small value for small buffer,
and is a non-decreasing function of buffer size b. These re-
sults are converged to that (i) the Weibull behavior in (6)
is not significant for realistic buffer size; and (ii) DAR(p)
processes capturing short-term correlations of Z¢ provide a
satisfactory approximation of CLRs of Z¢.

5 Numerical Results

5.1 Parameter specification

We choose the model parameters of V', Z%, S, and L as
follows.

4We note that the same result has been independently obtained
by Addie et al [1] using the superposition of two Gaussian AR(1)
processes.



1. The frame rate is chosen to be 25 frames/sec, yielding
frame duration 7T, = 0.04 (sec).

2. The marginal distribution of all the models is Gaus-
sian with mean () 500 (cells/frame) and variance (o)
5000 (cells/frame)®. The choice of M = 15 for Z¢
and VY and M = 30 for L for the underlying pro-
cess FBNDP, respectively, are found to provide good
approximations of the Gaussian marginal distribution
for simulation purpose.

3. For V", three values of v are used: 0.67, 1, and 1.5.
Corresponding values of a are determined such that
all the Vo V! and V'® have the same first-lag

correlation; see Fig. 3-(a).

4. For Z¢, four values of a are used: 0.7,0.9,0.975,0.99.
Note that once o, A, Tp, and M are fixed, the marginal
distribution of Z¢ is not affected by a.

5. For each a of Z“, we determine the parameters of the
DAR(p) model (S) such that it exactly matches the
first p correlations of Z¢ using the steps given in [20,
chapter 6].

6. The value of o for the FBNDP component of Z¢ was
chosen as 0.8, yielding the Hurst parameter H = 0.9.

7. The value of o for I was obtained such that the tail
of rz (k;T:) provides the best fit to that of rze(k;T%).
Note that because of the v/(v 4 1) factor in (5), one
cannot use the same o of Z¢ for L in order to make
their long-term correlations identical. The choice of
a = 0.72 (H = 0.86) was found to be sufficiently ac-
curate for the purpose of this study; see Fig. 3-(b).

8. Finally, the values of Ty for Z¢ and L are determined
from the given mean, variance, and « of each model.

Table 1 summarizes the values of all the parameters of
each model. We note that the different choice of key pa-
rameters such as H yields the qualitatively same result as
in Table 1. Fig. 2 shows sample paths of Z°7 and its corre-
sponding DAR(1) model which matches the first-lag correla-
tion of Z°7. Strong low-frequency behavior (thus long-term
correlations) is clearly visible in Z°7. In particular, the
burst-within-burst structure of self-similar traffic, i.e., traf-
fic spikes riding on longer-term ripples, that in turn ride on
still longer term swells [10], is easily observed. On the other
hand, such characteristic is not observed in the DAR(1)
model, as it is a short-range dependent model (Hurst pa-
rameter is 0.5). Instead, the DAR(1) process captures the

fast-time scale behavior of Z°7 quite closely.

5.2 Autocorrelations

With the parameter specification given in the previous sec-
tion, we examine the autocorrelations of V¥, Z¢ and L for
a wide range of time scales. Fig. 3-(a) shows that the short-
term correlations of V¥ are very close to each other (up to
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Figure 2: Sample path comparison of Z°7 and matched
DAR(1) for 10 sources multiplexed (N = 10).

about five lags), and in particular, their first-lag correlation
is identical. Fig. 3-(b) shows that (i) the larger value of a of
Z® yields stronger short-term correlations; and (ii) the long-
term correlations of both Z* and L are very close up to at
least 1,000 lags. We note that several traces of VBR video-
conferencing traffic exhibit the correlation structure similar
to Z% (or V") [6, 8]. Figs. 3-(c) and (d) show that indeed
the DAR(p) processes match the first p correlations of Z“.

5.3 Critical time scales

Let us examine the effect of different correlation structures
(SRD or LRD) on the CTS (m}). Fig. 4-(a) compares m}, of
V¥ for three different values of v. Recall that the short-term
correlations of V¥ are very close to each other; see Fig. 3-
(a). As a result, the values of their mj are much the same
for small buffer. On the other hand, m} of Z¢ for different
values of a shows significant difference, as many as 15 even
at B = 2 (msec). These results clearly indicate that &t is
the short-term correlations which have dominant impact on
the CTS, not the long-term correlations. Both figures also
illustrate that m} attains a small value for small b (or B)
and non-decreasing function of b (or B). Moreover, we ob-
serve that the process with stronger short-term correlations
(higher a) yield larger mj for the same size of buffer in spite
of the identical long-term correlations.

5.4 Large buffer asymptotics

Figs. 5-(a) and (b) compare the buffer overflow probabili-
ties (BOPs) of V¥ and Z¢ for N = 30 based on the B-R
asymptotic (7). As predicted by Fig. 4, these figures clearly
show that short-term correlations are dominant in deter-
mining BOPs (or CLRs) for small buffer. Close behavior in
short-term correlations yield close loss probabilities [Fig. 5-
(a)], while drastically different short-term correlations yield



Autocorrelation r(k)

Autocorrelation

v o a A (cells/sec) | Ty (msec) M
1% 0.67 0.9 0.799761 5000 3.48 15
1 0.9 0.8 6250 3.48 15
1.5 0.9 0.800362 7500 3.48 15
[ Zz° [ 1 [08] 070090097509 | 6250 | 257 | 15 |
| I [ o072 ] — [ 12500 | 183 | 30 |
a 0.7 0.975
S | DAR(1) [ p=0.82,a1 =1 p=10.68, a1 =1
DAR(2) | p=10.87,a; = 0.70, a; = 0.3 p=0.72, a1 =0.84, ax = 0.16
DAR(3) | p = 0.89, a1 = 0.63, a, = 0.18, az = 0.1 | p = 0.73, a; = 0.82, a = 0.10, az = 0.08

Table 1: Specification of model parameters of V¥, Z¢, S, and L.
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significant discrepancy despite of having identical long-term
correlations [Fig. 5-(b)]. Also, stronger correlations of an
arrival process yield slower decaying BOP for the range of
buffer size of interest. This illustrates why the first claim
is not valid under practical ranges of buffer size and CLR.
We note that eventually the curves in Fig. 5-(b) will exhibit
the same decaying characteristic when buffer size becomes
larger and larger, for they all have the same Hurst parame-
ter [5]; however, such range of the buffer size is beyond the
practical consideration; see Fig. 7.

minimizer m*(b)
20 30 40 50 60

10

50 60

40

minimizer m*(b)
30

o |
N

o |
—

o

0 2 4 6 8 10
Total Buffer Size (msec)
(b) 2¢

Figure 4: Minimizer m; vs total buffer size B. (a) effect of
same short-term correlations on mj, (b) effect of same long-
term correlations on mj. In both cases, ¢ and u are fixed as
¢ =526 and p = 500, and N = 100.

Fig. 6-(a) compares the BOPs of Z%°" DAR(p), p =
1,2,3, and L again based on the B-R asymptotic (7). It is
easy to observe that even the DAR(1) model outperforms L
for a wide range of buffer size of interest. Moreover, notice
that the curve of each DAR(p) model is getting closer to that
of Z°97 as p increases, implying that capturing more and
more short-term correlations yields more accurate prediction
of CLR. This clearly breaks the second claim; simple Markov

models are indeed capable of providing good approximations
of BOP (or CLRs) of an LRD process for the practical ranges
of buffer size and CLR.

Fig. 6-(b) compares the B-R asymptotics of Z°7 and
DAR(p), p = 1,2,3. Recall that all of their autocorrelation
functions drop very quickly at small lags (see Figs. 3-(b) and
(c)), vielding close loss behavior as we have seen from V.
This type of autocorrelations has been observed in several
VBR videoconferencing traces studied in [6, 8]. We further
observe that the difference between all the curves at the loss
rate 107% is only within the order of one. This difference
becomes negligible when the loss rate is translated to the
number of admissible VBR video connections, which is why
the DAR(1) model provides accurate prediction of the num-
ber of admissible connections for LRD traces [6].
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Figure 5: Comparison of BOPs of VY and Z¢ based on
the Bahadur-Rao asymptotic with N = 30 and ¢ = 538
(cells/frame): effect of short- and long-term correlations on
the cell loss.

We provide one more evidence illustrating the impact
of correlation structure on loss behavior. Figs. 7-(a) and
(b) repeat Figs. 6-(a) and (b) over much wider range of



buffer size, even for unrealistically large buffer sizes. The
box in the upper left corner of each figure corresponds to
the ranges of buffer size and CLR over which Figs. 6-(a)
and (b) are drawn. Indeed, these two figures show where
the two claims are coming from; L eventually outperforms
Markov models over the range of buffer size which is beyond
practical consideration. Observe that the decaying rates of
Z ¢ follow that of L from about B = 40 msec, which serves
as another pictorial proof that Z“ and L have the same
long-term correlations. All of these arguments converge to
the point that future traffic analysis should focus more on
finding appropriate time scale at which traffic behavior is
to be captured, rather than on providing accurate traffic
models. The following section provides simulation results,

verifying the results of this section.
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Figure 6: Comparison of BOPs of Z¢, DAR(p), and L with
N =30 and ¢ = 538: efficacy of simple Markov models.

5.5 Simulation

For each of the four models we run 60 replications, each
of which generates half a million frames. This extensive

amount of computation ensures accurate and numerically
confident estimations which may not be otherwise obtained
due to the heavy-tailed ON/OFF times of the FBNDP model.
We assume that the beginning of frame of each source is
same and that cells are equispaced over the frame duration
(deterministic smoothing). For a given buffer size, we esti-

mate the fraction of lost cells (finite buffer system).
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Figure 7: Comparison of BOPs of Z¢, L, and corresponding
DAR(p) over a wide range of buffer size with N = 30 and
c = 538.

Most importantly, both Figs. 8 and 9 confirm the results
predicted by Figs. 5 and 6, respectively. We note that all
the CLR curves begin around the same value at zero buffer
(slightly larger than 107°) which confirms that the param-
eters given in Table 1 produce the same Gaussian marginal
distribution of frame size for all four models. Other results
with different choices of N and ¢, which are omitted here,
show qualitatively the same results as Figs. 8 and 9, further
supporting our conclusions.

Fig. 10 compares the two large buffer asymptotics (B-R
and large NV asymptotics) with simulation results for DAR(1)
model matched to Z°°7®. First, we observe that all the



curves are parallel under the ranges of buffer size and CLR
of interest, indicating that both asymptotics capture the loss
behavior of a given model in a qualitative sense. Second, the
B-R asymptotic provides tighter upper bound for the CLR
than the large N asymptotic, with about one order of mag-
nitude improvement in this case. However, the difference
between the B-R asymptotic and the estimated CLR is still
about 2 orders of magnitude, posing an open question of the
applicability of large buffer asymptotics (infinite buffer) for
approximating CLRs (finite buffer).
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Figure 8: Cell loss rates (CLRs) of V* and Z° from sim-
ulation (finite buffer). N = 30 and ¢ = 538 (cells/frame):
effect of short- and long-term correlations on the cell loss
(corresponding to Fig. 5).

6 Concluding Remarks

This work has looked at the impact of the autocorrelations
on the loss behavior of real-time VBR video traffic with
particular emphasis on the practical implications of LRD.
There exists a growing concern about the potential impact
of LRD on the network performance due to the following rea-
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sons: (i) previous studies on network performance analysis
such as admission control have based on the assumption of
Markov traffic models almost exclusively, whereas real video
traces exhibit LRD; (ii) traditional Markovian models lack
the capability of capturing this property in an economical
way. This study reveals that such property is not practi-
cally important in determining cell loss rates (CLRs) under
the realistic scenarios of ATM buffer dimensioning; short-
term correlations (high-frequency behavior) have dominant
impact on network performance. By analyzing and com-
paring the critical time scales (C'TSs) of carefully designed
VBR video models, we have been able to show that under
realistic ranges of buffer size and CLR, the number of frame
correlations which affect the cell loss is finite and small even
in the presence of LRD. Simulation results verify that the
two claims on the potential impact of the LRD property are
not valid (myths) under the practical ranges of buffer size

and CLR.
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Figure 9: Comparison of the CLRs of Z%, L, and matched
DAR(p) from simulation. N = 30, ¢ = 538 (cells/frame):
efficacy of simple Markov models (corresponding to Fig. 6).
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Figure 10: Accuracy of two large buffer asymptotics. The
video model is DAR(1) matching Z°°"®. N = 30 and ¢ =
538.

We conclude this work with brief discussions on the fol-

lowing relevant issues.

6.1 Effect of other marginal distributions

Strictly speaking, our results are based on the Gaussian mar-
ginal distribution, which is considered as having the “light-
est” tail. Unfortunately, other distributions such as heavy-
tailed frame sizes pose difficulty in mathematical analysis
of queue performance. For the negative binomial marginal
distribution, the same conclusion was obtained by Heyman
and Lakshman using a slightly different approach [8]. In gen-
eral, the required bandwidth for distributions with heavier
tails will be larger than for Gaussian distribution to keep
the operating point unchanged (within the practical ranges
of buffer size and CLR). Once the bandwidth is properly
chosen, and all the video models have the corresponding
same marginal distribution of frame size, then the differ-
ence in buffer behavior will be again caused by the difference
in their higher-order statistics, mainly the autocorrelations
[13]. Therefore, we expect that our conclusions are unlikely
to be significantly affected by other marginal distributions,
though future work might be needed to support this.

6.2 Multiple-time-scale based traffic analysis

There is a significant amount of interest in capturing the
time scale at which key statistics of traffic to network perfor-
mance are to be evaluated [11, 12, 13, 16]. Our conclusions
clearly indicate that traffic behavior after certain time scale
(i.e., C'TS) is not relevant to network performance such as
CLR. As discussed in [16], the CTS is closely related with
the cutoff frequency w. introduced in [11, 12, 13]. Note that
a practical buffer size is about one frame duration (30 msec
or so), whereas the time scale at which the LRD property of
VBR video traffic begins to appear is an order of tens, hun-
dreds, or even thousands frames. Further work is currently
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under way on finding CT'S of various types of traffic sources
including MPEG-coded video, and on applying it for traffic
management in broadband networks.
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Appendix: B-R Asymptotic for N Gaussian LRD sources

In this appendix, we derive (6) using the Bahadur-Rao (B-
R) asymptotic [16]. Recall that for an exact LRD process
L ={L1,Ls,...} with mean g and variance o°, its autocor-
relation function (ACF) is given by
1 2,,2H
LoV ()
~ H(2H —1)g(T )K"

r(k;Ts) = for k >0

due to the equivalence of differencing and differentiation.
Then for large m, we approximate V(m) defined by (10) as

m

Vim) x o |m+2H2H —1)g(T2) Y (m— k)K"
~ o’ |m+ 2H(2H — 1)g(T) /m(m — z)zQH_2:|

=~ an(TS)mQH.

(11)

The above approximation has been found to be accurate
even for small m [4]. Substituting V' (m) in the rate function
(8) with (11) yields,

[+ m(c— p))*

I(c,b) = inf .
(C’ ) n ZUQg(TS)mQH

m>1
For fixed b and ¢, let

b+ (c — p)af’

h(z) =
() =
Differentiating h(z) and setting the result to 0 gives its root
z* at
¥ = . my
ST me—p ®™
Then, I(c,b) is given by
_\2H
I(e,b) m W) oz
29(Ts)o?k(H)?

Employing B = Nb and substituting the result to (7) yields

(6)-
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