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Abstract

Destination-based forwarding in traditional IP routers has not been able to take full advantage of
multiple paths that frequently exist in Internet Service Provider Networks. As a result, the networks
may not operate efficiently, especially when the traffic patterns are dynamic. This paper describes a
multipath adaptive traffic engineering scheme, called MATE, which is targeted for switched networks
such as MultiProtocol Label Switching (MPLS) networks. The main goal of MATE is to avoid network
congestion by adaptively balancing the load among multiple paths based on measurement and analysis
of path congestion. MATE adopts a minimalist approach in that intermediate nodes are not required
to perform traffic engineering or measurements besides forwarding packets. Moreover, MATE does
not impose any particular scheduling, buffer management, or a priori traffic characterization on the
nodes. This paper presents an analytical model, derives a class of MATE algorithms, and proves their
convergence. Several practical design techniques to implement MATE are described. Simulation results
are provided to illustrate the efficacy of MATE under various network scenarios.

1 Introduction

Internet traffic engineering is emerging as an important tool to provide fast, reliable and differentiated ser-
vices. According to the IETF, Internet traffic engineering is broadly defined as that aspect of network
engineering dealing with the issue of performance evaluation and performance optimization of operational
IP networks [2]. More specifically, traffic engineering often deals with effective mapping of traffic demands
onto the network topology, and adaptively reconfiguring the mapping to changing network conditions. It is
more general than QoS routing in the sense that traffic engineering typically aims at maximizing operational
network efficiency while meeting certain constraints, whereas the main objective in QoS routing is to meet
certain QoS constraints for a given source-destination traffic flow.

The emergence of MultiProtocol Label Switching (MPLS) with its efficient support of explicit routing
provides basic mechanisms for facilitating traffic engineering [13]. Explicit routing allows a particular
packet stream to follow a pre-determined path rather than a path computed by hop-by-hop destination-based
routing such as OSPF or 1S-1S. With destination-based routing as in traditional IP network, explicit routing
may be provided by attaching to each packet the network-layer address of each node along the explicit path.
This approach generally incurs prohibitive overhead. In MPLS, a path (known as a label switched path or
LSP) is identified by a concatenation of labels which are stored in the nodes. As in traditional virtual-circuit
packet switching, a packet is forwarded along the LSP by swapping labels. Thus, support of explicit routing
in MPLS does not entail additional packet header overhead.

In this paper, we propose a state-dependent traffic engineering mechanism called Multipath Adaptive
Traffic Engineering (MATE). MATE assumes that several explicit LSPs (typically ranges from two to five)
between an ingress node and an egress node in an MPLS domain have been established using a standard
protocol such as CR-LDP [9] or RSVP-TE [3], or configured manually. This is a typical setting which exists



in an operational ISP network that implements MPLS. The goal of the ingress node is to distribute the traffic
across the LSPs so that the loads are balanced and congestion is minimized. The traffic to be balanced by
the ingress node is the aggregated flow (called traffic trunk in [11]) that shares the same destination (and
possibly quality of service). Figure 1 shows an example of a network environment where there are two
ingress nodes, Al and BI, and two egress nodes, AE and BE, in an MPLS domain. MATE would be run

Figure 1: A Transit Network Running MATE

on Al and BI to balance traffic destined to AE and BE, respectively, across the LSPs connecting Al to AE
and Bl to BE. Note that the LSPs connecting the two pairs may share links. In the following, we will derive
adaptive MATE algorithms, discuss their implementation, and present simulation results to illustrate their
performance. We will prove that it is possible to achieve stability even when ingress-egress pairs operate
asynchronously and in a distributed manner.

We now comment on related work. Several researchers have proposed to add traffic engineering capa-
bilities in traditional datagram networks using shortest path algorithms (e.g., see [14], [8]). Although such

schemes have been shown to improve the efficiency of the network, they suffer from several limitations
including:

¢ load sharing cannot be accomplished among paths of different costs,
o traffic of different QoS classes follow the same route

o traffic/policy constraints (for example, avoiding certain links for particular source-destination traffic)
are not taken into account,

¢ modifications of link metrics to re-adjust traffic mapping tend to have network-wide effects and may
cause undesirable and unanticipated traffic shifts, and

o traffic demands must be predictable and known a priori.

The combination of MPLS technology and its traffic engineering capabilities are expected to overcome these
limitations. Explicit LSPs and flexible traffic assignment addresses the first two limitations. Constraint-
based routing has been proposed to address the third limitation. Furthermore, network-wide effects can be
prevented since LSPs can be pinned down. A change in LSP route limits the disturbance of the traffic for
the corresponding source-destination pair. The objective of this paper is to address the final limitation.

In MPLS, traffic engineering mechanisms may be time-dependent or state-dependent. In atime-dependent
mechanism, historical information based on seasonal variations in traffic is used to pre-program LSP lay-
out and traffic assignment. Additionally, customer subscription or traffic projection may be used. Pre-
programmed LSP layout typically changes on a relatively long time scale (e.g., diurnal). Time-dependent
mechanisms do not attempt to adapt to unpredictable traffic variations or changing network conditions. An
example of a time-dependent mechanism is a global centralized optimizer where the input to the system is a
traffic matrix and multiclass QoS requirements as described in [12].



When there are appreciable variations in actual traffic that could not be predicted using historical in-
formation, a time-dependent mechanism may not be able to prevent significant imbalance in loading and
congestion. In such a situation, a state-dependent mechanism can be used to deal with adaptive traffic as-
signment to the established LSPs according to the current state of the network which may be based on
utilization, packet delay, packet loss, etc. In this paper, we assume that LSP layout has been determined.
The focus is on load balancing traffic among multiple LSPs between an ingress node and an egress node.

The rest of the paper is organized as follows. Section 2 details the overall MATE scheme and discusses
several implementation techniques, such as traffic filtering and distribution, traffic measurement, bootstrap-
ping, etc. Section 3 presents an analytical model of MATE and prove its stability and optimality. Section 4
describes an experimental setup to verify the effectiveness of the proposed scheme. Section 5 presents the
simulation results that illustrate the behavior of the algorithm in different environments. Conclusions are
given in Section 6. Analytical proofs are collected in the Appendix.

2 MATE algorithmsand implementation techniques

2.1 Overview

The basic idea of MATE is as follows. The ingress node of each LSP periodically sends probe packets to
estimate a congestion measure on the forward LSP from ingree to egress. The congestion measure can be
delay, loss rate, or other performance metrics; see below for measurement details. Each ingress node then
routes incoming traffic onto multiple paths to its egress node in a way that equalizes the marginal congestion
measure (their derivatives). That is, traffic will be shifted from LSPs with higher marginals to LSPs with
lower marginals. In equilibrium all LSPs that carry any flow will have minimum and equal marginals. As
will be shown in the next section, equalizing the marginal measure minimizes the total congestion measure
of the entire MPLS network.

Figure 2 shows a functional block diagram of MATE located at an ingress node. Incoming traffic enters
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Figure 2: MATE Functions in an Ingress Node

into a filtering and distribution function whose objective is to facilitate traffic shifting among the LSPs in a
way that reduces the possibilities of having packets arrive at the destination out of order. The mechanism
does not need to know the statistics of the traffic demands or flow state information. The traffic engineering
function decides when and how to shift traffic among the LSPs. This is done based on LSP statistics which
are obtained from the measurement and analysis function.

MATE operates in two phases: a monitoring phase and a load balancing phase. In the monitoring



phase, probe packets are sent periodically, and congestion measure on the LSPs and their derivatives are
estimated. If an appreciable and persistent change in the network state is detected, transition is made to the
load balancing phase. In the load balancing phase, the algorithm continues to monitor congestion measures
on the LSPs and tries to equalize their marginals. Once the measures are approximately equalized, the
algorithm transits to the monitoring phase and the whole process repeats.

One-way LSP statistics (congestion measure) such as packet delay and packet loss are measured by
transmitting probe packets periodically to the egress node which returns them back to the ingress node.
Probing may be done per class, i.e., probe packets have the same type of service header information as the
traffic class being engineered. Based on the information in the returning probe packets, the ingress node
is able to compute the one-way LSP statistics. Estimators of LSP statistics from the probes are obtained
reliably and efficiently using bootstrap resampling techniques (see below). Recent measurements in the
Internet indicate little variations of aggregate traffic on links in 5-min intervals [16]. This quasi-stationarity
condition where traffic statistics change relatively slowly (much longer than the round-trip delay between
the ingress and egress nodes) facilitates traffic engineering and load balancing based on measurement of
LSP statistics.

The derivative can be derived by measuring these statistics at different loads. Specifically, the ingress
node varies the traffic on each LSP slightly, measure the statistics before and after the variation, and use the
scaled difference as an estimate of marginal congestion measure. For example, let D (x) be the delay on
LSP s when z, amount of traffic is routed on the LSP, and let D; (x4 + €) be the new delay when an amount
e of traffic is added to the LSP. Then the marginal delay D,(x;) is estimated as (D(zs + €) — Ds(z5))/e.
Note that fixed propagation delay has no effect on the derivative.

Some of the features of MATE include:

o distributed adaptive load-balancing algorithm,

e end-to-end control between ingress and egress nodes,

e no new hardware or protocol requirement in intermediate nodes,

¢ no knowledge of traffic demand is required,

e no assumption on the scheduling or buffer management schemes at a node,
e optimization decision based on path congestion measure,

e minimal packet reordering, and

e no clock synchronization between two nodes.

2.2 Traffic filtering and distribution

The traffic filtering and distribution function first distributes the engineered traffic for a given ingress-egress
pair equally among N bins, where the number of bins determines the minimum amount of the traffic that
can be shifted. If the total incoming traffic to be engineered is of rate R bps, each bin would receive an
amount of » = R/N bps. Then, the traffic from the NV bins is mapped into the M LSPs according to the
MATE algorithm described in the last section.

The engineered traffic can be filtered and distributed into the N bins in a number of ways. A simple
method is to distribute the traffic on a per-packet basis without filtering. For example, one may distribute
incoming packets at the ingress node to the bins in a round-robin fashion. Although it does not have to
maintain any per-flow state, the method suffers from potentially having to reorder an excessive number of
packets for a given flow. On the other extreme, one may filter the traffic on a per-flow basis (e.g., based on
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<source IP address, source port, destination IP address, destination port, IP protocol> tuple), and distribute
the flows to the bins such that the loads are similar. Although per-flow traffic filtering and distribution
preserves packet sequencing, this approach has to maintain a large number of states to keep track of each
active flow.

MATE filters the incoming packets using a hash function on the IP field(s). The fields can be based on
the source and destination address pair, or other combinations. A typical hash function is based on Cyclic
Redundancy Check (CRC). The purpose of the hash function is to randomize the address space to prevent
hot spots. Traffic can be distributed into the NV bins by applying a modulo-N operation on the hash space.
Note that packet sequence for each flow is maintained with this method.

After the engineered traffic is distributed into the IV bins, a second function maps each bin to the corre-
sponding LSP according to the MATE algorithm. The rule for the second function is very simple. If LSP
1 1S to receive twice as much traffic as LSP j, then LSP 4 should receive traffic from twice as many bins as
LSP j. The value IV should be chosen so that the smallest amount of traffic that can be shifted, which is
equal to 1/ of the total incoming traffic, has a reasonable granularity.

2.3 Traffic measurement and analysis

MATE does not require each node to perform traffic measurement. Only the ingress and egress nodes are
required to participate in the measurement process.

Our experience suggests that packet delay is a metric that can be reliably measured. The delay of a
packet on an LSP can be obtained by transmitting a probe packet from the ingress node to the egress node.
The probe packet is time-stamped at the ingress node at time 74 and recorded at the egress node at time T5.
If the ingress’ clock is faster than the egress’ clock by T, then the total packet delay (i.e, queueing time,
propagation time, and processing time) is Ty — 17 + Ty4. A group of probe packets sent one at a time on an
LSP can easily yield an estimate of the mean packet delay E[T% — T1] + T,. The reliability of the estimator
can be evaluated by bootstrapping (see details below) to give the confidence interval for the mean delay. An
important point to note is that, since we use only marginal delay, the value of T'; is not required. Therefore,
clock synchronization is not necessary.

Packet loss probability is another metric that can be estimated by a group of probe packets. In general,
only reasonably high packet loss rates can be reliably observed. Packet loss probability can be estimated by
encoding a sequence number in the probe packet to notify the egress node how many probe packets have
been transmitted by the ingress node, and another field in the probe packet to indicate how many probe
packets have been received by the egress node. When a probe packet returns, the ingress node is able to
estimate the one-way packet loss probability based on the number of probe packets that has been transmitted
and the number that has been received. The advantage of this approach is that it is resilient to losses in the
reverse direction.

The bootstrap is a powerful technique for assessing the accuracy of a parameter estimator in situations
where conventional techniques are not valid [18]. Most other techniques for computing the variance of
parameter estimators or for setting confidence intervals for the true parameter assume that the size of the
available set of sample values is sufficiently large, so that asymptotic results (central limit theorem) can
be applied. However, in many situations the sample size is necessarily limited, such is the case in traffic
engineering mechanisms like MATE, where the probe packet load should not consume significant network
resources. In MATE, we use the bootstrap to obtain reliable estimates of the congestion measures of the
mean delay and cell loss rate from a given set of measurements obtained via the probe packets. By selecting
a desirable confidence interval, we get a dynamic way of specifying the number of observations needed. This
provides a built-in reliability estimator which automatically selects the required number of probe packets to
send. We have found this quite useful in our implementations, in comparison with schemes where the
number of probe packets is set in an ad-hoc manner, and the number of probes may be too small or too large.



The following is a basic procedure for computing a confidence interval:

e Step 0: Suppose the original sample is X = {z1,z2,...,Zm}.

e Step 1: Draw a random sample of m values, with replacement, from X. This produces the bootstrap
resample Y.

e Step 2: Calculate the mean for Y (say, p1).
e Step 3: Repeat steps 1 and 2 a large number of times to obtain n bootstrap estimates w1, po, - - - 5 fhn.
e Step 4: Sort the bootstrap estimates into increasing order u(1), ..., u(n).

e Step 5: The desired (1 — a)100% bootstrap confidence interval for the mean is (x(q ), (g2)), where
g1 = (na/2)and ¢o =n —q; + 1.

3 MATE stability

In this section we present an analytical model of MATE and prove their stability and optimality.

3.1 Model

We model a MATE network by a set L of unidirectional links. It is shared by a set S of ingress—egress (IE)
node pairs, indexed 1,2,...,S. Each of these IE pairs s has a set P, C 2” of LSPs available to it. Note
that, by definition, no two (distinct) IE pair uses the same LSP, even though some of their LSPs may share
links. Hence P; are disjoint sets.

An |E pair s has a total input traffic of rate 7, and routes z,, amount of it on LSP p € P; such that

Y wgy = 1, foralls
pEP;

Let z;, = (x4, p € Ps) be the rate vector of s, and let z = (z4p,p € Ps, s € S) the vector of all rates.
The flow on a link [ € L has a rate that is the sum of source rates on all LSPs that traverse link I:

ah =3 Y e
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Associated with each link [ is a cost C;(z!) as a function of the link flow z'. We assume that, for all 7, Cy(-)
is convex (and hence continuous).

Our objective is to minimize the total cost C(x) = =, C;(z!) by optimally routing the traffics on LSPs
in UgPs:

min  C(z) = Xl: Ci(=") @

subjectto >z, = 1, forallse S 2
PEP;

zsp > 0, forallp e Py,s € S. 3

A vector z is called a feasible rate if it satisfies (2-3). A feasible rate x is called optimal if it is a minimizer
to the problem (1-3).



As observed in [5, Chapter 5], the derivative of the objective function with respect to z ;, is
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We will interpret C}(z') as the first derivative length of link I, and 8C' /O () as the (First derivative) length
of LSP p.

The following characterization of optimal rate is a direct consequence of the Kuhn-Tucker theorem (see
also [5, Chapter 5]). It says that at optimality a pair splits its traffic only among LSPs that have the minimum
(and hence equal) first derivative lengths.

Theorem 1 The rate vector z* is optimal if and only if, for each pair s, all LSPs p € P, with positive flows
have minimum (and equal) first derivative lengths.

3.2 Asynchronous algorithm

A standard technique to solve the constrained optimization problem (1-3) is the gradient projection algo-
rithm. In such an algorithm routing is iteratively adjusted in opposite direction of the gradient and projected
onto the feasible space defined by (2-3). Each iteration of the algorithm takes the form:

z(t+1) = [z(t) —yVCO@®)]T

where v > 0 is a stepsize and should be chosen sufficiently small, VC(¢) is a vector whose (s, p)th element
is the first derivative length [VC(t)], = 0C/9z,, of LSP p at time ¢, and [2] ™ is the projection of a vector
z onto the feasible space. The algorithm terminates when there is no appreciable change, i.e., ||z(¢t + 1) —
z(t)|| < e for some predefined e.

Note that the above iteration can be distributively carried out by each pair s without the need to coordi-
nate with other pairs:

z(t+1) = [z5(t) —yVCs(t)]T (4)

where z4(t) = (x4 (t),p € Ps) is rate vector of s at time ¢, and VCy(t) = (0C/0zsp(x(t)),p € Ps) is the
vector of first derivative lengths of LSPs in B,. However (4) is not realistic, for two reasons.

First (4) assumes all updates are synchronized. Second it assumes zero feedback delay. Specifically (4)
assumes that as soon as the IE pairs have calculated a new rate vector z(¢), it is reflected immediately in all
the link flows:

"El(t) = Z Z Tsp(t) 5)

$ lep,pePs
and in all the first derivative lengths:
oC
3 (z(®) = Y Cl'() (6)
Lsp lep

Moreover all pairs s have available these new values in VC,(t) for computation of the rate vector in the next
period. In practice the IE pairs update their rates asynchronously and in an uncoordinated manner. Moreover
the first derivative length of a LSP can only be estimated empirically by averaging several measurements
over a period of time. We now extend the model to take these factors into account.



Let T, C {1,2,...,} be aset of times at which IE pair s adjusts its rate based on its current knowledge
of the (first derivative) lengths of LSPs p € F,. Atatime ¢ € Ty, s calculates a new rate vector

zs(t+1) = [zs(t) =y A(D)]" (7

and, starting from time ¢ + 1, splits its traffic r; along its LSPs in Py according to z4(¢ + 1) until after
the next update time in 7. Here A\4(¢) is an estimate of the first derivative length vector at time ¢, and is
calculated as follows.

The new rates calculated by the IE pairs may be reflected in the link flows after certain delays. We model
this by (cf. (5))

t
)= D Y > apt () (8)
t'=t—tg S lep,pelPs
t
S ap(t,t) =1, VtVi,s,pe Py (9)
t'=t—to

In the above #(¢) represents the flow rate available at link 7 at time ¢ and is an weighted average (convex
sum) of past source rates z,(t'). The weights a;s,(¢', ) depend on (I, s, p, t) and can be different between
each source s and link [, on different LSPs p, and at different times ¢. This model is very general and
includes in particular the following two popular types:

e Latest data only: only the latest rate z,(7), for some (typically unknown) 7 € {t —t,...,t}, is used
in the measurement of £'(2), i.e., a;s,(#', ) = 1 if ¢ = 7 and 0 otherwise.

e Latest average: only the average over the latest & rates is used in the measurement of #!(¢), i.e.,
aisp(t'st) > 0fort’ =7 —k+1,...,7 and O otherwise, for some (typically unknown) 7 € {t —
to,..-,t}.

An IE pair s estimates the first derivative length of an LSP p € R, by asynchronously collecting a certain
number of measurements (using probe packets, see below), and forming their mean. Hence (cf. (6))

t
Ap(t) = D Y bt )CI (@ (1)) (10)
t'=t—to lEP
t
> bigp(t',t) =1, Vi,Vi,s,pe Py (11)
t'=t—to

Again the estimate is obtained by ‘averaging’ over the past values of LSP lengths, and can depend on
(1, s,p,t). The model is very general and include the special cases of using only the last received measure-
ment or the average over the last £ values, as discussed above. The interpretation in both cases is that the
measurements 3, C;(&'(t')) for ¢' > 7 have not been received by s by time ¢, and the measurements for
t' < 7 (latest data only) or for ¢’ < 7 — k (latest average) have been discarded.

This concludes the description of our algorithm model (equations (7-11)). The model is similar to that in
[17], with two differences. First their model distinguishes between the desired rate z(t) as calculated by the
projection algorithm and the actual realized source rate z(¢). The actual rate Z(¢) is a convex combination
of the current desired rate z(¢) and the previous actual rate z(¢ — 1). This models the fact that a desired
rate z(t) may not be realized immediately, as in a virtual circuit network where virtual circuits may persist
over several update cycles. We are however only dealing with IP datagrams and hence it is reasonable to
assume that each ingress node can shift its traffic among the LSPs available to it immediately after each



update. Second their model assumes that, at time ¢, each s has available the current first derivative lengths
Yiep C'(2'(t)) and uses it in place of the gradient in the update algorithm. We however assume that, at
time ¢, s may only have outdated first derivative lengths (see (10-11)); moreover s uses a weighted average
over several past lengths in the update algorithm. This is because, in our case, s can only estimate the first
derivative lengths through noisy measurement. Despite these differences, stability can be established using
the same techniques.

The next result states that the algorithm converges to an optimal routing, provided the following condi-
tions are satisfied:

C1: The cost functions C;(z) are twice continuously differentiable and convex.

C2: Their derivatives Cj(z) are Lipschitz over any bounded sets, i.e., for any bounded set B; C % there
exists a constant ¢; such that for all z, 2’ € B, we have |C](z) — C|(#')| < ¢|z — 2/|.

C3: For any constant c the sets {z|C;(z) < ¢} are bounded.

C4: The time interval between updates is bounded.

Theorem 2 Under conditions C1-C4, starting from any initial vector z(0), there exists a sufficiently small
stepsize -y such that any accumulation point of the sequence {z ()} generated by the asynchronous algorithm
is optimal.

A more careful accounting shows that the stepsize -y, and hence the speed of convergence, depends
on the degree of asynchronism as expressed by the parameter ¢, defined in (8), the ‘steepness’ of the cost
function as expressed by the Lipschitz constant in condition C2, and the size of the network. For ease of
exposition, suppose the cost functions are uniformly globally Lipschitz, i.e., for all links [ and all z, z', we
have

Ci(2) = Ci()| < Llz -2

Theorem 3 An upper bound in Theorem 2 is:

1
L1+ 7hA (2t + 1))

v <

where 7 is the total number of LSPs in the network, & is the number of hops in the longest (maximum-hop)
LSP, X is the maximum number of LSPs going through a link, and ¢, defined in (8), measures the degree of
asynchronism.

The theorem suggests that the larger the degree of asynchronism measured by ¢, the smaller the stepsize
and hence slower the convergence.

4 Experimental methodology

In this section, we use simulations to evaluate the effectiveness of MATE. We concentrate on two network
topologies: one with a single ingress-egress pair connected by multiple LSPs, and the other with multiple
ingress-egress pairs where some links are shared among the LSPs from different pairs, as shown in Figures
3and 4. All links are identical so that the LSPs have the same bottleneck link bandwidth. Note that in the
latter case, there is a considerable interaction between the pairs.

We wrote a packet level discrete-event simulator, which supports entities such as packet queues, switched
LSPs, network connections. We consider networking environments where the traffic conditions vary due



Figure 4: Experiment Network Topology 2

to changes in network load (link utilization), for example, due to "rush hour” conditions, or some LSP
failures, and traffic variations due to correlations and dependencies. We have two types of traffic in our
simulator: engineered traffic and cross traffic. The engineered traffic is the traffic that needs to be balanced,
and the cross traffic is the background traffic that we have no control over such as traffic on short-lived
connections. We assign a lifetime to each traffic source so we are able to simulate the dynamic behavior of
a network by switching on and off cross traffic sources. We consider a traffic model which exhibits short-
range dependencies, such as Poisson, and another model which can be tuned to approximate long range
dependence. For the latter we use the DAR(p) process (discrete autoregressive process of order p) [15]. The
parameter p determines the time-scale over which traffic dependency and correlation are exhibited. If p is
1, the process is a standard Markov process. In our experiments we set p to a value of 10; this leads to a
substantial degree of correlation in the generated traces.

In each of our simulations, the engineered traffic for each pair flows from the ingress node to the egress
node. The cross traffic enters at the intermediate node and exits at egress node(s). We consider two imple-
mentations of the basic algorithm. In the first one, a small random delay is introduced before the algorithm
moves from the monitoring phase to traffic engineering phase upon detection of change in traffic conditions.
This damping mechanism reduces synchronization among multiple ingress nodes. In the second implemen-
tation, there is a coordination among the ingress nodes so that only one ingress node at a time enters the
traffic engineering phase. This obviously requires a special coordination protocol. We omit the details in
this paper.

5 Simulation results

In this section, we present simulation results that illustrate the convergence propertes of MATE.
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First we present two sets of results for the single ingress-egress pair. Figure 5 and Figure 6 show the
results of an experiment with Poisson traffic on the network in Figure 3. Initially, all of the engineered
traffic streams are routed on one of the LSPs, and cross traffic enter the network at the intermediate nodes
connecting the ingress and egress nodes. We have an unbalanced situation with one heavily congested
LSP and five lightly loaded LSPs. As shown in the plot, the algorithm is able to successfully reduce the
engineered traffic from the overloaded link and distribute them to the under-utilized links. The loss curve
shows clearly that the loss rate on the first LSP dropped from 40% to a value that is too small to observe.
The loss rates on the other LSPs are maintained at negligible levels throughout the simulation. The final
traffic distribution converges to a steady state, where utilizations are very close on all LSPs. We observe
similar behavior in Figures 7 and 8 where the Poisson streams are replaced with DAR traffic streams. The
probe traffic required in each phase of the algorithm is around 0.5% of the engineered traffic.

Figures 10 — 13 show the simulation scenario for Figure 4 under the two implementations mentioned
earlier. Again the engineered traffic streams travel from the ingress node to the egress node, and the cross
traffic enters through the intermediate nodes and exit at the egress nodes. The cross traffic dynamics are
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Figure 10: Offered load under Poisson traffic for network topology 2
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Figure 11: Loss under Poisson traffic for network topology 2
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Figure 12: Offered load under Poisson traffic with coordination for network topology 2
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Figure 13: Loss under Poisson traffic with coordination for network topology 2
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Figure 14: Offered load under DAR traffic with coordination for network topology 2

shown in Figure 9. There is a decrease in cross traffic on link 3 right before 2000 seconds and a increase in
cross traffic on link 2 around 3600 seconds. In order to balance traffic, the algorithms must shift traffic into
link 3 and possibly out of link 2. Both implementations essentially achieve the same performance, where
utilizations and loss rates on three LSPs are comparable. Figure 14 and Figure 15 show the same simulation
with DAR traffic instead of Poisson traffic where coordination among ingress node is used.

6 Conclusion

Our focus on this paper was to apply adaptive traffic engineering to utilize network resource more efficiently
and minimize congestion. We have proposed a class of algorithms called MATE, which tries to achieve
these objectives using minimal assumptions through a combination of techniques such as bootstrap probe
packets, which control the amount of extra traffic, and marginal delays that are easily measurable and do not
require clock synchronization. Further, our analytical models prove the stability and optimality of MATE.
Our simulation results show that MATE can effectively remove traffic imbalances among available LSPs.
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Figure 15: Loss under DAR traffic with coordination for network topology 2

We observe that, in many cases, high packet loss rates can be significantly reduced by properly shifting
some traffic to less loaded LSPs. This should benefit many applications such as TCP. For future work we
will consider more realistic networking environments and examine the impact of MATE on the application

level.
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Appendix

Proof of Theorem 1

Since the cost function is convex the first order optimality condition is both necessary and sufficient: # is
optimal if and only if z* is feasible and there exist constants &, such that for all (s, p)

BC
ox sp

=Y Clz) > & (12)

lep

with equality if z, > 0. Hence all LSPs p € P with z, > 0 have their first derivative lengths equal to &.
|

Proof of Theorem 2
Its proof is adapted from that in [17]. Let 2(¢) = (¢ + 1) — z(¢). Using a first order Taylor expansion for
C we have for some rate vector y(¢)*

Clz(t+1)) = C(z(t)) + VO(z(t))z(t) +

SV C(D)2()

C( () + At)z(2)
+HIVC(2(t) =A@ - llz(D)]]
+A1|2(8)|? (13)

For simplicity we write zy instead of the more correct notation z” y for the inner product of two vectors z and y. We usually
use ||z|| to denote the Euclidean norm, but sometimes ||z||2 for emphasis.

AN
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where A(t) = (As(t),s € S) and the constant A; depends on the initial vector z(0). We next show that

Mﬂdﬂs—%W@MZ (14)
t
IVCE(®) — A - 20 < A2 S (2] (15)
' =t—2tg

for some constant A, that depends on z(0).
First, note that (14) holds if the following holds for all s:

MB)zs(t) < —ﬂwxﬂw (16)

For ¢t & T, (16) trivially holds. For t € T apply the projection theorem [4] to (7) to obtain
(@) —yA@) —z(t+1))(z@) —z(t+1)) < 0

Rearranging terms yields (16).
To show (15) note that since all norms in 1™ are equivalent there exist constants A3 and A4 such that

IVC@) = A®)ll2

7 (a(t) = )

A3 max max Cl(z(t
o 360

IA

(17

Az max max
5 pePs

IN

t
-3 blspw,t)c;(@l(t'»‘

t'=t—to

IN

Ajmaxmax max max
s pePs lep t—to<t'<t

Cita'®) - Cia' ), (18)

= Ay max t—glgi'(gt |C’l'(;cl(t)) — Cl'(jl(t/))‘
Let B := {z | C(z) < C(x(0))} and By := {f | f = X5 Xieppep, Tsp, fOr some z € B}. Inwords, B
is the set of rate vectors z at which the total cost C(x) is no greater than the initial cost. As will be seen,
provided the stepsize v is sufficiently small, C'(z(t)) < C(x(0)) for all ¢ (see (21)). That is, B is the set of
all possible rate vectors given the initial z(0). (This can be made more rigorous by induction.) Then B; is
the set of all possible link flows on link {. By condition C2, we have for some constants As, Ag, Ao

IVC(#) = A@®)ll2

Asma; a ‘lt— t
SR T )

As Ilnax max E E
L t—to<t!<t
€ 0="=" s leppep;

(19)

IN

IN

tl

Tsp(t) — Z arsp (", )z sp (")

' =t'—to

IN

Ag max ma a a t) — t"
omaxmax max - max  |ogp(t) = zep(t")]
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INA

A g o.5(0) (0= 1)| -

+ |5Esp(t — 2ty + 1) - wsp(t - 27fO)l

t—1
< A Y [l (20)
t'=t—2tg
Hence
[[VC(z(t)) — A - [|2@)]]
t—1
< Ay Yo [l 2@
t'=t—2to
t
< Ay Y |lz))P
t'=t—2to

where the last inequality follows from the fact that the convex function 3, iy + y2 — 3, yiy attains its
minimum of zero over {y;, y|y; > 0,y > 0} at the origin. This completes the proof of (15).
Substituting (14-15) into (13) we have

C(z(t+1))
< cwa»-(%—AQHde

+4z Do (2P

t'=t—2tg

Summing over all £ we have
C(z(t+1))

t
Cla) - (- 4) 2 llsr)|P
7=0

t T
+A2 ) Y )P

T=0¢=7—2t9

Cla(®) — (5~ 41 - At + 1)

IN

IN

t
PGl (21)
7=0

Choose «y small enough such that %Y — A1 —A2(2tp+1) > 0. Since z(t) is in a compact set and C'is continu-

ous, C(x(t)) is lower bounded. Then since C(z(t)) is bounded for all £ we must have >-°°  ||2(7)||? < oo,
which implies

[lz(t)]] — 0 ast— oo (22)
Substituting this into (20) we conclude that

At) — VC(t) ast— oo (23)
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Let z* be an accumulation point of {z(¢)}. One exists since {z(¢)} is in a compact set. By (23) and the
fact that C' is continuously differentiable we have

At) = lim VC(t) = VO(z") (24)

Since the time interval between updates is bounded, for any s, we can find a subsequence {z(#), tx € Ts}
that converges to z*, i.e., limy z(¢x) = z*. Applying again the projection theorem [4] to (7) we have for
any feasible x

(zs(tg) — yAs(te) — zs(tx + 1)) (s — zs(t + 1))
(zs(tr) + YAs(t)) (zs — zs(te + 1))

AVARVAN

Taking & — oo we have by (22) and (24) that for any feasible z,
VCs(x%)(zs — kli)n;oxs(tk +1)) > 0
Since z(t) = z(t + 1) — z(t) — 0 by (22), we have limy, z4(t; + 1) = limy z4(¢x) = =%, and hence
VCs(z))(zs —zy) > 0
for any feasible ;. Summing over all s, we have for any feasible z
VC(z*)(z—z*) > 0

which, since C'is convex, is necessary and sufficient for 2* to be optimal. [ ]

Proof of Theorem 3

Since the cost functions Cj are globally Lipschitz uniformly in [, the constant A; in (13) equals the Lipschitz
constant L. For any n—tuple z, [[z||2 < v/n||||e, and hence the constant Az in (17) is 7. Similarly,
since ||z||1 < nl||z||s, the constant A4 in (18) is wh. By Lipschitz continuity, the constant A5 in (19) is
As = AyL = whL, the constant Ag following is A¢ = AsA = whLA. Finally, since ||z|| < ||2]||2, We
have As = Ag = wh LA in (20). Hence from (21) an upper bound for the stepsize -y is

1 1

< e
7 AL+ Ay (2t + 1) L(1 + 7hA(2t, + 1))
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