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Abstract—We present a novel approach for joint optical net-
work provisioning and Internet protocol (IP) traffic engineering,
in which the IP and optical networks collaboratively optimize a
combined objective of network performance and lightpath provi-
sioning cost. We develop a framework for distributed multilayer
optimization. Our framework is built upon the IP-over-optical
(IPO) overlay model, where each network domain has a limited
view of the other. Our formulation allows the two domains to
communicate and coordinate their decisions through minimal
information exchange. Our solution is based on a novel appli-
cation of Generalized Bender’s Decomposition, which divides a
difficult global optimization problem into tractable subproblems,
each solved by a different domain. The procedure is iterative
and converges to the global optimum. We present case studies to
demonstrate the efficiency and applicability of our approach in
various networking scenarios. Our work builds a foundation for
“multilayer” grooming, which extends traditional grooming in
the optical domain to include data networks. The data networks
are active participants in the grooming process with intelligent
homing of data traffic to optical gateways.

Index Terms—Capacity expansion, cooperative internet-
working, data-optical network, distributed control, generalized
multiprotocol label switching (GMPLS), nonlinear integer opti-
mization, optical grooming, traffic engineering, wavelength.

I. INTRODUCTION

WE PRESENT A novel approach for joint optical network
provisioning and Internet protocol (IP) traffic engi-

neering, in which the IP and optical domains collaboratively
optimize a combined objective of network performance and
the cost of provisioning capacity. The context for this work is
the rapid transitioning of the Internet transport infrastructure
towards a model of high-speed router networks that are directly
interconnected by reconfigurable optical core networks. The
work in this paper is premised on just such a model. This
IP-over-optical (IPO) architecture, when coupled with the
emerging generalized multiprotocol label switching (GMPLS)
control plane, offers network operators opportunities for dy-
namic multilayer optimization that will give significant savings
in capital and operating expenses [3], [14].

A key conceptual contribution of the present work is the no-
tion of “multilayer grooming,” which embraces both the op-
tical and IP layers, whereas conventional grooming functions
are confined to the former [9], [20], [25]. The traditional goal of
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grooming is the minimization of stranded, i.e., unutilized, band-
width in optical lightpaths. This has also been viewed as op-
timal packing of the wavelengths. This goal is recognized in the
present work. However, the goal here is broader and to achieve
this goal we make the data networks active participants in the
grooming process. Specifically, intelligent homing of data traffic
to optical gateways is an integral mechanism for achieving our
overall objectives. However, the homing gains must be weighed
against other performance factors in the data networks, such
as load balancing. Thus, our overall objective stated above un-
avoidably combines performance in the data, as well as the op-
tical networks. The objective reflects the value from carrying
data traffic from source to destination, as well as the cost of pro-
visioned wavelengths in the optical core.

However great are the potential benefits of converged data-
optical networks, the concept is only interesting if the imple-
mentation is scalable and distributed. This paper develops a
framework for distributed implementation that converges to the
global optimum. The implementation is premised on coopera-
tion between the data and optical networks. More specifically,
in each iteration these networks perform local optimizations,
which is followed by an exchange of the computational results.
A key feature is that the information exchanged is kept to a min-
imum. Yet the iterations converge to the global optimum, i.e.,
the solution is as good as if all the networks were administered
as a single entity.

Our framework is enabled by GMPLS, which facilitates the
convergence of data and optical networks and supports different
levels of cooperation and information exchange. At the opposite
ends of the integration spectrum are the peer and overlay models
[3], [19]. In the peer model, optical and IP nodes act as peers
such that a single routing protocol instance runs over both the
IP and optical domains. Hence, the optical network elements be-
come IP addressable entities. The advantage of the peer model
is that the entire network can be managed and traffic engineered
as if it is a single network; its drawback is that routing and re-
source information need to be globally advertised.

In the overlay model, IP/MPLS routers do not participate
in the routing protocol instance that runs among the optical
nodes; in particular, the routers are unaware of the topology of
the optical domain. The optical network primarily offers high
bandwidth connectivity in the form of lightpaths according to
a client-server model. A standard GMPLS user-network inter-
face (UNI) based on RSVP-TE ([23]) has been developed at the
IETF. The GMPLS UNI enables signaling and information ex-
change between the IP and the optical domains.

Our framework is built upon the overlay model. This choice is
motivated by the observation that the optical and data networks
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are typically operated as distinct organizations, either with sep-
arate owners or as separate divisions within the same corporate
entity. Such an organizational structure is likely to be even more
pervasive in the future due to increasing disaggregation of ver-
tically integrated service providers and the emergence of new
models, such as the carrier’s carrier [2]. The overlay model of
this paper reflects the implications of organizational separation
of the optical and individual data networks. We omit the discus-
sion on the peer model due to space limitations, and observe in
passing that the solution procedure presented here is an attrac-
tive candidate for numerically solving the peer model.

When building this framework, we address several impor-
tant issues that lead to the following features. First, the purpose
of the framework is to enable the data and optical networks to
cooperatively optimize a given objective, which is broadly de-
fined to be the surplus of the utility from carrying end-to-end
traffic demand over the cost of optical lightpath provisioning.
A nonlinear utility function is used to measure the value of car-
rying data traffic from source to destination. We do not con-
fine ourselves to any specific form of the utility function, except
for requiring that it is concave and monotonically increasing
in the amount of traffic carried. We capture several scenarios
in the problem formulation, including random traffic demands
with known distributions and price-demand relationships. Con-
sequently, our framework allows many different forms of non-
linear utility functions.

Another notable feature of the framework is the significant
separation of scales in the data and optical networks. The band-
width of links in the data network are of considerably lower ca-
pacity. A typical data network rate is T1, DS3, or OC3, while
in the optical core it is OC48 or OC192. On the other hand,
the number of routers is typically orders of magnitude greater
than the number of optical cross-connects (OXCs). The indivis-
ibility of the wavelength as a unit of provisionable bandwidth in
the optical transport network imposes integrality constraints on
the decision variables in the optimization problem. This feature
adds significantly to the difficulty of solving the optimization
problem.

Our framework implements a division of tasks that allows
each network to focus on its own domain. Decision-making in
the data networks aims to make the most efficient use of re-
sources in the optical network by routing and admission control.
Decision-making in the optical network is concerned with pro-
viding necessary resources to transport traffic at minimum light-
path provisioning cost. Nevertheless, the division of the tasks
does not imply a complete separation of decision-making. The
framework facilitates the communication and coordination be-
tween different networks to maximize the global objective func-
tion. For instance, the optical network has the implied task of
inducing the data network to home traffic in such a manner that
facilitates efficient packing of wavelengths.

Finally, service providers incur an implied “cost” associated
with information transfer between the data and optical networks.
In the case when the two networks are organizationally separate,
the cost may be in strategic terms, i.e., loss of competitive advan-
tage, as for example, with the transfer of infrastructure capacity
information. Another cost to the service provider is the oper-
ating expense for collecting and transferring detailed informa-

tion on the network. For this reason, while information exchange
in our scheme is sufficient for achieving global optimality, com-
munications between the networks are kept at a minimum.

The mathematical foundation of our framework is General-
ized Bender’s Decomposition. Bender’s method is well-known
for mixed integer linear programming. It has also been proposed
previously for the solution of nonlinear programming problems
with continuous variables. The Generalized Bender’s Decom-
position presented in this paper combines a nonlinear objec-
tive function with integer variables. Also of note is the mapping
of the decomposition into a cooperative and iterative internet-
working solution procedure. In each iteration, each data network
passes the net and marginal values of the proposed provisioned
lightpath bandwidths to the optical network. The optical net-
work passes information on the proposed provisioned lightpath
bandwidth to the data networks. The procedure is proven to con-
verge to the global optimum in a finite number of iterations.
Moreover, each iteration refines an upper and a lower bound
on the global solution. The procedure terminates when the two
bounds coincide.

The treatment in this paper is restricted to the case of a
single pattern of end-to-end traffic demands. Nevertheless, we
recognize that in reality network traffic patterns are constantly
changing. Our framework can be extended to accommodate
the latter, starting from decomposing the problem according
to scale. For relatively small scale changes, the corresponding
network response is only at the data networks. That is, the
routing and admission control at the data networks are affected,
while the reprovisioning of wavelengths to optical pipes is
not necessitated. However, sufficiently large changes in traffic
patterns will justify the need for undertaking the relatively
heavy load of recalculating the optical provisioning process and
with it, of course, the data network traffic engineering solution
as well. An important element of this strategy is the design
of automatic thresholds that trigger the latter on the basis of
online measurements. Such procedures are outside the scope
of this paper. However, as the results from the case study in
Section V-B shows, the insights from this study are useful and
the tools these generate will be essential ingredients of such
procedures.

As surveyed in [5], there has been a variety of researches on
the use of layering as decomposition mechanism for solving the
network utility maximization problem globally. Such analysis
used to be carried out in ad hoc and piecemeal fashion, and the
new advancement is to take forward-looking view by proac-
tively developing systematic frameworks. Several schemes of
this kind have been suggested for different network applications
([6], [7], [24], [26]). Our work expands the modeling, method-
ology, and application of this line of research. Our framework
targets data-optical internetworking. Unlike the cases like [10]
and [18], the control of network resources in our case is exer-
cised by neither a single utility maximizer nor multiple selfish
agents, but by data and optical networks who are separate yet
cooperative network operators. Furthermore, we extend the
decomposed layering approach beyond the domain of convex
optimization as our model involves optimization over integer
variables. The techniques developed here are quite likely to be
effective for a broad range of applications.
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In Section II, we describe the data and optical networks under
consideration. In Section III, we formulate the optimization
model. In Section IV, we discuss a novel application of Gen-
eralized Bender’s Decomposition. We present sample results
from case studies in Section V and conclude in Section VI.

II. INTERNETWORKING MODEL

The network under consideration is composed of an optical
core connected to multiple data subnetworks. The latter are in-
dexed by . Let be the set of nodes in data net-
work and be the set of all optical nodes. Data networks
interconnect with the optical core at a set of gateway nodes ,
where

The link set of the network is , i.e.,

where is the set of data links in subnet and
is the set of optical links. are pairwise

mutually exclusive, as are and for all .
Traffic demands have their sources and destinations in nodes

of the data networks. We assume that both the source and des-
tination of each demand reside in the same data network. A
more general formulation would consider demands that orig-
inate in one network and terminate in another. However, dis-
cussing these situations requires us to address peering between
data networks, a topic that is beyond the scope of this paper and
left for future exploration.

Traffic demands are carried by the composite network. A
traffic-carrying route is typically composed of a sequence of
data, optical and data network links, in that order. Usually, there
are many routes from a source to a destination; however, from
policy and technical restrictions only a subset of these routes
may be eligible to carry traffic. The collection of eligible routes
between a (source, destination) node pair is defined to be the
admissible route set for the pair.

A. Data Network Model

Let

be the set of all (source, destination) node pairs in subnet
.

A subnet can be a single network operated by one provider
or a set of interconnected networks owned by a coalition of
providers who agree to terminate traffic for each other. In the
latter case, we view the coalition as a single decision-maker who
maximizes the benefit for the entire coalition. We recognize this
is a simplified assumption that overlooks private incentives of
individual providers. Nevertheless, addressing these incentives
inevitably leads the discussion of peering relationships a very
interesting topic on its own, which is beyond the scope of this
paper and left for future exploration.

Note that we exclude cases where sources and destinations
are in different data networks. The symbol for a node pair does
not indicate the data network to which the node pair belongs,
but the context should make it clear. For each ,
is the admissible route set. Each route contains a
subset of data network links , and possibly an optical
segment. The data networks have no knowledge of the optical
network’s internal structure. Therefore, the entire optical seg-
ment is treated as a single optical pipe that connects the (ingress,
egress) gateway nodes pairs. Define

as the set of all gateway node pairs. We say if route
enters and exits the optical core at node pair . We assume for
any route , , i.e., a route enters the optical core at
most once.

Let be the total bandwidth provisioned to carry traffic be-
tween the node pair and be the bandwidth provisioned
on route . Then, the following constraints apply for
end-to-end (E2E) routing:

(1)

Furthermore, denote the capacity of data link by
and bandwidth between the gateway pair provisioned to data
subnet by , then

(2)

In this paper, are given parameters. The size of optical pipes,
, are controlled by the optical core, as explained in the fol-

lowing subsection.
We end this subsection by noting that in the following discus-

sions it is convenient to express the two systems of inequalities
in (2) in matrix form:

(3)

where , , and
.

B. Optical Network Model

The optical core decides on , the amount of bandwidth
between gateway node pair to be allocated to the data network
. Assume that the core treats all traffic between gateway pairs
uniformly, i.e., obliviously of their (source,destination) node

pairs in the data subnets. Then, for the optical core

is the total bandwidth of the optical pipe connecting the gateway
pair . This optical pipe is realized by bandwidth provisioned in
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possibly multiple paths, where paths (abbreviated from light-
paths) in the optical network are analogous to routes in the data
networks. We define to be the set of candidate paths be-
tween node pair and let be the bandwidth pro-
visioned on path . It follows that:

(4)

Denote the number of wavelengths deployed on link by , and
as bandwidth per wavelength. We omit the straightforward

generalization that allows to depend on . Thus, is a non-
negative integer, and is the aggregate bandwidth available
on the optical link . The sum of bandwidths provisioned on all
paths that use link cannot exceed the link capacity, i.e.,

(5)

Let be the cost of provisioning and operating a wavelength on
link . The cost may include a onetime deployment investment,
which we assume is properly amortized as a constant install-
ment over the product life of the optical equipment. Thus, if
wavelengths are deployed, the deployment cost for link is .

In the above formulation, while the bandwidth availability
implied by the number of wavelengths deployed on each link
is a key feature, the identities of the wavelengths are not tracked
from link to link. This is done deliberately. First, the method-
ology introduced in Section II-C, on “routing constraints in the
optical network” is sufficiently general to allow the latter fea-
ture to be taken into account if necessary. Second, this issue
is related to wavelength conversion on which a great deal has
been written and much is already known. Introducing this topic
on an already overextended paper would place an unreasonable
burden on the reader.

C. Routing Constraints in the Optical Network

Equations (4) and (5) are conditions that have to be satis-
fied by the gateway-to-gateway routing. In general,
the routing may be subject to other constraints implied by
the diverse capabilities of the optical nodes to groom (i.e.,
unpack/pack between lower-rate and higher-rate data streams)
and switch traffic. These capabilities depend on the presence
of sophisticated electronics and come at considerable cost.
Nodes at the gateways to the optical network are more likely
to have these capabilities than internal nodes. We will consider
several configurations in a unified framework. At one extreme,
every optical node has these capabilities. In this case, traffic
can be arbitrarily split at all nodes and routed on different paths
between a pair of optical nodes. At the other extreme, no node
has these capabilities and the gateway has to select one path
from the candidates in the admissible set to carry all traffic
to the destination gateway. An interesting intermediate case
is where the gateway nodes have the capabilities to split and
switch traffic, while the internal nodes do not.

To reflect these instances of constraints in a unified formu-
lation, let be the set of all wavelength configurations,

Fig. 1. An example of routing constraints.

, each of which makes realizable. The set
is the collection of all non-negative vectors that satisfy three
conditions. These conditions include (4) and (5); additionally,
another set of defining conditions of arises in case the
use of a path excludes the use of others. This exclusion property
can be given as a condition on the paths’ indicator functions (a
path’s indicator function takes value 1 if the path is used, and 0
otherwise)

(6)

where can be any collection of paths in which the use of one
path excludes the use of any other path.

For example, in the first of the two aforementioned extreme
examples, is defined as the collection of that are fea-
sible for both (4) and (5), i.e., there is no need for any exclusion
condition (6). In contrast, in the second extreme case, is
restricted by an exclusion condition

(7)

which indicates that only one path (from the admissible route
set) can be used between a gateway node pair. Now, consider
the example in which only gateway nodes have grooming and
switching capabilities, so that traffic may be split at the ingress
gateway, but not at any internal node. Then, the definition of

is determined by (4) and (5), and the exclusion condition
which applies on subsets of all admissible routes that have a
common initial link. For example, consider the gateway pair

in Fig. 1. In the figure, and are gateway nodes and
is an internal optical network node. Suppose has three
paths , , and . Because
the internal node has no grooming capability, the usages of
routes and are mutually exclusive.
Therefore, the following exclusion condition applies:

(8)

where .
In conclusion, the concept of is versatile and allows

quite general routing constraints, including mutual exclusion,
to be modeled. However, it should be noted that additional ex-
clusion conditions in require the introduction of binary
variables that makes the subsequent optimization problem more
burdensome.
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Fig. 2. Illustration of the network model and decision variables.

III. OPTIMIZATION PROBLEM FORMULATIONS

In this section, we formulate various optimization problems,
which have in common the objective of maximizing the surplus
of total utility over the deployment cost in the optical transport
network. We give various choices for the utility function, which
in all cases reflects the value of carrying traffic. The deployment
cost is proportional to the number of wavelengths deployed on
the optical link.

A. Utility Functions, Traffic Demand Characterizations

The total utility is the sum of the utility for each data net-
work, where is the amount of utility derived from network

per unit of time and is a function of provisioned bandwidth
[see (1)]. Our model ac-

commodates various traffic demand characterizations, as well as
utility functions.

1) Suppose that a “traffic matrix” specifies demand between
(source, destination) pairs, i.e.,

(9)

where is the deterministic traffic demand between the
node pair . In this model, the carried traffic for
node pair is the minimum of provisioned bandwidth ,
and the traffic demand . Since it is waste of resource to
provision bandwidth beyond the demand, we require

which implies that the carried traffic equals the provisioned
bandwidth. The utility for the th data network is

(10)

which is the weighted sum of carried traffic between
(source, destination) pairs. We may interpret as the
revenue per unit of demand carried between node pair ,
in which case (10) gives the total revenue.

2) We may also adopt the concurrent flow problem formula-
tion and induce fairness among (source, destination) pairs
by letting

(11)

3) Demands may also be given as a set of random vari-
ables characterized by their distribution functions [22], i.e.,

(12)

In this case, we define the utility function to be

(13)

where , the bracketed term is the ex-
pected carried traffic for node pair and is the ex-
pected total revenue. See [16] for details and properties.

4) Price-demand relationship may also be incorporated into
the model. Let the price be a decreasing function of
the carried traffic and define the utility to be the revenue,
which is the product of price and demand, summed over all
node pairs, i.e.,

(14)

It is required that is such that is a mono-
tonically increasing, concave function of . An important
example of price-demand relation that has been extensively
used is the constant elasticity demand function

(15)

where is the constant price elasticity of demand.
5) With a little variation, we can also use the formulation to

address the problem of minimizing aggregate delays sub-
ject to the condition that all demand is carried (assuming
the problem is feasible). In this case, , which is given ex-
ogenously, is demand that must be carried. This condition
is expressed as

If each link is approximated by a queue, then the
aggregate delay in data networking is
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It is desirable to have a smaller value of the above quantity.
Correspondingly

which is a monotonically increasing and concave function
of . We also require

B. The Optimization Problem

The global optimization problem can be formulated as

(16)

subject to

(17)

where is defined in Section II-C. The utility func-
tion in (16) is monotonically increasing and concave.
The necessary condition for is the existence of

that satisfy (4) and (5). Additional con-
ditions reflecting optical routing constraints may also need to
be satisfied, as discussed in Section II-C. Note the nonlinear
objective function and integer variables in the formulation of
the optimization problem.

C. Introduction to Generalized Bender’s Decomposition

In the following, we follow Schrijver [21] and Geoffrion [8]
to introduce Generalized Bender’s Decomposition. Schrijver’s
treatment is for the mixed integer linear programming problem
and Geoffrion’s is for nonlinear programming problems with
continuous variables. However, our problem involves both in-
teger variables and a nonlinear objective function. The develop-
ment here is a synthesis of the two approaches.

Consider the following canonical optimization problem

(18)

where is a concave and monotonically increasing function
of , is a constant matrix, and is a finite set of integral

vectors to which is restricted. The problem can be decomposed
as follows:

(19)

where

(20)

We shall refer to the problems in (19) and (20) as master and
slave, respectively. In general, is only given implicitly, so
that (19) cannot be solved directly. Generalized Bender’s De-
composition is an approach to deal with this problem. In this
approach, a sequence of slave problems is solved for different
values of . The solutions to these problems are used to con-
struct Bender’s cuts that define approximations to .

Let be a set of given values
in . Suppose maximizes (20) for . Then,

is a feasible solution to (18). Therefore

(21)

gives a lower bound to the solution of the original problem, and
moreover the bound is nondecreasing in .

Furthermore, by the duality theorem of convex programming

(22)

where denote the vector of Lagrange multipliers associated
with constraints . Let

(23)

A Bender’s cut is defined as

(24)

An upper bound to the solution of the original problem (18) is
obtained by solving the following surrogate problem:

(25)

The upper bound decreases as increases since increasing
the number of Bender’s cuts reduces the feasible region of the
solution.

Generalized Bender’s Decomposition is an iterative process.
In each iteration, a new instance of the slave problem is solved.
This solution is used to construct a new Bender’s cut that aug-
ments the set of previous cuts. Each expansion of the set of cuts
defines a refinement to the approximation of for which the
corresponding master problem is next solved. The process con-
tinues until the decreasing upper bound and the increasing lower
bound coincide, which then defines the optimal solution.
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Fig. 3. Illustration of generalized Bender’s decomposition for a simple
example.

Geoffrion has shown in [8, Th. 2.4] that if is in a finite
discrete set and is concave and defined on a convex, com-
pact set, then the procedure is guaranteed to terminate in a finite
number of iterations.

D. A Simple Example

To illustrate how Generalized Bender’s Decomposition ap-
plies to data-optical internetworking, consider the simple case
of a single optical link and no data links. The optical link con-
nects a pair of nodes. Then, the problem in (18) is reduced to

(26)

and the master and slave problems in (19) and (20) are

(27)

and

(28)

respectively. Note that is explicitly shown in the figure,
while in reality it is defined implicitly. Both and are
illustrated in Fig. 3. The problem in (26) is to find that maxi-
mizes the vertical distance between and .

We assume that there exists a sufficiently large value
such that

i.e., once the provisioned capacity is sufficiently large, adding
new capacity will not improve the utility.

The procedure is as follows. First, let be some value greater
than . Solving (28) with gives a solution that

From (23) and (24), the first Bender’s cut is

which is the (dashed) horizontal line in Fig. 3. Next, the surro-
gate problem

is solved to give the solution . Solving (28) with this value
gives

and the second cut

which is also shown in the figure. Solving the surrogate problem
again with both cuts enforced

gives , shown in Fig. 3, which generates a third cut, .
Notice in the figure that as the number of cuts increases, the

approximation to becomes increasingly refined. As pre-
viously stated, this process continues until the upper and lower
bounds converge.

IV. DISTRIBUTED INTERNETWORKING PROCEDURE

We now explain how we obtain a distributed internetworking
solution procedure based on Generalized Bender’s Decomposi-
tion. Each data network makes admission and
routing decisions based on information from the optical network
on capacities provisioned on optical pipes. A parsimonious rep-
resentation of the result is transferred to the optical network,
which uses it to make decisions on the provisioning of wave-
lengths on optical links and bandwidth on optical pipes. In this
procedure, the master problem in the decomposition to the op-
timization problem in (16) and (17) is

(29)

For each data network , there is a corresponding
slave problem

(30)
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Fig. 4. Schematic of the distributed internetworking procedure.

where and are defined in (3). Decision-making in the op-
tical and data networks is associated with solving the master and
slave problems, respectively. The procedure is iterative with in-
formation exchange (to be described below) at each iteration be-
tween each data network and the optical network. Fig. 4 shows
a schematic of this procedure.

A. Data Network Optimizations

The slave problem (30) is solved by the data network
for fixed value of . This optimization maximizes the utility

, from carrying traffic, with respect to admission control
and routing , based on the fixed capacity of data net-

work links and the capacity of the optical pipes . The
latter information is transferred from the optical network.

Recall that is a concave increasing function of , so
(30) is a concave maximization problem and can be transformed
into

(31)

where is the Lagrange multipliers associated with the ca-
pacity constraints on the optical pipes . By the KKT
optimality condition

(32)

where is the optimal solution. We interpret as the mar-
ginal value of the optical pipe between gateway node pair ,

as the total value of optical pipes, and

as the “net value” of the data network , defined as the surplus
of the utility of the network over the “shadow cost” of using the
optical network pipes.

B. Optical Network Optimizations

The master problem (29) is solved by the optical network; it
incorporates information provided by all the data networks. The
information from the th network is on the net and the mar-
ginal ( ) values of the optical capacity to this data network.
These values represent minimal and necessary feedback from
the data networks, based on which the optical network optimizes
its internal design problem for provisioning, without knowing
details of any data network’s topology, configurations, capaci-
ties, and traffic demands.

The optical network solves the master problem in the form of

(33)

C. Solution Procedure with Information Exchange

To summarize, the internetworking procedure has the fol-
lowing steps.
Step 1) Let denote the iteration index. The optical net-

work starts from an initial provisioning solution, i.e.,
wavelengths on each link and bandwidth allocation
to each path in conformance with exclusion condi-
tions, from which the capacity of optical pipes are
determined. Sizes of optical pipes are communi-
cated to the data networks.

Step 2) Data network makes admission
and routing decisions to optimize its utility function
for the given size of optical pipes. The values of
and that are obtained from this optimization are
transferred to the optical network. These values gen-
erate a new cut that augments the set of cuts derived
from all the previous iterations. The augmented set
is used by the optical network for solving the master
problem in the next iteration.

Step 3) The optical network obtains a new provisioning so-
lution by solving the problem in (33). The values

that are obtained from the optimization are trans-
ferred to data network .

Step 4) Increment . Repeat steps 2 and 3 until
the termination condition for Generalized Bender’s
Decomposition stated in Section III-C is satisfied.

V. CASE STUDIES

In this section, we present numerical case studies based on
the network topology shown in Fig. 5. Circles denote data net-
work nodes, squares denote gateway nodes, and ovals denote
switching nodes in the optical network. Bandwidth on each data
link is fixed. The links that connect data and optical nodes have
20 units of capacity and other links that connect data nodes have
10 units. Wavelength deployment cost is assumed to be 5, 10, or
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Fig. 5. Network diagram.

15, depending on the location of the optical link. Each wave-
length carries 40 units of capacity.

A. Case 1: Convergence

In the first example, we consider one data network connected
to the optical core. The utility for the service provider
is defined to be the revenue , where and are the
volume and the unit price for carried demand for each node pair

, respectively. In general, is a decreasing function of .
Here, we assume that the relationship is characterized by the
well-known function

(34)

where the parameter is the constant price elasticity of demand
and is set at 1.5. It reflects the rate of traffic demand change with
respect to price change. are scalars that parameterize the po-
tential demand volume, and their values are randomly generated
in the range between 10 and 70. The total utility is the sum of
revenue over all node pairs

(35)

In provisioning optical bandwidth, we allow the size of op-
tical pipes between gateway pairs to take fractional values, even
though wavelengths on each link have to be deployed in inte-
gers. In essence, we are assuming that every node in the optical
core has grooming, demultiplexing, and switching capabilities.

Fig. 6 shows the performance of the procedure described in
Section IV for this example. At each iteration, we obtain an
upper bound on the optimal solution and a feasible solution.
The figure shows rapid convergence of the two values. In the
following, we normalize by dividing the difference between the
upper bound and the feasible solution by the former. This nor-
malized difference is 62% initially, and drops to less than 5%
after the first ten iterations. The observed convergence indicates
that the iteration converges to the global optimal solution.

Fig. 7 shows the configuration of the optical network in the
final solution. One wavelength (with capacity 40) is installed on
all optical links except the link between nodes D and T. As can
be seen in the figure, these capacities are used to configure op-
tical lightpath between nine out of the ten gateway pairs. The

Fig. 6. Convergence of the algorithm.

Fig. 7. Optical network configuration. The bottom figure shows the lightpath
size that is communicated to the IP network; the top figure shows the internal
routing of lightpaths.

bottom figure shows the size of each lightpath that is commu-
nicated to the IP network. The top figure shows internal routing
of these paths that is kept within the optical domain. The light-
paths are shown as dashed lines in the figure, and the accompa-
nying numbers indicate the capacity of the lightpaths. Note that
bandwidth provisioning is not unique. It is possible to provision
bandwidth to the path connecting gateway pair (C, E) on both
routes C-T-S-E and C-D-S-E, instead of provisioning all band-
width on the latter, as in the displayed solution. The new provi-
sioning arrangement reduces the burden on the heavily loaded
link S-D and spreads the load on links S-T and T-C, which have
the same capacity as link S-D but carry less traffic. However,
doing so will require traffic splitting at node S, which may com-
plicate the management of the optical network. In our scheme,
the optical network deals with this tradeoff without burdening
the data network.

We use the above procedure to conduct experiments to iden-
tify changes in optical network configuration as wavelength ca-
pacity increases and cost of unit bandwidth decreases. We start
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TABLE I
CHANGE OF OPTICAL NETWORK CONFIGURATION

WITH WAVELENGTH GRANULARITY

from the base case and scale capacity per wavelength by a factor
of and cost per wavelength by a factor . We let
to reflect economy of scale, i.e., the cost per unit of bandwidth
decreases as bandwidth per wavelength increases. Capacity on
each lightpath for different values of , is shown in Table I.
In the base case , many lightpaths are configured
in the optical core. As , increase, the core bandwidth has
to be deployed in increasingly large bundles. As a result, only
a small number of paths are provisioned, reflecting a higher de-
gree of capacity concentration in the core.

B. Case 2: Random Demands and Shadow Costs

Our goal here is twofold. First, we propose to consider the
case of random demands. In this case, the utility function,
which has been discussed in Section III-A [see (13)], reflects
mean carried traffic. Second, we propose to explore the use of
shadow costs to signal the need for reoptimization in realistic
dynamic environments where the statistics of traffic demand
are time-varying.

In the solution described earlier, shadow costs of optical pipes
are critical quantities that indicate marginal values of the op-

tical bandwidth to the data networks. The passing of these values
by a data network to the optical core coordinates separate opti-
mizations performed by the two networks. Note that the con-
cept of shadow costs has been widely adopted in distributed
network management and utility maximization that involve op-
timal scheduling, routing, and admission decisions [11], [12].
The approach developed below presents a novel use of shadow
costs for capacity deployment and internetwork coordinations.

In this case study, we demonstrate that the shadow cost not
only provides the basis for optimizing wavelength deployment
and bandwidth provisioning in the optical network, but can
also determine when reoptimizations should take place. We
first solve a base case that optimizes the optical network con-
figuration for some given demands. We keep this configuration
fixed, while imposing various changes of the traffic demand to
the data network. The question is whether the optical network
needs to be reconfigured to accommodate these changes. We
show that shadow costs provide an excellent indicator to answer
this question. Specifically, if changes in demand cause large
changes in shadow costs, then reoptimization is in order. Oth-
erwise, the changed demand can be adequately accommodated
by the existing optical network configuration.

We consider one data network and use the same topology as
in the previous example. However, we switch to different de-
mand characterizations and utility function from the preceding

TABLE II
OPTIMAL CONFIGURATION OF THE OPTICAL CORE

case in Section V-A. We let the demand volume between a node
pair be random and characterized by the following truncated
Gaussian distribution:

(36)

for . The normalizing constant

(37)

and , where and are the mean
and standard deviation of the untruncated normal distribution.
Under certain conditions, e.g., when the ratio of to is suf-
ficiently large, these values are also good approximations to the
mean and standard deviation of the above truncated distribution.
The utility to be maximized is the expected revenue, given by
[also see (13)]

where is the revenue per unit of traffic carried between node
pair . We generate values of , , and by letting

(38)

where , , are given constants, and , , are values
generated randomly to reflect differences in demand distribution
and unit revenue between different node pairs.

In the base case

(39)

and , , and are assumed to be uniformly distributed over
[ 0.5,0.5], [ 0.5,0.5], and [0,4], respectively. The solution to
the problem from our procedure is shown in Table II. The table
gives both the optimal number of wavelengths deployed on each
link as well as the optimal amount of bandwidth provisioned on
each optical pipe.

Next, we keep the configuration unchanged but allow de-
mands to deviate from the base case in the following three dif-
ferent ways.
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Fig. 8. Impact of demand change on shadow costs.

1) We increase the mean by 20% to 100% at 20% incre-
ment to simulate a systematic increase of demands between
all node pairs.

2) We increase by the same percentages so that the average
volume of traffic demand between each node pair does not
change but the demand uncertainty increases.

3) We keep both and fixed but enlarge the support for
by the same percentages as above. In this case, the

aggregate demand in the data network remains unchanged,
but the variation of mean demand between node pairs
increases.

For each scenario, we solve the data network optimization
problem (30) in Section IV (with the configuration of the op-
tical network fixed as before). Fig. 8 shows the resulting shadow
costs , averaged over all optical gateway node pairs .

Recall that shadow costs reflect marginal values of bandwidth
of the optical pipes to the data network. The figure shows that
the shadow costs are quite sensitive to the first type of demand
change: when the demand increases across all node pairs of the
data network, then there is a clear need for more optical band-
width, which is reflected in the increases of the shadow costs.
Note the rate of the shadow cost increase is approximately 7,
which is quite close to , the revenue per unit of carried de-
mand [by (38) and (39), is in the neighborhood of 8]. This
indicates that an additional unit of optical bandwidth added can
be used to carry close to one unit of traffic and to earn a unit
of revenue. In the second case, the demand does not increase
on average, but the data network still needs more bandwidth to
handle increased demand uncertainty. Using bandwidth to back
up uncertain demands is less profitable than using it to carry
new demand, which explains why the increase of shadow costs
is smaller than in the first case. In the third case where the de-
mand increases between some node pairs and decreases between
others, the data network can absorb the fluctuation by adjusting
routing and admission control in its own domain without re-
quiring more changes in the provisioning of the optical core.
Consequently, shadow costs are much less sensitive to this type
of demand change, as is shown in the figure.

Intuitively, one would expect if the increases in shadow costs
are small, then there is little need to reconfigure the optical
core. This intuition is verified in Table III in which we show
the total number of wavelengths that result from reoptimizing
the problem with new demands. The first row corresponds to

TABLE III
OPTIMAL NUMBER OF WAVELENGTHS FOR DEMAND CHANGES

the base case where the number of deployed wavelength is 17.
The other rows show the optimal wavelength deployment for
different demand changes. For instance, a 40% increase in mean
demand requires increasing the number of wavelength to 21. In
the case of increasing standard deviation, the threshold is 60%.
Furthermore, the number of wavelengths need to be increased to
23 when mean demand is increased beyond 80%, while the in-
crease is less in the other cases. Comparing Fig. 8 with Table III,
we see that there is a strong correlation between the increase of
shadow costs and the need to add new wavelengths. Therefore, it
is conceivable that in a dynamic environment where the demand
is constantly changing, the optical core should keep communi-
cating with the data network on these shadow costs, and restart
the aforementioned optimization process once it detects a sig-
nificant change.

VI. DISCUSSION AND CONCLUSION

In this paper, we have presented a framework for efficient
multilayer IP traffic engineering and optical network configura-
tion in the IPO overlay model. Our framework accommodates
various traffic demand formulations and utility functions. We
have shown that the distributed implementation of the overlay
model achieves global optimum. Our approach is derived from
the Generalized Bender’s Decomposition, where the subprob-
lems (slave and master) correspond to separate decision-making
by the data and optical domains. The information exchange
between the two domains is kept at a minimum and may be
mapped into standard communications through the UNI.

Our work introduces the concept of “multilayer” grooming,
which broadens the traditional grooming in the optical domain
to data networks, where now the latter are active participants in
the grooming process with intelligent homing of data traffic to
optical gateways.

While the treatment in this paper is restricted to the case of
a single pattern of end-to-end traffic demands, our framework
can be extended to accommodate a dynamic environment with
changing demands. As we demonstrated in the numerical case
studies, shadow costs of optical paths provide an excellent in-
dicator as to when reoptimization of the optical network is re-
quired. This result points to an interesting direction for future
work.

If we relax the integrality constraints on capacity variables,
then our model becomes a concave maximization problem
and its optimal solution can be characterized by the first-order
(Karush–Kuhn–Tucker) condition. As a result, the widely dis-
cussed primal-dual approach becomes an applicable strategy.
However, the application is not straightforward because, unlike
the conventional problem setup, here the optical network serves
clients who are not end users, but networks themselves. The
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interaction between a client’s management of its own resources
and its use of optical capacities gives rise to new issues that
need to be addressed in order to apply the primal dual approach,
which are interesting for future exploration.
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